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On Poincaré sums for local fields
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Abstract: Let K/k be a finite Galois extension of local fields. To each class γ = [c] in
H1(Gal(K/k), UK), UK being the group of units of K, we associate an index iγ(K/k) = (Mc : Pc)
after the model of Poincaré series and study its relation to the ramification theory of K/k.
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1. Introduction. This is a continuation of
papers [1, 2] where we looked at mainly (global)
quadratic fields. In this paper, however, we will steer
toward Galois extensions of local fields.

Let K/k be a finite Galois extension of p-adic
number fields with the Galois group G = Gal(K/k).
Denote by OK the ring of integers in K, by P the
prime ideal of OK and by UK the group of units of
OK . For the ground field k, we adopt notation Ok,
p and Uk similarly.

Following Poincaré, we set, for a cocycle c of G

in UK ,

(1) Mc = {a ∈ OK ; cs
sa = a, s ∈ G},

(2) Pc =
{

pc(a) =
∑
t∈G

ct
ta, a ∈ OK

}
.

One finds that |G|Mc ⊆ Pc ⊆ Mc and that the |G|-
torsion finite module Mc/Pc depends only on the
class γ = [c]. Therefore one can associate an invari-
ant to a finite Galois extension K/k of p-adic fields
by

(3) iγ(K/k) := (Mc : Pc), γ ∈ H1(G, UK).

In this paper, we will study some relations of
iγ(K/k) with the ramification theory of K/k. We
will mention some applications to cyclotomic and
Kummer extensions.

As for basic facts on number theory, see [3].
2. Canonical class γK/k. Notation being

as in 1, let us fix a prime element Π in K. Then
we have

(4) sΠ = Πzs, s ∈ G, zs ∈ UK .

The mapping s �→ zs is a 1-cocycle of G in UK . Since
the change of the prime element Π changes the co-
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cycle z to z′ cohomologous to it, Π has an ability of
bringing a canonical class γK/k = [z] in the cohomol-
ogy group H1(G, UK).

3. H1(G, UK). Let γ = [c] be any class ∈
H1(G, UK). Since UK is a subgroup of K× there is,
by Hilbert theorem 90, an element a ∈ K× such that

(5) cs =
sa

a
.

Now write

(6) a = Πmu, u ∈ UK , m ∈ Z.

In view of (4), we have

(7) sa = sΠm su = Πmzs
m su,

and, by (5), (6), (7), we have

cs = u−1zs
m su ⇒ c ∼ zm ⇒ γ = γm

K/k.

In other words, H1(G, UK) is a cyclic group gener-
ated by the canonical class γK/k.

Let us count the order of the group. Consider
the short exact sequence of G-groups

1 −→ UK −→ K× −→ Z −→ 1

where the map K× → Z is the valuation vK with
the trivial action of G on Z. Passing to cohomology,
we have the exact sequence:

1 → Uk → k× → Z → H1(G, UK)(8)

→ H1(G, K×) = 1.

Because of the relation vK(x) = evk(x), x ∈ k, e =
e(K/k) being the ramification index for K/k, we ob-
tain from (8)

Theorem 1. The group H1(G, UK) is cyclic
of order e = e(K/k) generated by γK/k.
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4. iγ(K/k). We shall obtain a preliminary
formula for iγ(K/k). For any γ = [c] in H1(G, UK),
by Theorem 1, there is an m ∈ Z, 0 ≤ m < e so
that γ = γK/k

m or c ∼ zm. In case m = 0, we have
γ = [1], and M1 = Ok, P1 = TrOK . Then we set

(9) i1(K/k) = (Ok : TrOK).

In case m > 0, the condition 0 < m < e implies that

(10) Ok ∩ Pm = p.

Back to (1) with γ = [c] = γK/k
m = [zm], as-

suming still m > 0 and c = zm without loss of gen-
erality, we obtain

a ∈ Mc ⇔ cs
sa = a ⇔

sΠm

Πm
· sa = a ⇔ sΠmsa

= Πma ⇔ Πma ∈ Ok ⇔ a ∈ Ok

Πm
∩ OK

=
Ok ∩ΠmOK

Πm
=

Ok ∩ Pm

Πm
=

p

Πm

and so

(11) Mc =
p

Πm
.

Next we look at (2). This time, for a ∈ OK , we have

pc(a) =
∑
s∈G

cs
sa =

∑
s∈G

sΠm

Πm
· sa

=
1

Πm

∑
s∈G

sΠma =
Tr(Πma)

Πm
.

Therefore we have

(12) Pc =
TrPm

Πm
.

From (3), (11), (12), it follows that

(13) iγ(K/k) = (p : TrPm).

If we define an integer rγ = rγ(K/k) by the relation,
including the case γ = 1,

(14) TrPm = prγ ,

then, from (13), we have

(15) iγ(K/k) = Nprγ(K/k)−1, γ 
= 1,

where Np = (Ok : p). As for γ = 1, in view of (9),
we have

(16) i1(K/k) = (Ok : pr1 ) = Npr1 .

5. rγ(K/k). We want to express the number
rγ = rγ(K/k) in (14), (16) in terms of other basic
invariants of K/k.

First, we shall consider the case γ 
= 1. Starting
with (14), we have

TrPm = pr ⇒ Ok = p−r TrPm(17)

= Tr(p−rPm) = TrP−er+m

where e = e(K/k) denotes the ramification index for
K/k, namely

p = Pe.

Next, let D = D(K/k), the different for K/k, and
let t = t(K/k) be defined by

D = Pt.

