Non-immersion theorems for warped products in complex hyperbolic spaces

By Bang-Yen Chen
Department of Mathematics, Michigan State University, East Lansing, Michigan, MI 48824-1027, U. S. A.
(Communicated by Heisuke Hironaka, m. J. A., June 11, 2002)

Abstract

We prove a general optimal inequality for warped products in complex hyperbolic spaces and investigate warped products which satisfy the equality case of the inequality. As immediate applications, we obtain several non-immersion theorems for warped products in complex hyperbolic spaces.

Key words: Warped products; inequality; complex hyperbolic space; non-immersion theorem; minimal immersion.

1. Introduction. Let N_{1} and N_{2} be two Riemannian manifolds with Riemannian metrics g_{1} and g_{2}, respectively, and let f be a positive differentiable function on N_{1}. The warped product $N_{1} \times_{f}$ N_{2} is defined to be the product manifold $N_{1} \times N_{2}$ equipped with the Riemannian metric given by $g_{1}+$ $f^{2} g_{2}$ (see [6]).

For a warped product $N_{1} \times_{f} N_{2}$, we denote by \mathcal{D}_{1} and \mathcal{D}_{2} the distributions given by the vectors tangent to leaves and fibers, respectively. Thus, \mathcal{D}_{1} is obtained from tangent vectors of N_{1} via the horizontal lift and \mathcal{D}_{2} from tangent vectors of N_{2} via the vertical lift.

Let $\phi: N_{1} \times_{f} N_{2} \rightarrow C H^{m}(4 c)$ be an isometric immersion of a warped product $N_{1} \times{ }_{f} N_{2}$ into a complex hyperbolic m-space with constant holomorphic sectional curvature $4 c, c<0$. Denote by h the second fundamental form of ϕ. Let trace h_{1} and trace h_{2} be the trace of h restricted to N_{1} and N_{2}, i.e.,

$$
\begin{aligned}
& \operatorname{trace} h_{1}=\sum_{\alpha=1}^{n_{1}} h\left(e_{\alpha}, e_{\alpha}\right) \\
& \operatorname{trace} h_{2}=\sum_{t=n_{1}+1}^{n_{1}+n_{2}} h\left(e_{t}, e_{t}\right)
\end{aligned}
$$

for some orthonormal frame fields $e_{1}, \ldots, e_{n_{1}}$ and $e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}}$ of \mathcal{D}_{1} and \mathcal{D}_{2}, respectively. The immersion ϕ is called mixed totally geodesic if

$$
h(X, Z)=0
$$

for any X in \mathcal{D}_{1} and Z in \mathcal{D}_{2}.

[^0]In this article we prove the following general result for arbitrary isometric immersions of warped products into complex hyperbolic spaces.

Theorem 1. Let $\phi: N_{1} \times{ }_{f} N_{2} \rightarrow C H^{m}(4 c)$ be an arbitrary isometric immersion of a warped product $N_{1} \times_{f} N_{2}$ into the complex hyperbolic m-space $C H^{m}(4 c)$. Then we have

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{\left(n_{1}+n_{2}\right)^{2}}{4 n_{2}} H^{2}+n_{1} c \tag{1.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} N_{i}, i=1,2, H^{2}$ is the squared mean curvature of ϕ, and Δ is the Laplacian operator of N_{1}.

The equality sign of (1.1) holds if and only if the following three conditions are satisfied:
(1) ϕ is mixed totally geodesic,
(2) $\operatorname{trace} h_{1}=$ trace h_{2}, and
(3) $J \mathcal{D}_{1} \perp \mathcal{D}_{2}$, where J is the almost complex structure of CH^{m}.

As interesting applications of Theorem 1 we have the following non-immersion theorems.

Theorem 2. Let $N_{1} \times_{f} N_{2}$ be a warped product whose warping function f is a harmonic function. Then $N_{1} \times{ }_{f} N_{2}$ does not admit an isometric minimal immersion into any complex hyperbolic space.

Theorem 3. If f is an eigenfunction of the Laplacian on N_{1} with eigenvalue $\lambda>0$, then $N_{1} \times_{f}$ N_{2} does not admits an isometric minimal immersion into any complex hyperbolic space.

Theorem 4. If N_{1} is a compact Riemannian manifold, then every warped product $N_{1} \times_{f} N_{2}$ does not admit an isometric minimal immersion into any complex hyperbolic space.

