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Abstract: We prove a general optimal inequality for warped products in complex hyper-
bolic spaces and investigate warped products which satisfy the equality case of the inequality. As
immediate applications, we obtain several non-immersion theorems for warped products in complex
hyperbolic spaces.
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1. Introduction. Let N1 and N2 be two
Riemannian manifolds with Riemannian metrics g1
and g2, respectively, and let f be a positive differen-
tiable function on N1. The warped product N1 ×f
N2 is defined to be the product manifold N1 × N2

equipped with the Riemannian metric given by g1 +
f2g2 (see [6]).

For a warped product N1 ×f N2, we denote by
D1 and D2 the distributions given by the vectors tan-
gent to leaves and fibers, respectively. Thus, D1 is
obtained from tangent vectors of N1 via the horizon-
tal lift and D2 from tangent vectors of N2 via the
vertical lift.

Let φ : N1 ×f N2 → CHm(4c) be an isometric
immersion of a warped product N1×fN2 into a com-
plex hyperbolic m-space with constant holomorphic
sectional curvature 4c, c < 0. Denote by h the second
fundamental form of φ. Let trace h1 and trace h2 be
the trace of h restricted to N1 and N2, i.e.,

trace h1 =
n1∑
α=1

h(eα, eα),

trace h2 =
n1+n2∑
t=n1+1

h(et, et)

for some orthonormal frame fields e1, . . . , en1 and
en1+1, . . . , en1+n2 of D1 and D2, respectively. The
immersion φ is called mixed totally geodesic if

h(X,Z) = 0

for any X in D1 and Z in D2.
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In this article we prove the following general
result for arbitrary isometric immersions of warped
products into complex hyperbolic spaces.

Theorem 1. Let φ : N1×fN2 → CHm(4c) be
an arbitrary isometric immersion of a warped prod-
uct N1 ×f N2 into the complex hyperbolic m-space
CHm(4c). Then we have

∆f

f
≤ (n1 + n2)2

4n2
H2 + n1c,(1.1)

where ni = dimNi, i = 1, 2, H2 is the squared mean
curvature of φ, and ∆ is the Laplacian operator of
N1.

The equality sign of (1.1) holds if and only if the
following three conditions are satisfied :

(1) φ is mixed totally geodesic,
(2) trace h1 = trace h2, and
(3) JD1 ⊥ D2, where J is the almost complex

structure of CHm.
As interesting applications of Theorem 1 we

have the following non-immersion theorems.
Theorem 2. Let N1 ×f N2 be a warped prod-

uct whose warping function f is a harmonic function.
Then N1×fN2 does not admit an isometric minimal
immersion into any complex hyperbolic space.

Theorem 3. If f is an eigenfunction of the
Laplacian on N1 with eigenvalue λ > 0, then N1 ×f
N2 does not admits an isometric minimal immersion
into any complex hyperbolic space.

Theorem 4. If N1 is a compact Riemannian
manifold, then every warped product N1 ×f N2 does
not admit an isometric minimal immersion into any
complex hyperbolic space.
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Theorem 2 is a generalization of a result of N.
Ejiri [5]. Also Theorems 2, 3 and 4 can be regarded
as partial extensions of Theorems 2, 3 and 4 of [3].

2. Preliminaries. A Kaehler manifold
M̃m(4c) of constant holomorphic sectional curvature
4c is called a complex space form. Let N be an n-
dimensional Riemannian manifold isometrically im-
mersed in M̃m(4c) with n ≥ 2. We denote by 〈 , 〉
the inner product for N as well as for M̃m(4c).

For any vector X tangent to N we put

JX = PX + FX,

where PX and FX are the tangential and the normal
components of JX, respectively. Thus, P is a well-
defined endomorphism of the tangent bundle TN .

We denote by ∇ and ∇̃ the Levi-Civita con-
nections of N and M̃m(4c), respectively. Then the
Gauss and Weingarten formulas are given respec-
tively by

∇̃XY = ∇XY + h(X, Y ),(2.1)

∇̃Xξ = −AξX + DXξ(2.2)

for vector fields X, Y tangent to N and ξ normal to
N , where h denotes the second fundamental form, D
the normal connection, and A the shape operator of
the submanifold.

