On Poincaré sums for local fields

By Takashi Ono

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland, 21218-2686, U. S. A. (Communicated by Shokichi Iyanaga, M. J. A., Sept. 12, 2003)

Abstract: Let K/k be a finite Galois extension of local fields. To each class $\gamma = [c]$ in $H^1(\text{Gal}(K/k), U_K), U_K$ being the group of units of K, we associate an index $i_{\gamma}(K/k) = (M_c : P_c)$ after the model of Poincaré series and study its relation to the ramification theory of K/k.

Key words: p-adic fields; cohomology groups; differents; ramifications; cyclotomic fields.

1. Introduction. This is a continuation of papers [1, 2] where we looked at mainly (global) quadratic fields. In this paper, however, we will steer toward Galois extensions of local fields.

Let K/k be a finite Galois extension of \mathfrak{p} -adic number fields with the Galois group $G = \operatorname{Gal}(K/k)$. Denote by \mathcal{O}_K the ring of integers in K, by \mathfrak{P} the prime ideal of \mathcal{O}_K and by U_K the group of units of \mathcal{O}_K . For the ground field k, we adopt notation \mathcal{O}_k , \mathfrak{p} and U_k similarly.

Following Poincaré, we set, for a cocycle c of G in U_K ,

(1)
$$M_c = \{ a \in \mathcal{O}_K; c_s{}^s a = a, s \in G \},\$$

(2)
$$P_c = \Big\{ p_c(a) = \sum_{t \in G} c_t{}^t a, \ a \in \mathcal{O}_K \Big\}.$$

One finds that $|G|M_c \subseteq P_c \subseteq M_c$ and that the |G|torsion finite module M_c/P_c depends only on the class $\gamma = [c]$. Therefore one can associate an invariant to a finite Galois extension K/k of p-adic fields by

(3)
$$i_{\gamma}(K/k) := (M_c : P_c), \quad \gamma \in H^1(G, U_K).$$

In this paper, we will study some relations of $i_{\gamma}(K/k)$ with the ramification theory of K/k. We will mention some applications to cyclotomic and Kummer extensions.

As for basic facts on number theory, see [3].

2. Canonical class $\gamma_{K/k}$. Notation being as in 1, let us fix a prime element Π in K. Then we have

(4)
$${}^{s}\Pi = \Pi z_{s}, \quad s \in G, \quad z_{s} \in U_{K}.$$

The mapping $s \mapsto z_s$ is a 1-cocycle of G in U_K . Since the change of the prime element Π changes the cocycle z to z' cohomologous to it, Π has an ability of bringing a canonical class $\gamma_{K/k} = [z]$ in the cohomology group $H^1(G, U_K)$.

3. $H^1(G, U_K)$. Let $\gamma = [c]$ be any class \in $H^1(G, U_K)$. Since U_K is a subgroup of K^{\times} there is, by Hilbert theorem 90, an element $a \in K^{\times}$ such that

(5)
$$c_s = \frac{{}^s a}{a}.$$

Now write

(6)
$$a = \Pi^m u, \quad u \in U_K, \quad m \in \mathbf{Z}$$

In view of (4), we have

(7)
$${}^{s}a = {}^{s}\Pi^{m} {}^{s}u = \Pi^{m}z_{s}{}^{m}{}^{s}u,$$

and, by (5), (6), (7), we have

$$c_s = u^{-1} z_s^m {}^s u \Rightarrow c \sim z^m \Rightarrow \gamma = \gamma^m_{K/k}$$

In other words, $H^1(G, U_K)$ is a cyclic group generated by the canonical class $\gamma_{K/k}$.

Let us count the order of the group. Consider the short exact sequence of G-groups

 $1 \longrightarrow U_K \longrightarrow K^{\times} \longrightarrow \mathbf{Z} \longrightarrow 1$

where the map $K^{\times} \to \mathbf{Z}$ is the valuation v_K with the trivial action of G on \mathbf{Z} . Passing to cohomology, we have the exact sequence:

(8)
$$1 \to U_k \to k^{\times} \to \mathbf{Z} \to H^1(G, U_K)$$

 $\to H^1(G, K^{\times}) = 1.$

Because of the relation $v_K(x) = ev_k(x), x \in k, e = e(K/k)$ being the ramification index for K/k, we obtain from (8)

Theorem 1. The group $H^1(G, U_K)$ is cyclic of order e = e(K/k) generated by $\gamma_{K/k}$.

