On Poincaré sums for local fields

By Takashi Ono

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland, 21218-2686, U. S. A.
(Communicated by Shokichi Iyanaga, m. J. a., Sept. 12, 2003)

Abstract

Let K / k be a finite Galois extension of local fields. To each class $\gamma=[c]$ in $H^{1}\left(\operatorname{Gal}(K / k), U_{K}\right), U_{K}$ being the group of units of K, we associate an index $i_{\gamma}(K / k)=\left(M_{c}: P_{c}\right)$ after the model of Poincaré series and study its relation to the ramification theory of K / k.

Key words: \mathfrak{p}-adic fields; cohomology groups; differents; ramifications; cyclotomic fields.

1. Introduction. This is a continuation of papers $[1,2]$ where we looked at mainly (global) quadratic fields. In this paper, however, we will steer toward Galois extensions of local fields.

Let K / k be a finite Galois extension of \mathfrak{p}-adic number fields with the Galois group $G=\operatorname{Gal}(K / k)$. Denote by \mathcal{O}_{K} the ring of integers in K, by \mathfrak{P} the prime ideal of \mathcal{O}_{K} and by U_{K} the group of units of \mathcal{O}_{K}. For the ground field k, we adopt notation \mathcal{O}_{k}, \mathfrak{p} and U_{k} similarly.

Following Poincaré, we set, for a cocycle c of G in U_{K},

$$
\begin{equation*}
M_{c}=\left\{a \in \mathcal{O}_{K} ; c_{s}{ }^{s} a=a, \quad s \in G\right\} \tag{1}
\end{equation*}
$$

(2) $\quad P_{c}=\left\{p_{c}(a)=\sum_{t \in G} c_{t}{ }^{t} a, a \in \mathcal{O}_{K}\right\}$.

One finds that $|G| M_{c} \subseteq P_{c} \subseteq M_{c}$ and that the $|G|-$ torsion finite module M_{c} / P_{c} depends only on the class $\gamma=[c]$. Therefore one can associate an invariant to a finite Galois extension K / k of \mathfrak{p}-adic fields by
(3) $\quad i_{\gamma}(K / k):=\left(M_{c}: P_{c}\right), \quad \gamma \in H^{1}\left(G, U_{K}\right)$.

In this paper, we will study some relations of $i_{\gamma}(K / k)$ with the ramification theory of K / k. We will mention some applications to cyclotomic and Kummer extensions.

As for basic facts on number theory, see [3].
2. Canonical class $\gamma_{K / k}$. Notation being as in 1, let us fix a prime element Π in K. Then we have

$$
\begin{equation*}
{ }^{s} \Pi=\Pi z_{s}, \quad s \in G, \quad z_{s} \in U_{K} \tag{4}
\end{equation*}
$$

The mapping $s \mapsto z_{s}$ is a 1-cocycle of G in U_{K}. Since the change of the prime element Π changes the co-

[^0]cycle z to z^{\prime} cohomologous to it, Π has an ability of bringing a canonical class $\gamma_{K / k}=[z]$ in the cohomology group $H^{1}\left(G, U_{K}\right)$.
3. $\boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{G}, \boldsymbol{U}_{\boldsymbol{K}}\right)$. Let $\gamma=[c]$ be any class \in $H^{1}\left(G, U_{K}\right)$. Since U_{K} is a subgroup of K^{\times}there is, by Hilbert theorem 90, an element $a \in K^{\times}$such that
\[

$$
\begin{equation*}
c_{s}=\frac{{ }^{s} a}{a} \tag{5}
\end{equation*}
$$

\]

Now write
(6) $\quad a=\Pi^{m} u, \quad u \in U_{K}, \quad m \in \mathbf{Z}$.