Theorem 2 is a generalization of a result of N . Ejiri [5]. Also Theorems 2, 3 and 4 can be regarded as partial extensions of Theorems 2, 3 and 4 of [3].
2. Preliminaries. A Kaehler manifold $\tilde{M}^{m}(4 c)$ of constant holomorphic sectional curvature $4 c$ is called a complex space form. Let N be an n dimensional Riemannian manifold isometrically immersed in $\tilde{M}^{m}(4 c)$ with $n \geq 2$. We denote by \langle, the inner product for N as well as for $\tilde{M}^{m}(4 c)$.

For any vector X tangent to N we put

$$
J X=P X+F X
$$

where $P X$ and $F X$ are the tangential and the normal components of $J X$, respectively. Thus, P is a welldefined endomorphism of the tangent bundle $T N$.

We denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of N and $\tilde{M}^{m}(4 c)$, respectively. Then the Gauss and Weingarten formulas are given respectively by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}\\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{align*}
$$

for vector fields X, Y tangent to N and ξ normal to N, where h denotes the second fundamental form, D the normal connection, and A the shape operator of the submanifold.

The mean curvature vector \vec{H} is defined by

$$
\vec{H}=\frac{1}{n} \text { trace } h
$$

The squared mean curvature is given by

$$
H^{2}=\langle\vec{H}, \vec{H}\rangle
$$

The submanifold N is called minimal if its mean curvature vector vanishes identically.

Denote by $K\left(e_{i} \wedge e_{j}\right)$ the sectional curvature of the plane section spanned by $e_{i}, e_{j} ; 1 \leq i<j \leq n$. The scalar curvature of N is then given by

$$
\tau=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right)
$$

For a differentiable function φ on N, the Laplacian of φ is defined by

$$
\Delta \varphi=\sum_{j=1}^{n}\left\{\left(\nabla_{e_{j}} e_{j}\right) \varphi-e_{j} e_{j} \varphi\right\}
$$

where e_{1}, \ldots, e_{n} is an orthonormal frame. When N is compact, each eigenvalue of Δ is non-negative.
3. Proofs of Theorems. Let $\phi: N_{1} \times{ }_{f}$ $N_{2} \rightarrow C H^{m}(4 c)$ be an isometric immersion of a warped product $N_{1} \times_{f} N_{2}$ into the complex hyperbolic m-space $C H^{m}(4 c)$. Denote by n_{1}, n_{2} and n the dimensions of N_{1}, N_{2} and $N_{1} \times N_{2}$, respectively. We use the following convention on the range of indices unless mentioned otherwise:

$$
\begin{aligned}
& j, k, \ell=1, \ldots, n \\
& \alpha, \beta=1, \ldots, n_{1} \\
& s, t=n_{1}+1, \ldots, n_{1}+n_{2}
\end{aligned}
$$

Since $N_{1} \times_{f} N_{2}$ is a warped product, we have [2, 6]

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=(X \ln f) Z, \quad\left\langle\nabla_{X} Y, Z\right\rangle=0 \tag{3.1}
\end{equation*}
$$

for unit vector fields X, Y in \mathcal{D}_{1} and Z in \mathcal{D}_{2}. Hence, from (3.1), we find

$$
\begin{align*}
K(X \wedge Z) & =\left\langle\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right\rangle \tag{3.2}\\
& =\frac{1}{f}\left\{\left(\nabla_{X} X\right) f-X^{2} f\right\} .
\end{align*}
$$

If we choose a local field of orthonormal frame $e_{1}, \ldots, e_{n_{1}+n_{2}}$ such that $e_{1}, \ldots, e_{n_{1}}$ are in \mathcal{D}_{1} and $e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}}$ in \mathcal{D}_{2}, then (3.2) implies that

$$
\begin{align*}
& \frac{\Delta f}{f}=\sum_{\alpha=1}^{n_{1}} K\left(e_{\alpha} \wedge e_{s}\right) \tag{3.3}\\
& s=n_{1}+1, \ldots, n_{1}+n_{2}
\end{align*}
$$

Let R denote the Riemannian curvature tensor of N. The equation of Gauss is given by

$$
\begin{align*}
\langle & R(X, Y) Z, W\rangle \tag{3.4}\\
= & \langle h(X, W), h(Y, Z)\rangle-\langle h(X, Z), h(X, Z)\rangle \\
& +c\{\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle \\
& +\langle J Y, Z\rangle\langle J X, W\rangle-\langle J X, Z\rangle\langle J Y, W\rangle \\
& +2\langle X, J Y\rangle\langle J Z, W\rangle\} .
\end{align*}
$$