Since (17) means that P−er+m ⊂ D−1 we infer that

r ≤ t + m

e
.

Conversely, a similar argument starting with the re-
lation TrPm 
⊂ pr+1 implies that

t + m

e
< r + 1.

Cosequently we get

(18) rγ(K/k) =
[
t + m

e

]

and, by (15),

(19) iγ(K/k) = (Np)[
t+m

e ]−1, γ 
= 1.

In case γ = 1, starting with (16) we have

(20) r1(K/k) =
[

t

e

]

and, by (17),

(21) i1(K/k) = Np[ t
e ].

As is well-known, there is a formula for t in
terms of higher ramification groups:

Vi = {s ∈ G; sa ≡ a (mod Pi+1)}, i ≥ −1

where V−1 = G, V0 = T , the inertia group and V1 =
V , the (first) ramification group. The set {Vi}, i ≥
−1, forms a normal series of G such that Vi = 1 for
i � 1. The formula is

(22) t = (e − 1) +
∞∑

i=1

(|Vi| − 1).

Then we find that e − 1 ≤ t. Furthermore, we have

t = e − 1 ⇔ V = 1 ⇔ p 
 | e(23)

⇔ K/k : tamely ramified.
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6. Vanishing of iγ(K/k). Having obtained
formulas (19), (21) for iγ(K/k), one derives from
them many results. We will here consider the ques-
tion under what conditions iγ(K/k) = 1.

(i) K/k is unramified. (e = 1, t = 0). In this
case, H1(G, UK) = 1 by Theorem 1, and so m=0.
The case (19) is absent and we have i1(K/k) = 1 by
(21).

(ii) K/k is tamely ramified. (e − 1 = t 
= 0).
If γ = 1, i.e. m = 0, then[

t

e

]
=

[
e − 1

e

]
= 0

and so

(24) i1(K/k) = 1.

On the other hand, if γ 
= 1, i.e. m > 0, then[
e − 1 + m

e

]
− 1 =

[
m − 1

e

]
= 0

and so

(25) iγ(K/k) = 1.

(iii) K/k is wildly ramified, (0 
= e − 1 < t).
If γ = 1, then [

t

e

]
= 0.

But, then, e − 1 < t < e which is absurd.
If γ 
= 1, then [

t + m

e

]
= 1.

Then we have e ≤ t + m < 2e. Summing up,
Theorem 2. If K/k is unramified, then

i1(K/k) = 1. (γ = 1 is the only possibility).
If K/k is tamely ramified, then iγ(K/k) = 1 for

all γ. If K/k is wildly ramified, then iγ(K/k) = 1 ⇔
γ 
= 1 and e ≤ t + m < 2e.

7. Totally ramified extensions. Let K/k

be a totally ramified Galois extension of p-adic fields.
As is well-known, such an extension can be written
as K = k(Π) with a prime element Π whose mini-
mal polynomial f(X) ∈ Ok[X] is of Eisenstein type.
Then we have

t = vK(f ′(Π)) D = Pt.

Since e = (K : k) in our case, we have, from (19),
(21),

(26) iγ(K/k) = (Np)

�
vK(f′(Π))+m

e

�
−1

, γ 
= 1

and

(27) i1(K/k) = Np

�
vK(f′(Π))

e

�
.

Consider, in particular, a polynomial

(28) f(X) = Xe − a ∈ Ok[X], vp(a) = 1, p 
 | e.

Let Π be a root of f(X) = 0. Assume that k contains
all e-th roots of 1. Then K/k is a totally and tamely
ramified Galois extension. Since f ′(Π) = eΠe−1 we
have vK(f ′(Π)) = e−1 and one checks again the van-
ishing, for all γ ∈ H1(G, UK), of iγ(K/k) for Kum-
mer extensions.

8. pn-th cyclotomic fields. Let p be an
odd prime number, n a natural number, Qp the field
of p-adic numbers and ζ a primitive pn-th root of
unity taken from the algebraic closure of Qp. We set
k = Qp, K = Qp(ζ) in accordance with notation in
1. One knows that Π = ζ − 1 is a prime element in
OK . Then our canonical class γK/k = [c] is given by
a system of cyclotomic units:

cs =
sΠ
Π

=
sζ − 1
ζ − 1

, s ∈ G.

For each n, we have

(29) e = ϕ(pn), t = nϕ(pn) − pn−1.

In what follows, we shall restrict our attension on the
canonical class γK/k, for simplicity.

Case 1. n = 1. We have e = p−1 and t = p−
2. Then t = e − 1 and so K/k is tamely ramified by
(23) and hence iγ(K/k) = 1 for all γ by Theorem 2.

Case 2. n = 2. We have e = p(p− 1) and t =
p(2p − 3). It is easy to check that

e − 1 < t < 2e − 1, or e < t + 1 < 2e.

So K/k is wildly ramified by (23). However, we have
iγK/k

(K/k) = 1 by Theorem 2 with m = 1.
Case 3. n ≥ 3. From (29), it follows that

n − 1 <
t + 1

e
= n − pn−1 − 1

ϕ(pn)
< n

and

(30) rγK/k
= n − 1, for n ≥ 3.

Consequently, from (15), (30), we obtain
Theorem 3. Let p be an odd prime, n a nat-

ural number, ζ a primitive pn-th root of 1 and K =
Qp(ζ). Then we have

iγK/Qp
= 1 when n = 1, = pn−2 when n ≥ 2.
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