In view of (4), we have

$$
\begin{equation*}
{ }^{s} a={ }^{s} \Pi^{m} \quad{ }^{s} u=\Pi^{m} z_{s}{ }^{m}{ }^{s} u \tag{7}
\end{equation*}
$$

and, by (5), (6), (7), we have

$$
c_{s}=u^{-1} z_{s}{ }^{m}{ }^{s} u \Rightarrow c \sim z^{m} \Rightarrow \gamma=\gamma_{K / k}^{m} .
$$

In other words, $H^{1}\left(G, U_{K}\right)$ is a cyclic group generated by the canonical class $\gamma_{K / k}$.

Let us count the order of the group. Consider the short exact sequence of G-groups

$$
1 \longrightarrow U_{K} \longrightarrow K^{\times} \longrightarrow \mathbf{Z} \longrightarrow 1
$$

where the map $K^{\times} \rightarrow \mathbf{Z}$ is the valuation v_{K} with the trivial action of G on \mathbf{Z}. Passing to cohomology, we have the exact sequence:

$$
\begin{align*}
1 & \rightarrow U_{k} \rightarrow k^{\times} \rightarrow \mathbf{Z} \rightarrow H^{1}\left(G, U_{K}\right) \tag{8}\\
& \rightarrow H^{1}\left(G, K^{\times}\right)=1
\end{align*}
$$

Because of the relation $v_{K}(x)=e v_{k}(x), x \in k, e=$ $e(K / k)$ being the ramification index for K / k, we obtain from (8)

Theorem 1. The group $H^{1}\left(G, U_{K}\right)$ is cyclic of order $e=e(K / k)$ generated by $\gamma_{K / k}$.
4. $\boldsymbol{i}_{\boldsymbol{\gamma}}(\boldsymbol{K} / \boldsymbol{k})$. We shall obtain a preliminary formula for $i_{\gamma}(K / k)$. For any $\gamma=[c]$ in $H^{1}\left(G, U_{K}\right)$, by Theorem 1 , there is an $m \in \mathbf{Z}, 0 \leq m<e$ so that $\gamma=\gamma_{K / k}{ }^{m}$ or $c \sim z^{m}$. In case $m=0$, we have $\gamma=[1]$, and $M_{1}=\mathcal{O}_{k}, P_{1}=\operatorname{Tr} \mathcal{O}_{K}$. Then we set

$$
\begin{equation*}
i_{1}(K / k)=\left(\mathcal{O}_{k}: \operatorname{Tr} \mathcal{O}_{K}\right) \tag{9}
\end{equation*}
$$

In case $m>0$, the condition $0<m<e$ implies that

$$
\begin{equation*}
\mathcal{O}_{k} \cap \mathfrak{P}^{m}=\mathfrak{p} \tag{10}
\end{equation*}
$$

Back to (1) with $\gamma=[c]=\gamma_{K / k}{ }^{m}=\left[z^{m}\right]$, assuming still $m>0$ and $c=z^{m}$ without loss of generality, we obtain

$$
\begin{aligned}
a \in M_{c} & \Leftrightarrow c_{s}{ }^{s} a=a \Leftrightarrow \frac{{ }^{s} \Pi^{m}}{\Pi^{m}} \cdot{ }^{s} a=a \Leftrightarrow{ }^{s} \Pi^{m s} a \\
& =\Pi^{m} a \Leftrightarrow \Pi^{m} a \in \mathcal{O}_{k} \Leftrightarrow a \in \frac{\mathcal{O}_{k}}{\Pi^{m} \cap \mathcal{O}_{K}} \\
& =\frac{\mathcal{O}_{k} \cap \Pi^{m} \mathcal{O}_{K}}{\Pi^{m}}=\frac{\mathcal{O}_{k} \cap \mathfrak{P}^{m}}{\Pi^{m}}=\frac{\mathfrak{p}}{\Pi^{m}}
\end{aligned}
$$

and so

$$
\begin{equation*}
M_{c}=\frac{\mathfrak{p}}{\Pi^{m}} \tag{11}
\end{equation*}
$$