It follows from (3.4) that the scalar curvature and the squared mean curvature of N satisfy

$$
\begin{equation*}
2 \tau=n^{2} H^{2}-\|h\|^{2}+n(n-1) c+3 c\|P\|^{2} \tag{3.5}
\end{equation*}
$$

where $n=n_{1}+n_{2}$ and $\|h\|^{2}$ denotes the squared norm of the second fundamental form and

$$
\|P\|^{2}=\sum_{i, j=1}^{n}\left\langle e_{i}, P e_{j}\right\rangle^{2}
$$

is the squared norm of the endomorphism P.
If we put

$$
\begin{equation*}
\eta=2 \tau-\frac{n^{2}}{2} H^{2}-n(n-1) c-3 c\|P\|^{2} \tag{3.6}
\end{equation*}
$$

then we obtain from (3.5) and (3.6) that

$$
\begin{equation*}
n^{2} H^{2}=2 \eta+2\|h\|^{2} \tag{3.7}
\end{equation*}
$$

If we choose a local field of orthonormal frame $e_{n+1}, \ldots, e_{2 m}$ of the normal bundle so that e_{n+1} is in the direction of the mean curvature vector, then (3.7) becomes

$$
\begin{align*}
&\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left\{\eta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}\right. \tag{3.8}\\
& \quad+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}\left.+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\}
\end{align*}
$$

(3.8) can be restated as
(3.9) $\left(a_{1}+a_{2}+a_{3}\right)^{2}$

$$
\begin{array}{r}
=2\left\{\eta+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+2 \sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}\right. \\
+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-2 \sum_{2 \leq \alpha<\beta \leq n_{1}} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1} \\
\left.-2 \sum_{n_{1}+1 \leq s<t \leq n} h_{s s}^{n+1} h_{t t}^{n+1}\right\}, \tag{3.15}
\end{array}
$$

where

$$
\begin{align*}
& a_{1}=h_{11}^{n+1} \tag{3.10}\\
& a_{2}=h_{22}^{n+1}+\cdots+h_{n_{1} n_{1}}^{n+1} \\
& a_{3}=h_{n_{1}+1 n_{1}+1}^{n+1}+\cdots+h_{n n}^{n+1}
\end{align*}
$$

Thus, by applying Lemma 1 of [1] to (3.9) we find

$$
\begin{aligned}
& 2 h_{11}^{n+1}\left(h_{22}^{n+1}+\cdots+h_{n_{1} n_{1}}^{n+1}\right) \\
& \geq \eta+2 \sum_{1 \leq i<j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \\
& -2 \sum_{2 \leq \alpha<\beta \leq n_{1}} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}-2 \sum_{n_{1}+1 \leq s<t \leq n} h_{s s}^{n+1} h_{t t}^{n+1}
\end{aligned}
$$

which is nothing but

$$
\begin{aligned}
& \sum_{1 \leq \alpha<\beta \leq n_{1}} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+\sum_{n_{1}+1 \leq s<t \leq n} h_{s s}^{n+1} h_{t t}^{n+1} \\
& \geq \frac{\eta}{2}+\sum_{1 \leq j<k \leq n}\left(h_{j k}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{j, k=1}^{n}\left(h_{j k}^{r}\right)^{2} .
\end{aligned}
$$

Therefore, by applying (3.6), (3.12) and (3.14), we obtain

The equality sign of (3.12) holds if and only if the following condition:

$$
\begin{equation*}
h_{11}^{n+1}+\cdots+h_{n_{1} n_{1}}^{n+1}=h_{n_{1}+1 n_{1}+1}^{n+1}+\cdots+h_{n n}^{n+1} \tag{3.13}
\end{equation*}
$$

holds.
By applying (3.3) and (3.4) of Gauss, we have

$$
\begin{aligned}
\frac{n_{2} \Delta f}{f}= & \tau-\sum_{\alpha<\beta} K\left(e_{\alpha} \wedge e_{\beta}\right)-\sum_{s<t} K\left(e_{s} \wedge e_{t}\right) \\
= & \tau-\frac{n_{1}\left(n_{1}-1\right)}{2} c-\frac{n_{2}\left(n_{2}-1\right)}{2} c \\
& -\sum_{r=n+1}^{2 m} \sum_{\alpha<\beta}\left(h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}-\left(h_{\alpha \beta}^{r}\right)^{2}\right) \\
& -\sum_{r=n+1}^{2 m} \sum_{s<t}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right) \\
& -\sum_{\alpha<\beta} 3 c\left\langle P e_{\alpha}, e_{\beta}\right\rangle^{2}-\sum_{s<t} 3 c\left\langle P e_{s}, e_{t}\right\rangle^{2}
\end{aligned}
$$

