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On certain hypersurfaces with non-isolated singularities in P4(C)
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Abstract: We give an example of hypersurfaces with non-isolated singularities in P4(C),
whose normalizations have isolated rational quadruple points only as singularities. From Sch-
lessinger’s criterion, it follows that these isolated rational singular points are rigid under small
deformations.
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1. An example of hypersurfaces in P4(C)
whose singularities are ordinary except at fi-
nite points. Let Hi (1 ≤ i ≤ 4) be non-singular
hypersurfaces of degrees ri (1 ≤ i ≤ 4), respectively,
in the complex projective 4-space P4(C) such that
they are in general position at every point where they
intersect. We put D

(ij)
T := Hi ∩Hj (1 ≤ i < j ≤ 4)

and DT :=
⋃

1≤i<j≤4 D
(ij)
T . Let fi (1 ≤ i ≤ 4) be

the homogeneous polynomial of degree ri which de-
fines the hypersurface Hi. We may assume r1 ≥ r2 ≥
r3 ≥ r4 because of symmetry. We choose and fix a
positive integer n with n ≥ 2r1 + 2r2 + 2r3. Let T

be a hypersurface in P4(C) defined by the equation

F := Af1f2f3f4 + B(f1f2f3)2 + C(f1f2f4)2(1.1)

+ D(f1f3f4)2 + E(f2f3f4)2 = 0,

where A, B, C, D and E are homogeneous polyno-
mials of five variables of respective degrees n− r1 −
r2− r3− r4, n− 2r1− 2r2− 2r3, n− 2r1− 2r2− 2r4,
n−2r1−2r3−2r4 and n−2r2−2r3−2r4. By Bertini’s
theorem, T is non-singular outside DT if we choose
sufficiently generic A, B, C, D and E.

Proposition 1.1. If the homogeneous polyno-
mials A, B, C, D and E are chosen sufficiently
generic, then T is locally isomorphic to one of the fol-
lowing germs of three dimensional hypersurface sin-
gularities at the origin of C4 at every point of T :
(i) w = 0 (simple point),
(ii) zw = 0 (ordinary double point),
(iii) yzw = 0 (ordinary triple point),
(iv) xyzw = 0 (ordinary quadruple point),
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(v) xy2 − z2 = 0 (cuspidal point),
(vi) (xy)2 + (yz)2 + (zx)2 + xyzw = 0 (degenerate

ordinary triple point),
where (x, y, z, w) is the coordinate on C4.

Proof. (i) Let p ∈ DT be a point satisfying
fi(p) = 0, 1 ≤ i ≤ 4. We may assume that
A(p)B(p)C(p)D(p)E(p) �= 0. We make the trans-
formations of local coordinates

(f1, f2, f3, f4)→(
4

√
A2E

BCD

X√
1 + f

,
4

√
A2D

BCE

Y√
1 + f

,

4

√
A2C

BDE

Z√
1 + f

,
4

√
A2B

CDE

W√
1 + f

)
,

where

f := (XY )2 + (XZ)2 + (XW )2 + (Y Z)2

+ (Y W )2 + (ZW )2

+ XY ZW (X2 + Y 2 + Z2 + W 2 + XY ZW ),

and

(X + Y ZW,Y + XZW,Z + XY W,W + XY Z)

→ (X ′, Y ′, Z ′,W ′)

successively in a neighborhood of p. Then the equa-
tion in (1.1) is transformed to A′X ′Y ′Z ′W ′ = 0,
where A′ := A3/{√BCDE(1 + f)3}. Namely, the
point p is an ordinary quadruple point.

