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On certain hypersurfaces with non-isolated singularities in P*(C)
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Abstract:

We give an example of hypersurfaces with non-isolated singularities in P4(C),
whose normalizations have isolated rational quadruple points only as singularities.

From Sch-

lessinger’s criterion, it follows that these isolated rational singular points are rigid under small

deformations.
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1. An example of hypersurfaces in P#4(C)
whose singularities are ordinary except at fi-
nite points. Let H; (1 < i < 4) be non-singular
hypersurfaces of degrees r; (1 <1 < 4), respectively,
in the complex projective 4-space P4(C) such that
they are in general position at every point where they
intersect. We put ng) =H,NH; (1<i<j<4)
and Dy = Uj;;cq DY Let f; (1 < i < 4) be
the homogeneous polynomial of degree r; which de-
fines the hypersurface H;. We may assume r; > 1o >
r3 > r4 because of symmetry. We choose and fix a
positive integer n with n > 2r; + 2ro + 2r3. Let T
be a hypersurface in P4(C) defined by the equation

(L1) F:=Afifofsfs+ B(f1faf3)? + C(f1fafs)?
+ D(f1f3f1)? + E(fafsfs)? =0,

where A, B, C, D and E are homogeneous polyno-
mials of five variables of respective degrees n —r; —
Ty —T3—T4, N — 211 — 2y — 2r3, n— 2r1 — 2r9 — 214,
n—2ry—2r3—2ry and n—2ry—2r3—2r4. By Bertini’s
theorem, T is non-singular outside Dy if we choose
sufficiently generic A, B, C', D and E.
Proposition 1.1. If the homogeneous polyno-
mials A, B, C, D and E are chosen sufficiently
generic, then T is locally isomorphic to one of the fol-
lowing germs of three dimensional hypersurface sin-
gularities at the origin of C* at every point of T
(i) w=0 (simple point),
(ii) zw =0 (ordinary double point),
(i) yzw =0 (ordinary triple point),
(iv) zyzw =0 (ordinary quadruple point),
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(v) xy? — 22 =0 (cuspidal point),

(vi) (2y)? + (y2)? + (22)? + xyzw = 0 (degenerate
ordinary triple point),

where (x,y, z,w) is the coordinate on C*.

Proof. (i) Let p € Dr be a point satisfying
filp) = 0, 1 < i < 4. We may assume that
A(p)B(p)C(p)D(p)E(p) # 0. We make the trans-
formations of local coordinates

(f17f27f37f4) -

JA2E X ,JAD Y
BCD i+t f VBCEVItJ
4 A2O Z

. A2B W
BDE I+ f VCDE i+ 7f)’

where

fi= (XY +(X2)>+(XW)2+(YZ)?
+(YW)? + (ZW)?
+ XYZW(X? 4+ Y2+ 22+ W2+ XY ZW),

and

(X+YZW)Y + XZW,Z + XYW, W + XY Z)

- (XI’ Y/7ZI7 WI)
successively in a neighborhood of p. Then the equa-
tion in (1.1) is transformed to A’X'Y'Z'W' = 0,
where A’ := A3/{v/BCDE(1 + f)3}. Namely, the
point p is an ordinary quadruple point.

(ii) Let p € Dr be a point where three of
fi, 1 < i < 4, vanish, but all of f;;, 1 < i < 4,

do not. Suppose that f1(p) = f2(p) = f3(p) = 0 and
fa(p) # 0. We write F in (1.1) as
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(1.2) F=Afifofs +C'(fif2)’
+D'(f1f3)* + E'(f2f3)*
where A’ := Afy + Bfifafs, C' := Cf? D' := Df}
and E’ := Eff. We may assume that both of A’ and
C'D’'E’ do not vanish at p.
(i) In the case of A'(p)C'(p)D’'(p)E’'(p) # O:
We make the transformations of local coordinates
(fh f27 f3) i
( A X A’ Y A’ Z >
VO'D' 149 VOE 1+9 VDE 1+g)’
where g := X2+ Y2+ Z%2 + XY Z, and

(X+YZY+XZ,Z+XY) > (XY, Z)

successively in a neighborhood of p. Then the equa-
tion F' = 0 is transformed to A”X'Y'Z’ = 0, where
A" = A*/{C'D'E'(1+g)*}. Hence, p is an ordinary
triple point.

(ii-8) In the case of A'(p)#0, C'(p)D'(p)E'(p)=
0: Taking sufficiently generic C', D and E, we may
assume that two of C’, D’ and E’ do not vanish at
p. Suppose that C’(p) = 0 and D'(p)E’(p) # 0. We
put X := f1, Y := fo, Z := fyg and W := C'. We
may consider that (X,Y, Z, W) is a system of local
coordinates at p by taking a sufficiently generic C.
Using the local coordinate (X,Y, Z, W), we can write
Fin (1.2) as

(1.3) F=AXYZ+W(XY)?
+D'(XZ)*+ E'(YZ)?

where A'(p)D'(p)E’(p) # 0. We make the transfor-
mations of local coordinates

(X,Y,Z, W) —
A XA Y A7
w
<MDH4wayl+hHQyml+M )
where h:=Z"? + (X?+Y"”? + X'Y'Z")W, and

(X' +Y'Z'Y' +X'7 7 + XYW, W)
— (XH,YH,ZH,W)

successively in a neighborhood of p. Then the equa-
tion F = 0 is transformed to A" X"Y"Z" = 0, where
A" := A" J{D'E'(1 + h)*}. Hence, p is an ordinary
triple point.