$$
\begin{align*}
\frac{n_{2} \Delta f}{f} \leq & \tau-\frac{n(n-1)}{2} c+n_{1} n_{2} c-\frac{\eta}{2} \\
& -\sum_{\alpha, t}\left(h_{\alpha t}^{n+1}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{m} \sum_{j, k=1}^{n}\left(h_{j k}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m} \sum_{\alpha<\beta}\left(\left(h_{\alpha \beta}^{r}\right)^{2}-h_{\alpha \alpha}^{r} h_{\beta \beta}^{r}\right) \\
& +\sum_{r=n+2}^{2 m} \sum_{s<t}\left(\left(h_{s t}^{r}\right)^{2}-h_{s s}^{r} h_{t t}^{r}\right) \tag{3.11}\\
& -\sum_{\alpha<\beta} 3 c\left\langle P e_{\alpha}, e_{\beta}\right\rangle^{2}-\sum_{s<t} 3 c\left\langle P e_{s}, e_{t}\right\rangle^{2} \\
= & \tau-\frac{n(n-1)}{2} c+n_{1} n_{2} c-\frac{\eta}{2} \\
& -\sum_{r=n+1}^{2 m} \sum_{\alpha, t}\left(h_{\alpha t}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{\alpha} h_{\alpha \alpha}^{r}\right)^{2} \tag{3.12}\\
& -\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{t} h_{t t}^{r}\right)^{2}-\sum_{\alpha<\beta} 3 c\left\langle P e_{\alpha}, e_{\beta}\right\rangle^{2} \\
& -\sum_{s<t} 3 c\left\langle P e_{s}, e_{t}\right\rangle^{2},
\end{align*}
$$

where the equality case of the inequality holds if and only if (3.13) is satisfied.

From (3.15) we find

$$
\begin{align*}
\frac{n_{2} \Delta f}{f} \leq & \tau-\frac{n(n-1)}{2} c+n_{1} n_{2} c-\frac{\eta}{2} \tag{3.16}\\
& -\sum_{\alpha<\beta} 3 c\left\langle P e_{\alpha}, e_{\beta}\right\rangle^{2}-\sum_{s<t} 3 c\left\langle P e_{s}, e_{t}\right\rangle^{2}
\end{align*}
$$

with the equality holding if and only we have

$$
\begin{align*}
& h\left(T N_{1}, T N_{2}\right)=\{0\}, \tag{3.17}\\
& \sum_{\alpha} h_{\alpha \alpha}^{r}=\sum_{t} h_{t t}^{r}=0,
\end{align*}
$$

for $r=n+2, \ldots, 2 m$.
Finally, by applying (3.6) and (3.16), we obtain

$$
\begin{align*}
\frac{n_{2} \Delta f}{f} & =\frac{n^{2}}{4} H^{2}+n_{1} n_{2} c+3 c \sum_{\alpha, t}\left\langle P e_{\alpha}, e_{t}\right\rangle^{2} \tag{3.18}\\
& \leq \frac{n^{2}}{4} H^{2}+n_{1} n_{2} c
\end{align*}
$$

which implies inequality (1.1).
If the equality sign of (1.1) holds, then all of the inequalities in (3.12), (3.16) and (3.18) become equalities. Hence, we obtain (3.13), (3.17) and the equation:

$$
\left\langle P e_{\alpha}, e_{t}\right\rangle=0
$$

Therefore, we have Conditions (1), (2) and (3) of Theorem 1.

Conversely, if Conditions (1), (2) and (3) of Theorem 1 hold, then the equality case of inequalities in (3.15), (3.16) and (3.18) become equalities. Hence, we obtain the equality case of (1.1). This proves Theorem 1.