(ii) Let p ∈ DT be a point where three of
fi, 1 ≤ i ≤ 4, vanish, but all of fi, 1 ≤ i ≤ 4,
do not. Suppose that f1(p) = f2(p) = f3(p) = 0 and
f4(p) �= 0. We write F in (1.1) as
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F = A′f1f2f3 + C ′(f1f2)2(1.2)

+ D′(f1f3)2 + E′(f2f3)2

where A′ := Af4 + Bf1f2f3, C ′ := Cf2
4 , D′ := Df2

4

and E′ := Ef2
4 . We may assume that both of A′ and

C ′D′E′ do not vanish at p.
(ii-α) In the case of A′(p)C ′(p)D′(p)E′(p) �= 0:

We make the transformations of local coordinates

(f1, f2, f3)→(
A′

√
C ′D′

X

1 + g
,

A′
√

C ′E′
Y

1 + g
,

A′
√

D′E′
Z

1 + g

)
,

where g := X2 + Y 2 + Z2 + XY Z, and

(X + Y Z, Y + XZ,Z + XY )→ (X ′, Y ′, Z ′)

successively in a neighborhood of p. Then the equa-
tion F = 0 is transformed to A′′X ′Y ′Z ′ = 0, where
A′′ := A′4/{C ′D′E′(1+g)4}. Hence, p is an ordinary
triple point.

(ii-β) In the case of A′(p) �=0, C ′(p)D′(p)E′(p)=
0: Taking sufficiently generic C, D and E, we may
assume that two of C ′, D′ and E′ do not vanish at
p. Suppose that C ′(p) = 0 and D′(p)E′(p) �= 0. We
put X := f1, Y := f2, Z := f3 and W := C ′. We
may consider that (X,Y,Z,W ) is a system of local
coordinates at p by taking a sufficiently generic C.
Using the local coordinate (X,Y,Z,W ), we can write
F in (1.2) as

F = A′XY Z + W (XY )2(1.3)

+ D′(XZ)2 + E′(Y Z)2

where A′(p)D′(p)E′(p) �= 0. We make the transfor-
mations of local coordinates

(X,Y,Z,W )→(
A′
√

D′
X ′

1 + h
,

A′
√

E′
Y ′

1 + h
,

A′
√

D′E′
Z ′

1 + h
,W

)
where h := Z ′2 + (X ′2 + Y ′2 + X ′Y ′Z ′)W , and

(X ′ + Y ′Z ′, Y ′ + X ′Z ′, Z ′ + X ′Y ′W,W )

→ (X ′′, Y ′′, Z ′′,W )

successively in a neighborhood of p. Then the equa-
tion F = 0 is transformed to A′′X ′′Y ′′Z ′′ = 0, where
A′′ := A′4/{D′E′(1 + h)4}. Hence, p is an ordinary
triple point.

(ii-γ) In the case of A′(p)=0, C ′(p)D′(p)E′(p) �=
0: We put X := f1, Y := f2, Z := f3 and W := A′.
We may consider that (X,Y,Z,W ) is a system of
local coordinates at p by taking sufficiently generic

A and B. Using the local coordinate (X,Y,Z,W ),
we can write F in (1.2) as

F = XY ZW + C ′(XY )2(1.4)

+ D′(XZ)2 + E′(Y Z)2.

We make the transformation of local coordinates

(X,Y,Z,W )→
(

X ′
√

C ′D′
Y ′
√

C ′E′ ,
Z ′

√
D′E′ ,W

)
.

Then the equation F = 0 is transformed to

1
C ′D′E′ {X ′Y ′Z ′W + (X ′Y ′)2 + (X ′Z ′)2 + (Y ′Z ′)2}

= 0

which defines the singularity (vi) in Proposition 1.1.
(iii) Let p ∈ DT be a point where two of fi, 1 ≤

i ≤ 4, vanish, but more than two of fi, 1 ≤ i ≤
4, do not. Suppose that f1(p) = f2(p) = 0 and
f3(p)f4(p) �= 0. We write F in (1.1) as

(1.5) F = B′f2
1 + A′f1f2 + E′f2

2 ,

where B′ := (Bf2
3 + Cf2

4 )f2
2 + Df2

3 f2
4 , A′ := Af3f4

and E′ := Ef2
3 f2

4 .
(iii-α) In the case of B′(p) �= 0, or E′(p) �= 0:

Suppose B′(p) �= 0. Then F in (1.5) is written as

F = B′
(

f1 +
A′ −√A′2 − 4B′E′

2B′ f2

)
×
(

f1 +
A′ +

√
A′2 − 4B′E′

2B′ f2

)
in a neighborhood of p.