Next we look at (2). This time, for $a \in \mathcal{O}_{K}$, we have

$$
\begin{aligned}
p_{c}(a) & =\sum_{s \in G} c_{s}{ }^{s} a=\sum_{s \in G} \frac{{ }^{s} \Pi^{m}}{\Pi^{m}} \cdot{ }^{s} a \\
& =\frac{1}{\Pi^{m}} \sum_{s \in G}{ }^{s} \Pi^{m} a=\frac{\operatorname{Tr}\left(\Pi^{m} a\right)}{\Pi^{m}} .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
P_{c}=\frac{\operatorname{Tr} \mathfrak{P}^{m}}{\Pi^{m}} \tag{12}
\end{equation*}
$$

From (3), (11), (12), it follows that

$$
\begin{equation*}
i_{\gamma}(K / k)=\left(\mathfrak{p}: \operatorname{Tr} \mathfrak{P}^{m}\right) \tag{13}
\end{equation*}
$$

If we define an integer $r_{\gamma}=r_{\gamma}(K / k)$ by the relation, including the case $\gamma=1$,

$$
\begin{equation*}
\operatorname{Tr} \mathfrak{P}^{m}=\mathfrak{p}^{r_{\gamma}} \tag{14}
\end{equation*}
$$

then, from (13), we have

$$
\begin{equation*}
i_{\gamma}(K / k)=N \mathfrak{p}^{r_{\gamma}(K / k)-1}, \quad \gamma \neq 1 \tag{15}
\end{equation*}
$$

where $N \mathfrak{p}=\left(\mathcal{O}_{k}: \mathfrak{p}\right)$. As for $\gamma=1$, in view of (9), we have

$$
\begin{equation*}
i_{1}(K / k)=\left(\mathcal{O}_{k}: \mathfrak{p}^{r_{1}}\right)=N \mathfrak{p}^{r_{1}} \tag{16}
\end{equation*}
$$

5. $\boldsymbol{r}_{\gamma}(\boldsymbol{K} / \boldsymbol{k})$. We want to express the number $r_{\gamma}=r_{\gamma}(K / k)$ in (14), (16) in terms of other basic invariants of K / k.

First, we shall consider the case $\gamma \neq 1$. Starting with (14), we have

$$
\begin{align*}
\operatorname{Tr} \mathfrak{P}^{m} & =\mathfrak{p}^{r} \Rightarrow \mathcal{O}_{k}=\mathfrak{p}^{-r} \operatorname{Tr} \mathfrak{P}^{m} \tag{17}\\
& =\operatorname{Tr}\left(\mathfrak{p}^{-r} \mathfrak{P}^{m}\right)=\operatorname{Tr} \mathfrak{P}^{-e r+m}
\end{align*}
$$

where $e=e(K / k)$ denotes the ramification index for K / k, namely

$$
\mathfrak{p}=\mathfrak{P}^{e}
$$

Next, let $\mathfrak{D}=\mathfrak{D}(K / k)$, the different for K / k, and let $t=t(K / k)$ be defined by

$$
\mathfrak{D}=\mathfrak{P}^{t}
$$

Since (17) means that $\mathfrak{P}^{-e r+m} \subset \mathfrak{D}^{-1}$ we infer that

$$
r \leq \frac{t+m}{e}
$$

Conversely, a similar argument starting with the relation $\operatorname{Tr} \mathfrak{P}^{m} \not \subset \mathfrak{p}^{r+1}$ implies that

$$
\frac{t+m}{e}<r+1
$$

Cosequently we get

$$
\begin{equation*}
r_{\gamma}(K / k)=\left[\frac{t+m}{e}\right] \tag{18}
\end{equation*}
$$

and, by (15),

$$
\begin{equation*}
i_{\gamma}(K / k)=(N \mathfrak{p})^{\left[\frac{t+m}{e}\right]-1}, \quad \gamma \neq 1 \tag{19}
\end{equation*}
$$