If $\phi: N_{1} \times{ }_{f} N_{2} \rightarrow C H^{m}(4 c)$ is an isometric minimal immersion of a warped product $N_{1} \times_{f} N_{2}$ into the complex hyperbolic m-space, then Theorem 1 implies that

$$
\begin{equation*}
\frac{\Delta f}{f} \leq n_{1} c<0 \tag{3.19}
\end{equation*}
$$

Thus, f cannot be a harmonic function or an eigenfunction of Laplacian with positive eigenvalue. This proves Theorems 2 and 3.

Since the warping function f is positive, (3.19) implies that $\Delta f<0$. Thus, if N_{1} is compact, the warping function f must be constant by applying Hopf's lemma which contradicts to Theorem 2. Hence, we obtain Theorem 4.
4. Additional results. A submanifold N in $C H^{m}$ is called totally real if $J(T N) \subset T^{\perp} N$ (see [4]).

When $\operatorname{dim} N_{1}=\operatorname{dim} N_{2}=1$, Theorem 1 implies immediately the following:

Corollary 1. If $\operatorname{dim} N_{1}=\operatorname{dim} N_{2}=1$, then an isometric immersion of a warped product $N_{1} \times_{f}$ N_{2} into $C H^{m}(4 c)$ satisfies the equality case of inequality (1.1) if and only if it is a totally real totally umbilical surface.

By applying Theorem 1 we also have
Corollary 2. If $\operatorname{dim} N_{1}=\operatorname{dim} N_{2}$, then the warping function f of every warped product decomposition $N_{1} \times_{f} N_{2}$ of a real space form is an eigenfunction of the Laplacian.

Proof. Assume that $N_{1} \times{ }_{f} N_{2}$ is a warped product decomposition of a real space form $R^{2 n_{1}}(\varepsilon)$ of constant curvature ε with $\operatorname{dim} N_{1}=\operatorname{dim} N_{2}=n_{1}$. Let c be a negative number $<\varepsilon$. Then locally there is a totally umbilical isometric immersion j of $N_{1} \times_{f}$ N_{2} into the real hyperbolic space $H^{2 n_{1}+1}(c)$ of constant curvature c.

Denote by

$$
\iota: H^{2 n_{1}+1}(c) \rightarrow C H^{2 n_{1}+1}(4 c)
$$

the standard totally real totally geodesic isometric imbedding of $H^{2 n_{1}+1}(c)$ into $C H^{2 n_{1}+1}(4 c)$. Then the composition:

$$
\begin{gathered}
\phi=\iota \circ j: N_{1} \times{ }_{f} N_{2} \xrightarrow{\text { totally umbilical }} H^{2 n_{1}+1}(c) \\
\xrightarrow[\text { totally real }]{\text { totally geodesic }} C H^{2 n_{1}+1}(4 c)
\end{gathered}
$$

is an isometric immersion which satisfies Conditions (1), (2) and (3) of Theorem 1. Hence, ϕ satisfies the equality case of (1.1) according to Theorem 1. Therefore, we have

$$
\frac{\Delta f}{f}=n_{1} H^{2}+n_{1} c
$$

Since the composition ϕ is a totally real, totally umbilical isometric immersion, it has constant squared mean curvature. Thus, the warping function f is an eigenfunction of the Laplacian.

Definition 1. Let $\psi: N_{1} \times_{f} N_{2} \rightarrow M$ be an isometric immersion of a warped product into a Riemannian manifold. Then ψ is called pseudo umbilical if the shape operator $A_{\vec{H}}$ at the mean curvature vector satisfies $A_{\vec{H}} X=\lambda X$ for some function λ, where X is an arbitrary vector tangent to $N_{1} \times_{f} N_{2}$.

The immersion is called N_{j}-pseudo umbilical if
the shape operator $A_{\vec{H}}$ satisfies $A_{\vec{H}} X=\lambda X$ for tangent vectors X in $\mathcal{D}_{j}(j=1$ or 2$)$.

For warped products satisfying the equality case of (1.1), we also have

Proposition 1. Let $\phi: N_{1} \times{ }_{f} N_{2} \rightarrow$ CH $^{m}(4 c)$ be an isometric immersion of a warped product $N_{1} \times{ }_{f}$ N_{2} into the complex hyperbolic m-space $\mathrm{CH}^{m}(4 c)$. If ϕ satisfies the equality case of (1.1), then we have:
(i) $\langle h(X, Y), J Z\rangle=0$ for tangent vectors X, Y in \mathcal{D}_{1} and Z in \mathcal{D}_{2}.
(ii) ϕ is N_{2}-pseudo umbilical.
(iii) If $\operatorname{dim} N_{1} \neq \operatorname{dim} N_{2}$, then ϕ is non-pseudo umbilical.
(iv) If f in non-constant, then we have $J \mathcal{D}_{2} \neq$ \mathcal{D}_{2}, i.e., \mathcal{D}_{2} is non-holomorphic.