(iii-α)d If (A′2−4B′E′)(p) �= 0, then the trans-
fomation

f1 +
A′ −√A′2 − 4B′E′

2B′ f2 −→ X,

f1 +
A′ +

√
A′2 − 4B′E′

2B′ f2 −→ Y

can be regarded as that of local coordinates. By
this trasformation the equation F = 0 is transformed
to B′XY = 0, where B′ is a non-vanishing factor.
Hence p is an ordinary double point.

(iii-α)c If (A′2 − 4B′E′)(p) = 0, we make the
transformation of local coordinates

A′2 − 4B′E′

(2B′)2
−→ X,

f2 −→ Y,

f1 +
A′

2B′ f2 −→ Z
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in a neighborhood of p. Then the equation F = 0 is
transformed to

B′(Z +
√

XY )(Z −
√

XY ) = B′(Z2 −XY 2) = 0.

Hence p is a cuspidal point.
(iii-β) In the case of B′(p) = E′(p) = 0: We

put X := f1, Y := f2, Z := B′ and W = E′. We
may consider that (X,Y,Z,W ) is a system of local
coordinates at p by taking sufficiently generic B, C,
D and E. Using the local coordinate (X,Y,Z,W ),
we can write F in (1.5) as

(1.6) F = A′XY + ZX2 + WY 2.

We may assume that A′(p) �= 0. We make the trans-
formations of local coordinates

(X,Y,Z,W )→ (X,Y,A′Z ′, A′W ′),

(X,Y,Z ′,W ′)→(
X ′

1 + Z ′′W ′′ ,
Y ′

1 + Z ′′W ′′ ,
Z ′′

1 + Z ′′W ′′ ,
W ′′

1 + Z ′′W ′′

)
,

and

(X ′ + W ′′Y ′, Y ′ + Z ′′X ′, Z ′′,W ′′) −→
(X ′′, Y ′′, Z ′′,W ′′)

successively in a neighborhood of p. Then the equa-
tion F = 0 is transformed to A′′X ′′Y ′′ = 0, where
A′′ := A′/(1+Z ′′W ′′)3. Hence p is an ordinary dou-
ble point.

Note: The singularities from (ii) through (v)
in Proposition 1.1 are ordinary in the sense of Roth
([2]). Besides these four types of singularities, the
stationary point , i.e., the singular point defined by
the equation w(xy2 − z2) = 0 in C4, is also ordi-
nary . These ordinary singularities arise if we project
a non-singular threefold embedded in a sufficiently
high dimensional complex projective space to its four
dimensional linear subspace by a generic linear pro-
jection.

2. The singularity (xy)2+(yz)2+(zx)2+
xyzw = 0.

Proposition 2.1. In the expression (xy)2 +
(yz)2 + (zx)2 + xyzw = 0, we consider w as param-
eter. Then, if w �= 0, the singularity defined by this
equation is an ordinary triple point.

Proof. The equation (xy)2 + (yz)2 + (zx)2 +
xyzw = 0 is a special one of the equation F = 0 in
the case (ii-α) in the proof of Proposition 1.1 if w �=
0. Hence it defines an ordinary triple point around
(0, 0, 0, w) with w �= 0.

Because of Proposition 2.1, the singularity
(xy)2 +(yz)2 +(zx)2 +xyzw = 0 might be considerd
as a degenerate ordinary triple point.

Proposition 2.2. Let v : P2(C) → P5(C) be
the Veronese embedding of degree 2, namely, the map
defined by

(ξ0 : ξ1 : ξ2) ∈ P2(C)

→ (ξ2
0 : ξ2

1 : ξ2
2 : ξ0ξ1 : ξ0ξ2 : ξ1ξ2)

= (x0 : x1 : x2 : y0 : y1 : y2) ∈ P5(C),

and let p : P5(C) → P3(C) be the linear projection
defined by

(x0 : x1 : x2 : y0 : y1 : y2) ∈ P5(C)

→ (y0 : y1 : y2 : −(x0 + x1 + x2))

= (x : y : z : w) ∈ P3(C).

Then the hypersurface in P3(C) defined by the equa-
tion (xy)2 +(yz)2 +(zx)2 +xyzw = 0 coincides with
(p◦v)(P2(C)), which is an algebraic surface with or-
dinary singularities, known as the Steiner surface.