²⁰⁰⁰ Mathematics Subject Classification. 11F85.

T. Ono

4. $i_{\gamma}(K/k)$. We shall obtain a preliminary formula for $i_{\gamma}(K/k)$. For any $\gamma = [c]$ in $H^1(G, U_K)$, by Theorem 1, there is an $m \in \mathbb{Z}$, $0 \leq m < e$ so that $\gamma = \gamma_{K/k}^m$ or $c \sim z^m$. In case m = 0, we have $\gamma = [1]$, and $M_1 = \mathcal{O}_k$, $P_1 = \operatorname{Tr} \mathcal{O}_K$. Then we set

(9)
$$i_1(K/k) = (\mathcal{O}_k : \operatorname{Tr} \mathcal{O}_K).$$

In case m > 0, the condition 0 < m < e implies that

(10)
$$\mathcal{O}_k \cap \mathfrak{P}^m = \mathfrak{p}.$$

Back to (1) with $\gamma = [c] = \gamma_{K/k}{}^m = [z^m]$, assuming still m > 0 and $c = z^m$ without loss of generality, we obtain

$$a \in M_c \Leftrightarrow c_s{}^s a = a \Leftrightarrow \frac{{}^s \Pi^m}{\Pi^m} \cdot {}^s a = a \Leftrightarrow {}^s \Pi^{ms} a$$
$$= \Pi^m a \Leftrightarrow \Pi^m a \in \mathcal{O}_k \Leftrightarrow a \in \frac{\mathcal{O}_k}{\Pi^m} \cap \mathcal{O}_K$$
$$= \frac{\mathcal{O}_k \cap \Pi^m \mathcal{O}_K}{\Pi^m} = \frac{\mathcal{O}_k \cap \mathfrak{P}^m}{\Pi^m} = \frac{\mathfrak{p}}{\Pi^m}$$

and so

(11)
$$M_c = \frac{\mathfrak{p}}{\Pi^m}$$

Next we look at (2). This time, for $a \in \mathcal{O}_K$, we have

$$p_c(a) = \sum_{s \in G} c_s{}^s a = \sum_{s \in G} \frac{{}^s \Pi^m}{\Pi^m} \cdot {}^s a$$
$$= \frac{1}{\Pi^m} \sum_{s \in G} {}^s \Pi^m a = \frac{\operatorname{Tr}(\Pi^m a)}{\Pi^m}.$$

Therefore we have

(12) $P_c = \frac{\operatorname{Tr} \mathfrak{P}^m}{\Pi^m}.$

From (3), (11), (12), it follows that

(13)
$$i_{\gamma}(K/k) = (\mathfrak{p} : \operatorname{Tr} \mathfrak{P}^m).$$

If we define an integer $r_{\gamma} = r_{\gamma}(K/k)$ by the relation, including the case $\gamma = 1$,

(14)
$$\operatorname{Tr} \mathfrak{P}^m = \mathfrak{p}^{r_{\gamma}},$$

then, from (13), we have

(15)
$$i_{\gamma}(K/k) = N\mathfrak{p}^{r_{\gamma}(K/k)-1}, \quad \gamma \neq 1,$$

where $N\mathfrak{p} = (\mathcal{O}_k : \mathfrak{p})$. As for $\gamma = 1$, in view of (9), we have

(16)
$$i_1(K/k) = (\mathcal{O}_k : \mathfrak{p}^{r_1}) = N\mathfrak{p}^{r_1}.$$

5. $r_{\gamma}(K/k)$. We want to express the number $r_{\gamma} = r_{\gamma}(K/k)$ in (14), (16) in terms of other basic invariants of K/k.