In case $\gamma=1$, starting with (16) we have

$$
\begin{equation*}
r_{1}(K / k)=\left[\frac{t}{e}\right] \tag{20}
\end{equation*}
$$

and, by (17),

$$
\begin{equation*}
i_{1}(K / k)=N \mathfrak{p}^{\left[\frac{t}{e}\right]} \tag{21}
\end{equation*}
$$

As is well-known, there is a formula for t in terms of higher ramification groups:

$$
V_{i}=\left\{s \in G ;{ }^{s} a \equiv a \quad\left(\bmod \mathfrak{P}^{i+1}\right)\right\}, \quad i \geq-1
$$

where $V_{-1}=G, V_{0}=T$, the inertia group and $V_{1}=$ V, the (first) ramification group. The set $\left\{V_{i}\right\}, i \geq$ -1 , forms a normal series of G such that $V_{i}=1$ for $i \gg 1$. The formula is

$$
\begin{equation*}
t=(e-1)+\sum_{i=1}^{\infty}\left(\left|V_{i}\right|-1\right) \tag{22}
\end{equation*}
$$

Then we find that $e-1 \leq t$. Furthermore, we have

$$
\begin{align*}
t=e-1 & \Leftrightarrow V=1 \Leftrightarrow p \nmid e \tag{23}\\
& \Leftrightarrow K / k: \text { tamely ramified. }
\end{align*}
$$

6. Vanishing of $\boldsymbol{i}_{\gamma}(\boldsymbol{K} / \boldsymbol{k})$. Having obtained formulas (19), (21) for $i_{\gamma}(K / k)$, one derives from them many results. We will here consider the question under what conditions $i_{\gamma}(K / k)=1$.
(i) K / k is unramified. $(e=1, t=0)$. In this case, $H^{1}\left(G, U_{K}\right)=1$ by Theorem 1 , and so $m=0$. The case (19) is absent and we have $i_{1}(K / k)=1$ by (21).
(ii) K / k is tamely ramified. $(e-1=t \neq 0)$. If $\gamma=1$, i.e. $m=0$, then

$$
\left[\frac{t}{e}\right]=\left[\frac{e-1}{e}\right]=0
$$

and so

$$
\begin{equation*}
i_{1}(K / k)=1 \tag{24}
\end{equation*}
$$

On the other hand, if $\gamma \neq 1$, i.e. $m>0$, then

$$
\left[\frac{e-1+m}{e}\right]-1=\left[\frac{m-1}{e}\right]=0
$$

and so

$$
\begin{equation*}
i_{\gamma}(K / k)=1 \tag{25}
\end{equation*}
$$

(iii) K / k is wildly ramified, $(0 \neq e-1<t)$. If $\gamma=1$, then

$$
\left[\frac{t}{e}\right]=0
$$

But, then, $e-1<t<e$ which is absurd.
If $\gamma \neq 1$, then

$$
\left[\frac{t+m}{e}\right]=1
$$

Then we have $e \leq t+m<2 e$. Summing up,
Theorem 2. If K / k is unramified, then $i_{1}(K / k)=1 .(\gamma=1$ is the only possibility $)$.

If K / k is tamely ramified, then $i_{\gamma}(K / k)=1$ for all γ. If K / k is wildly ramified, then $i_{\gamma}(K / k)=1 \Leftrightarrow$ $\gamma \neq 1$ and $e \leq t+m<2 e$.
7. Totally ramified extensions. Let K / k be a totally ramified Galois extension of \mathfrak{p}-adic fields. As is well-known, such an extension can be written as $K=k(\Pi)$ with a prime element Π whose minimal polynomial $f(X) \in \mathcal{O}_{k}[X]$ is of Eisenstein type. Then we have

$$
t=v_{K}\left(f^{\prime}(\Pi)\right) \quad \mathfrak{D}=\mathfrak{P}^{t}
$$

Since $e=(K: k)$ in our case, we have, from (19), (21),

$$
\begin{equation*}
i_{\gamma}(K / k)=(N \mathfrak{p})^{\left[\frac{v_{K}\left(f^{\prime}(\Pi)\right)+m}{e}\right]-1}, \quad \gamma \neq 1 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{1}(K / k)=N p^{\left[\frac{v_{K}\left(f^{\prime}(\Pi)\right)}{e}\right]} . \tag{27}
\end{equation*}
$$

Consider, in particular, a polynomial
(28) $f(X)=X^{e}-a \in \mathcal{O}_{k}[X], \quad v_{\mathfrak{p}}(a)=1, \quad p \nmid e$.