(ii-y) In the case of A'(p)=0, C'(p)D'(p)E’(p) #
0: Weput X := f1,Y :=fo, Z:= fyand W := A’.
We may consider that (X,Y,Z, W) is a system of
local coordinates at p by taking sufficiently generic
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A and B. Using the local coordinate (X,Y,Z, W),
we can write F in (1.2) as

(1.4) F=XYZW +C'(XY)?
+D'(XZ)?*+ E'(YZ)2
‘We make the transformation of local coordinates
X' Y’ /4
b b W)
\/O’D’ \/O’E' \/D/E/

Then the equation F' = 0 is transformed to

(X,Y,Z,Ww(

1
C/D/EI {X/Y/Z/W 4 (X/Y/)2 4 (X/Z/)2 4 (lel)Q}

=0

which defines the singularity (vi) in Proposition 1.1.

(iii) Let p € Dy be a point where two of f;, 1 <
i < 4, vanish, but more than two of f;,;1 < i <
4, do not. Suppose that fi(p) = fa(p) = 0 and
f3(p) fa(p) # 0. We write F'in (1.1) as

(1.5) F=Bfl+Afifs+E'f3,
where B’ := (Bf2 + Cf2)f2 + Df2f2, A’ .= Afsfs
and E' := Ef2f3.

(ii-e) In the case of B'(p) # 0, or E'(p) # O:
Suppose B’(p) # 0. Then F in (1.5) is written as

A — AT ZIBE
s fz)
A’ ++A?2 - 4B'E
x (fl + 5B f2>

FB(ﬁ+

in a neighborhood of p.
(iii-a)q If (A”? —4B'E’)(p) # 0, then the trans-
fomation

A —/A? Z4B'E’

Ji+ 5 Jo— X,
A 4 AT ABTE
i+ 55 fa—Y

can be regarded as that of local coordinates. By
this trasformation the equation F' = 0 is transformed
to B’XY = 0, where B’ is a non-vanishing factor.
Hence p is an ordinary double point.
(iii-a). If (A —4B’E’)(p) = 0, we make the
transformation of local coordinates
A/2 _ 4B/E/
eEyE
f2—Y,

!
Jo—Z

fl‘f‘ﬁ
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in a neighborhood of p. Then the equation F' = 0 is
transformed to

B(Z+VXY)(Z—-VXY)=B(2?-XY?) =0.

Hence p is a cuspidal point.

(iii-8) In the case of B'(p) = E'(p) = 0: We
put X := f1, Y = fo, Z:= B and W = E’. We
may consider that (X,Y, Z, W) is a system of local
coordinates at p by taking sufficiently generic B, C,
D and E. Using the local coordinate (X,Y,Z, W),

we can write F' in (1.5) as
(1.6) F=AXY +ZX?>+WYZ

We may assume that A’(p) # 0. We make the trans-
formations of local coordinates

(X,Y,Z,W) — (X,Y,A'Z AW,

(X,Y,Z2'\W') —
X/ V' VAL w"
(1 + Z//W//’ 1+ Z”W’” 1+ Z//W//’ 1+ Z//W//) ’

and
(X/ + W//YI7Y/ + ZNX,7ZN7WH) N
(X”, Y”, Z”, W//)

successively in a neighborhood of p. Then the equa-
tion F' = 0 is transformed to A”X"Y" = 0, where
A" = A"/(1+Z"W'")3. Hence p is an ordinary dou-
ble point. ]

Note: The singularities from (ii) through (v)
in Proposition 1.1 are ordinary in the sense of Roth
([2]). Besides these four types of singularities, the
stationary point, i.e., the singular point defined by
the equation w(zy? — 22) = 0 in C*, is also ordi-
nary. These ordinary singularities arise if we project
a non-singular threefold embedded in a sufficiently
high dimensional complex projective space to its four
dimensional linear subspace by a generic linear pro-
jection.

2. The singularity (zy)2+(yz)2+(zz)2+
zyzw = 0.

Proposition 2.1. In the expression (zy)? +
(y2)? + (22)? + 2yzw = 0, we consider w as param-
eter. Then, if w # 0, the singularity defined by this
equation is an ordinary triple point.

Proof. The equation (zy)? + (y2)? + (z2)? +
zyzw = 0 is a special one of the equation F' = 0 in
the case (ii-a) in the proof of Proposition 1.1 if w #
0. Hence it defines an ordinary triple point around
(0,0,0,w) with w # 0. L]
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Because of Proposition 2.1, the singularity
(ry)?+ (y2)? + (22)? + zyzw = 0 might be considerd
as a degenerate ordinary triple point.