First, we shall consider the case $\gamma \neq 1$. Starting with (14), we have

(17)
$$\operatorname{Tr} \mathfrak{P}^{m} = \mathfrak{p}^{r} \Rightarrow \mathcal{O}_{k} = \mathfrak{p}^{-r} \operatorname{Tr} \mathfrak{P}^{m}$$
$$= \operatorname{Tr}(\mathfrak{p}^{-r} \mathfrak{P}^{m}) = \operatorname{Tr} \mathfrak{P}^{-er+m}$$

where e = e(K/k) denotes the ramification index for K/k, namely

$$\mathfrak{p} = \mathfrak{P}^e$$
.

Next, let $\mathfrak{D} = \mathfrak{D}(K/k)$, the different for K/k, and let t = t(K/k) be defined by

$$\mathfrak{D}=\mathfrak{P}^t.$$

Since (17) means that $\mathfrak{P}^{-er+m} \subset \mathfrak{D}^{-1}$ we infer that

$$r \le \frac{t+m}{e}.$$

Conversely, a similar argument starting with the relation $\operatorname{Tr} \mathfrak{P}^m \not\subset \mathfrak{p}^{r+1}$ implies that

$$\frac{t+m}{e} < r+1.$$

Cosequently we get

$$r_{\gamma}(K/k) = \left[\frac{t+m}{e}\right]$$

and, by (15),

(18)

(19)
$$i_{\gamma}(K/k) = (N\mathfrak{p})^{\left\lfloor \frac{t+m}{e} \right\rfloor - 1}, \quad \gamma \neq 1.$$

In case $\gamma = 1$, starting with (16) we have

(20)
$$r_1(K/k) = \left[\frac{t}{e}\right]$$

and, by (17),

(21)
$$i_1(K/k) = N\mathfrak{p}^{\left[\frac{t}{e}\right]}.$$

As is well-known, there is a formula for t in terms of higher ramification groups:

$$V_i = \{ s \in G; {}^s a \equiv a \pmod{\mathfrak{P}^{i+1}} \}, \quad i \ge -1$$

where $V_{-1} = G$, $V_0 = T$, the inertia group and $V_1 = V$, the (first) ramification group. The set $\{V_i\}, i \ge -1$, forms a normal series of G such that $V_i = 1$ for $i \gg 1$. The formula is

(22)
$$t = (e-1) + \sum_{i=1}^{\infty} (|V_i| - 1).$$

Then we find that $e - 1 \leq t$. Furthermore, we have

(23)
$$t = e - 1 \Leftrightarrow V = 1 \Leftrightarrow p \not\mid e$$

 $\Leftrightarrow K/k$: tamely ramified.

116

6. Vanishing of $i_{\gamma}(K/k)$. Having obtained formulas (19), (21) for $i_{\gamma}(K/k)$, one derives from them many results. We will here consider the question under what conditions $i_{\gamma}(K/k) = 1$.

(i) K/k is unramified. (e = 1, t = 0). In this case, $H^1(G, U_K) = 1$ by Theorem 1, and so m=0. The case (19) is absent and we have $i_1(K/k) = 1$ by (21).

(ii) K/k is tamely ramified. $(e - 1 = t \neq 0)$. If $\gamma = 1$, i.e. m = 0, then

$$\left[\frac{t}{e}\right] = \left[\frac{e-1}{e}\right] = 0$$

and so

(24)
$$i_1(K/k) = 1.$$

On the other hand, if $\gamma \neq 1$, i.e. m > 0, then

$$\left[\frac{e-1+m}{e}\right] - 1 = \left[\frac{m-1}{e}\right] = 0$$

and so

(25)
$$i_{\gamma}(K/k) = 1.$$

(iii) K/k is wildly ramified, $(0 \neq e - 1 < t)$. If $\gamma = 1$, then

$$\left[\frac{t}{e}\right] = 0.$$

But, then, e - 1 < t < e which is absurd. If $\gamma \neq 1$, then

$$\left[\frac{t+m}{e}\right] = 1.$$

Then we have $e \leq t + m < 2e$. Summing up,

Theorem 2. If K/k is unramified, then $i_1(K/k) = 1$. ($\gamma = 1$ is the only possibility).

If K/k is tamely ramified, then $i_{\gamma}(K/k) = 1$ for all γ . If K/k is wildly ramified, then $i_{\gamma}(K/k) = 1 \Leftrightarrow \gamma \neq 1$ and $e \leq t + m < 2e$.