Let Π be a root of $f(X)=0$. Assume that k contains all e-th roots of 1 . Then K / k is a totally and tamely ramified Galois extension. Since $f^{\prime}(\Pi)=e \Pi^{e-1}$ we have $v_{K}\left(f^{\prime}(\Pi)\right)=e-1$ and one checks again the vanishing, for all $\gamma \in H^{1}\left(G, U_{K}\right)$, of $i_{\gamma}(K / k)$ for Kummer extensions.
8. \boldsymbol{p}^{n}-th cyclotomic fields. Let p be an odd prime number, n a natural number, \mathbf{Q}_{p} the field of p-adic numbers and ζ a primitive p^{n}-th root of unity taken from the algebraic closure of \mathbf{Q}_{p}. We set $k=\mathbf{Q}_{p}, K=\mathbf{Q}_{p}(\zeta)$ in accordance with notation in 1. One knows that $\Pi=\zeta-1$ is a prime element in \mathcal{O}_{K}. Then our canonical class $\gamma_{K / k}=[c]$ is given by a system of cyclotomic units:

$$
c_{s}=\frac{{ }^{s} \Pi}{\Pi}=\frac{{ }^{s} \zeta-1}{\zeta-1}, \quad s \in G .
$$

For each n, we have

$$
\begin{equation*}
e=\varphi\left(p^{n}\right), \quad t=n \varphi\left(p^{n}\right)-p^{n-1} \tag{29}
\end{equation*}
$$

In what follows, we shall restrict our attension on the canonical class $\gamma_{K / k}$, for simplicity.

Case 1. $n=1$. We have $e=p-1$ and $t=p-$ 2. Then $t=e-1$ and so K / k is tamely ramified by (23) and hence $i_{\gamma}(K / k)=1$ for all γ by Theorem 2.

Case 2. $\quad n=2$. We have $e=p(p-1)$ and $t=$ $p(2 p-3)$. It is easy to check that

$$
e-1<t<2 e-1, \quad \text { or } \quad e<t+1<2 e
$$

So K / k is wildly ramified by (23). However, we have $i_{\gamma_{K / k}}(K / k)=1$ by Theorem 2 with $m=1$.

Case 3. $n \geq 3$. From (29), it follows that

$$
n-1<\frac{t+1}{e}=n-\frac{p^{n-1}-1}{\varphi\left(p^{n}\right)}<n
$$

and

$$
\begin{equation*}
r_{\gamma_{K / k}}=n-1, \quad \text { for } n \geq 3 \tag{30}
\end{equation*}
$$

Consequently, from (15), (30), we obtain
Theorem 3. Let p be an odd prime, n a natural number, ζ a primitive p^{n}-th root of 1 and $K=$ $\mathbf{Q}_{p}(\zeta)$. Then we have

$$
i_{\gamma_{K / \mathbf{Q}_{p}}}=1 \text { when } n=1, \quad=p^{n-2} \text { when } n \geq 2
$$

References

[1] Ono, T.: A Note on Poincaré sums for finite groups. Proc. Japan Acad., 79A, 95-97 (2003).
[2] Lee, S. M., and Ono, T.: On a certain invariant for real quadratic fields. (To appear in Proc. Japan Acad.).
[3] Cassels, J. W. S., and Fröhlich, A. (eds.): Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965). Academic Press, London-New York (1967).

[^0]: 2000 Mathematics Subject Classification. 11F85.