Proposition 2.2. Let v : P?(C) — P*(C) be
the Veronese embedding of degree 2, namely, the map
defined by

(& : & 2 &) € PA(C)
— (651 €71 &5 1 &0kt 1 Eo&o  E169)
=(To:w1:X2:Yo:Y1:Y2) € P5(C)7

and let p : P?(C) — P3(C) be the linear projection
defined by

(w021 20 :yo: Y1t y2) € PP(C)
— (Yo :y1:y2: — (20 + 21 + 72))
=(z:y:2:w)€P3C).

Then the hypersurface in P3(C) defined by the equa-
tion (zy)? + (y2)? + (22)% + zyzw = 0 coincides with
(pov)(P?(C)), which is an algebraic surface with or-
dinary singularities, known as the Steiner surface.

The proof of this proposition is a direct calcula-
tion.

Theorem 2.3. The normalization of the sin-
gularity defined by the equation (vi) in Proposi-
tion 1.1 at the origin of C* is an isolated rational
quadruple point, which is rigid under small defor-
mations.

Proof. We denote by S the Steiner surface, i.e.,
the projective variety in P3(C) defined by the equa-
tion (zy)? + (y2)? + (22)? + zyzw = 0, and by Cs
the affine variety in C* defined by the same equa-
tion, i.e., the cone over S. We denote by X the im-
age of P?(C) in P5(C) by the Veronese embedding of
degree 2, and by Cx the affine variety in C% corre-
sponding to X, i.e., the cone over X. Note that Cx
is non-singular outside the origin of CS, since X is
non-singular. We denote by p : C® — C* the linear
projection induced by p : P5(C) — P3(C) in Propo-
sition 2.2. Since S = p(X), we have p(Cx) = Cs.
We denote by n : Cx — Cg the restriction p to Cx.
Since

Ox (v) == Ox([Hps(c))®") = Op2(c)([Hp2(c)]¥*),

the map H°(P?(C), Ops(c)(v)) — H(X,0x(v))
is surjective for every integer v, where [Hps(c)]
and [Hp2(c)] denote the hyperplane line bundles on
P5(C) and P?(C), respectively. Therefore X is pro-
jectively normal, and equivalently C'x is normal (cf.
[3]). Hence n : Cx — Cg gives the normalization.
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To see that C'x has a rational isolated singularity,
we take the blowing-up b : C® — CS at the origin
of C6. We put Cx := b=1(Cx), the proper inverse
image of C'x by 13, and denote by b : 6’; — Cx the
restrigt\ion of b to 5;\( Here we should remember
that C® can be identified with [HPS(C)]_l, 6‘; with
[Hp5(c)]rxl, the restriction of [Hps(c)] ™! to X, and
b=1(0) with the zero cross-section of the line bundle
L= [HpS(c)]r)(l — X. By these identifications, for

any open neighborhood U of b=1(0) in 6’;, we have
HY(U,0p) ~ @ HI(X,L™)

v>o

>~ @Hq(PQ(C), Opz(c)(Ql/)> =0

v>o

for any ¢ > 1. Hence (qu*O@)o =0 for any ¢ > 1,
that is, (C'x, 0) is a rational isolated singularity. The
multiplicity of the affine cone C'x at the vertex 0 is
four, because it is equal to the degree of X in P*(C)
([1], p- 394, Exercise 3.4, (e)). We now refer to the
following theorem due to M. Schlessinger:
Theorem ([3]). The cone over a strongly rigid
projective manifold is rigid under small deforma-
tions.
Here, a projective manifold ¥ c P"(C),
dimg Y > 0, is defined to be strongly rigid if
(i) Y is projectively normal,
(i) HY(Y,Oy(v)) =0, —0co < v < 00,
(iii) HY(Y,Oy(v)) =0, —c0 < v < 00,
where ©y and Oy denote the sheaves of holomor-
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phic vector fields and holomorphic functions on Y,
respectively, and F(v) a sheaf F' tensored with v-th
power of hyperplane line bundle. The fact that C'x
is rigid under small deformations follows from the
theorem above and Bott’s theorem concerning the
cohomology HP(P”(C),Qan(C)(V)) where Q%H(C) is
the sheaf of holomorphic g-forms on P™(C), since

H'(X,0x(v)) =~ H'(P*(C), Opz2(c) (2v))
~ H'(P*(C), Qp2(q)(—2v—3)), and
Hl(X, Ox(l/)> ~ Hl(P2(C), OPQ(C)(Ql/))-

[

Corollary 2.4. The normalization of the hy-
persurface in P*(C) defined by the equation (1.1) has
isolated rational quadruple points only as singulari-
ties. These isolated rational singular points are rigid
under small deformations.

Acknowledgement. This work is sup-
ported by the Grand-in-Aid for Scientific Research
(No. 13640083), The Ministry of Education, Culture,
Sports, Science and Technology of Japan.

References
[ 1] Hartshorne, R.: Algebraic Geometry. Springer,
New York (1977).
[2] Roth, L.: Algebraic Threefold. Springer, Berlin
(1955).
[ 3] Schlessinger, M.: On rigid singularities. Proceed-

ings of the Conference on Complex Analysis, Rice
Univ. Studies, 59 (1), 147-162 (1973).