The proof of this proposition is a direct calcula-
tion.

Theorem 2.3. The normalization of the sin-
gularity defined by the equation (vi) in Proposi-
tion 1.1 at the origin of C4 is an isolated rational
quadruple point, which is rigid under small defor-
mations.

Proof. We denote by S the Steiner surface, i.e.,
the projective variety in P3(C) defined by the equa-
tion (xy)2 + (yz)2 + (zx)2 + xyzw = 0, and by CS

the affine variety in C4 defined by the same equa-
tion, i.e., the cone over S. We denote by X the im-
age of P2(C) in P5(C) by the Veronese embedding of
degree 2, and by CX the affine variety in C6 corre-
sponding to X, i.e., the cone over X. Note that CX

is non-singular outside the origin of C6, since X is
non-singular. We denote by p : C6 → C4 the linear
projection induced by p : P5(C)→ P3(C) in Propo-
sition 2.2. Since S = p(X), we have p(CX) = CS .
We denote by n : CX → CS the restriction p to CX .
Since

OX(ν) := OX([HP5(C)]⊗ν) 	 OP2(C)([HP2(C)]⊗2ν),

the map H0(P5(C),OP5(C)(ν)) → H0(X,OX(ν))
is surjective for every integer ν, where [HP5(C)]
and [HP2(C)] denote the hyperplane line bundles on
P5(C) and P2(C), respectively. Therefore X is pro-
jectively normal , and equivalently CX is normal (cf.
[3]). Hence n : CX → CS gives the normalization.
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To see that CX has a rational isolated singularity,
we take the blowing-up b̂ : Ĉ6 → C6 at the origin
of C6. We put ĈX := b̂−1(CX), the proper inverse
image of CX by b̂, and denote by b : ĈX → CX the
restriction of b̂ to ĈX . Here we should remember
that Ĉ6 can be identified with [HP5(C)]−1, ĈX with
[HP5(C)]−1

|X , the restriction of [HP5(C)]−1 to X, and
b−1(0) with the zero cross-section of the line bundle
L := [HP5(C)]−1

|X → X. By these identifications, for

any open neighborhood U of b−1(0) in ĈX , we have

Hq(U,OU ) 	
⊕
ν≥o

Hq(X,L−ν)

	
⊕
ν≥o

Hq(P2(C),OP2(C)(2ν)) = 0

for any q ≥ 1. Hence (Rqb∗OdCX
)0 = 0 for any q ≥ 1,

that is, (CX , 0) is a rational isolated singularity. The
multiplicity of the affine cone CX at the vertex 0 is
four, because it is equal to the degree of X in P4(C)
([1], p. 394, Exercise 3.4, (e)). We now refer to the
following theorem due to M. Schlessinger:

Theorem ([3]). The cone over a strongly rigid
projective manifold is rigid under small deforma-
tions.

Here, a projective manifold Y ⊂ Pn(C),
dimC Y > 0, is defined to be strongly rigid if
(i) Y is projectively normal,
(ii) H1(Y,ΘY (ν)) = 0, −∞ < ν <∞,
(iii) H1(Y,OY (ν)) = 0, −∞ < ν <∞,
where ΘY and OY denote the sheaves of holomor-

phic vector fields and holomorphic functions on Y ,
respectively, and F (ν) a sheaf F tensored with ν-th
power of hyperplane line bundle. The fact that CX

is rigid under small deformations follows from the
theorem above and Bott’s theorem concerning the
cohomology Hp(Pn(C),Ωq

Pn(C)(ν)) where Ωq
Pn(C) is

the sheaf of holomorphic q-forms on Pn(C), since

H1(X,ΘX(ν)) 	 H1(P2(C),ΘP2(C)(2ν))

	 H1(P2(C),Ω1
P2(C)(−2ν−3)), and

H1(X,OX(ν)) 	 H1(P2(C),OP2(C)(2ν)).

Corollary 2.4. The normalization of the hy-
persurface in P4(C) defined by the equation (1.1) has
isolated rational quadruple points only as singulari-
ties. These isolated rational singular points are rigid
under small deformations.
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