Proof. Assume that $\phi: N_{1} \times_{f} N_{2} \rightarrow C H^{m}(4 c)$ is an isometric immersion which satisfies the equality case of (1.1). Then Conditions (1), (2) and (3) of Theorem 1 holds. Let X, Y be vector fields in \mathcal{D}_{1} and Z in \mathcal{D}_{2}. Then we have $\nabla_{X} Y \in \mathcal{D}_{1}$ by (3.1). Thus, by applying Condition (3) of Theorem 1, we have $\left\langle J \nabla_{X} Y, Z\right\rangle=0$. Hence, by applying (3.1) and Conditions (1) and (3) of Theorem 1, we obtain

$$
\begin{align*}
0 & =X\langle J Y, Z\rangle \tag{4.1}\\
& =\langle J h(X, Y), Z\rangle+\left\langle J Y, \nabla_{X} Z\right\rangle \\
& =\langle J h(X, Y), Z\rangle
\end{align*}
$$

which implies statement (i).
From (3.3), (3.4) and Conditions (1) and (3) of Theorem 1, we have

$$
\begin{equation*}
\left\langle\operatorname{trace} h_{1}, h(Z, Z)\right\rangle=\frac{\Delta f}{f}-n_{1} c \tag{4.2}
\end{equation*}
$$

for any unit tangent vector Z in \mathcal{D}_{2}. Therefore, by applying polarization, we find

$$
\begin{equation*}
\left\langle\operatorname{trace} h_{1}, h(Z, W)\right\rangle=0 \tag{4.3}
\end{equation*}
$$

for orthonormal vectors Z, W in \mathcal{D}_{2}.
On the other hand, Condition (2) of Theorem 1 implies that

$$
\text { trace } h_{1}=\frac{n}{2} \vec{H}
$$

Hence, by (4.2), (4.3) and Condition (1) of Theorem 1, we obtain

$$
A_{\vec{H}} Z=\frac{2}{n}\left\{\frac{\Delta f}{f}-n_{1} c\right\} Z
$$

for tangent vector Z in \mathcal{D}_{2}. Hence, ϕ is a N_{2}-pseudo umbilical immersion. This proves statement (ii).

Statement (iii) follows easily from Condition (2) of Theorem 1.

Let \hat{h} and \hat{A} denote the second fundamental form and shape operator of N_{2} in $N_{1} \times_{f} N_{2}$. Then, by applying (3.1), we have

$$
\begin{align*}
\langle\hat{h}(Z, W), X\rangle & =\left\langle\nabla_{Z} W, X\right\rangle \tag{4.4}\\
& =-\left\langle W, \nabla_{Z} X\right\rangle \\
& =-(X \ln f)\langle Z, W\rangle
\end{align*}
$$

for tangent vector fields X in \mathcal{D}_{1} and Z, W in \mathcal{D}_{2}.
If \mathcal{D}_{2} is a holomorphic distribution, then each fiber is immersed in $C H^{m}(4 c)$ as a holomorphic submanifold. Hence, we obtain trace $\hat{h}=0$. Thus, from (4.4) we conclude that the warping function f is constant.

Remark. In views of Theorem 2 and Theorem 3 , it is interesting to point out that there do exist isometric minimal immersions from warped products into complex hyperbolic spaces such that the warping functions of the warped products are eigenfunctions of Laplacian with negative eigenvalue.

References

[1] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math., 60, 568-578 (1993).
[2] Chen, B.-Y.: Geometry of warped product $C R$ submanifolds in Kaehler manifolds. Monatsh. Math., 133, 177-195 (2001); Chen, B.-Y.: Geometry of warped product $C R$-submanifolds in Kaehler manifolds, II. Monatsh. Math., 134, 103-119 (2001).
[3] Chen, B.-Y.: On isometric minimal immersions from warped products into real space forms. Proc. Edinburgh Math. Soc. (To appear).
[4] Chen, B.-Y., and Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc., 193, 257266 (1974).
[5] Ejiri, N.: Minimal immersions of Riemannian products into real space forms. Tokyo J. Math., 2, 63-70 (1979).
[6] O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983).

[^0]: 2000 Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 53B25.