7. Totally ramified extensions. Let K/k be a totally ramified Galois extension of \mathfrak{p} -adic fields. As is well-known, such an extension can be written as $K = k(\Pi)$ with a prime element Π whose minimal polynomial $f(X) \in \mathcal{O}_k[X]$ is of Eisenstein type. Then we have

$$t = v_K(f'(\Pi)) \quad \mathfrak{D} = \mathfrak{P}^t.$$

Since e = (K : k) in our case, we have, from (19), (21),

(26)
$$i_{\gamma}(K/k) = (N\mathfrak{p})^{\left[\frac{v_K(f'(\Pi))+m}{e}\right]-1}, \quad \gamma \neq 1$$

and

(27)
$$i_1(K/k) = N \mathfrak{p}^{\left\lfloor \frac{\nu_K(f'(\Pi))}{e} \right\rfloor}.$$

Consider, in particular, a polynomial

(28)
$$f(X) = X^e - a \in \mathcal{O}_k[X], \quad v_{\mathfrak{p}}(a) = 1, \quad p \not\mid e.$$

Let Π be a root of f(X) = 0. Assume that k contains all e-th roots of 1. Then K/k is a totally and tamely ramified Galois extension. Since $f'(\Pi) = e\Pi^{e-1}$ we have $v_K(f'(\Pi)) = e^{-1}$ and one checks again the vanishing, for all $\gamma \in H^1(G, U_K)$, of $i_{\gamma}(K/k)$ for Kummer extensions.

8. p^n -th cyclotomic fields. Let p be an odd prime number, n a natural number, \mathbf{Q}_p the field of p-adic numbers and ζ a primitive p^n -th root of unity taken from the algebraic closure of \mathbf{Q}_p . We set $k = \mathbf{Q}_p, K = \mathbf{Q}_p(\zeta)$ in accordance with notation in 1. One knows that $\Pi = \zeta - 1$ is a prime element in \mathcal{O}_K . Then our canonical class $\gamma_{K/k} = [c]$ is given by a system of *cyclotomic units*:

$$c_s = \frac{{}^s\Pi}{\Pi} = \frac{{}^s\zeta - 1}{\zeta - 1}, \quad s \in G.$$

For each n, we have

(29)
$$e = \varphi(p^n), \quad t = n\varphi(p^n) - p^{n-1}.$$

In what follows, we shall restrict our attension on the canonical class $\gamma_{K/k}$, for simplicity.

Case 1. n = 1. We have e = p-1 and t = p-2. 2. Then t = e - 1 and so K/k is tamely ramified by (23) and hence $i_{\gamma}(K/k) = 1$ for all γ by Theorem 2.

Case 2. n = 2. We have e = p(p-1) and t = p(2p-3). It is easy to check that

$$e - 1 < t < 2e - 1$$
, or $e < t + 1 < 2e$.

So K/k is wildly ramified by (23). However, we have $i_{\gamma_{K/k}}(K/k) = 1$ by Theorem 2 with m = 1.

Case 3. $n \ge 3$. From (29), it follows that

$$n-1 < \frac{t+1}{e} = n - \frac{p^{n-1}-1}{\varphi(p^n)} < n$$

and

(30) $r_{\gamma_{K/k}} = n - 1, \text{ for } n \ge 3.$

Consequently, from (15), (30), we obtain

Theorem 3. Let p be an odd prime, n a natural number, ζ a primitive p^n -th root of 1 and $K = \mathbf{Q}_p(\zeta)$. Then we have

$$i_{\gamma_{K/\mathbf{Q}_p}} = 1$$
 when $n = 1$, $= p^{n-2}$ when $n \ge 2$.

No. 7]

References

- Ono, T.: A Note on Poincaré sums for finite groups. Proc. Japan Acad., 79A, 95–97 (2003).
- [2] Lee, S. M., and Ono, T.: On a certain invariant for real quadratic fields. (To appear in Proc. Japan Acad.).
- [3] Cassels, J. W. S., and Fröhlich, A. (eds.): Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965). Academic Press, London-New York (1967).