The mean curvature vector
−→
H is defined by

−→
H =

1
n

trace h.

The squared mean curvature is given by

H2 =
〈−→
H,

−→
H

〉
.

The submanifold N is called minimal if its mean
curvature vector vanishes identically.

Denote by K(ei ∧ ej) the sectional curvature of
the plane section spanned by ei, ej; 1 ≤ i < j ≤ n.
The scalar curvature of N is then given by

τ =
∑
i<j

K(ei ∧ ej).

For a differentiable function ϕ on N , the Lapla-
cian of ϕ is defined by

∆ϕ =
n∑
j=1

{(∇ejej)ϕ − ejejϕ},

where e1, . . . , en is an orthonormal frame. When N

is compact, each eigenvalue of ∆ is non-negative.

3. Proofs of Theorems. Let φ : N1 ×f
N2 → CHm(4c) be an isometric immersion of a
warped product N1 ×f N2 into the complex hyper-
bolicm-space CHm(4c). Denote by n1, n2 and n the
dimensions of N1, N2 and N1×N2, respectively. We
use the following convention on the range of indices
unless mentioned otherwise:

j, k, 	 = 1, . . . , n;

α, β = 1, . . . , n1;

s, t = n1 + 1, . . . , n1 + n2.

Since N1 ×f N2 is a warped product, we have
[2, 6]

∇XZ = ∇ZX = (X ln f)Z, 〈∇XY, Z〉 = 0(3.1)

for unit vector fields X, Y in D1 and Z in D2. Hence,
from (3.1), we find

K(X ∧ Z) = 〈∇Z∇XX −∇X∇ZX,Z〉(3.2)

=
1
f

{
(∇XX)f −X2f

}
.

If we choose a local field of orthonormal frame
e1, . . . , en1+n2 such that e1, . . . , en1 are in D1 and
en1+1, . . . , en1+n2 in D2, then (3.2) implies that

∆f

f
=

n1∑
α=1

K(eα ∧ es),(3.3)

s = n1 + 1, . . . , n1 + n2.

Let R denote the Riemannian curvature tensor
of N . The equation of Gauss is given by

〈R(X, Y )Z,W 〉(3.4)

= 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(X,Z)〉
+ c{〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉
+ 〈JY, Z〉 〈JX,W 〉 − 〈JX, Z〉 〈JY,W 〉
+ 2 〈X, JY 〉 〈JZ,W 〉}.

It follows from (3.4) that the scalar curvature
and the squared mean curvature of N satisfy

2τ = n2H2 − ||h||2 + n(n− 1)c+ 3c ||P ||2,(3.5)

where n = n1 + n2 and ||h||2 denotes the squared
norm of the second fundamental form and

||P ||2 =
n∑

i,j=1

〈ei, P ej〉2

is the squared norm of the endomorphism P .
If we put
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η = 2τ − n2

2
H2 − n(n− 1)c− 3c||P ||2,(3.6)

then we obtain from (3.5) and (3.6) that

n2H2 = 2η + 2||h||2.(3.7)

If we choose a local field of orthonormal frame
en+1, . . . , e2m of the normal bundle so that en+1 is
in the direction of the mean curvature vector, then
(3.7) becomes( n∑

i=1

hn+1
ii

)2

= 2
{
η +

n∑
i=1

(
hn+1
ii

)2(3.8)

+
∑
i �=j

(
hn+1
ij

)2 +
2m∑

r=n+2

n∑
i,j=1

(
hrij

)2
}
.

(3.8) can be restated as

(a1 + a2 + a3)
2(3.9)

= 2
{
η + a2

1 + a2
2 + a2

3 + 2
∑

1≤i<j≤n

(
hn+1
ij

)2

+
2m∑

r=n+2

n∑
i,j=1

(
hrij

)2 − 2
∑

2≤α<β≤n1

hn+1
αα hn+1

ββ

− 2
∑

n1+1≤s<t≤n
hn+1
ss hn+1

tt

}
,

where

a1 = hn+1
11 ,(3.10)

a2 = hn+1
22 + · · ·+ hn+1

n1n1
,

a3 = hn+1
n1+1n1+1 + · · ·+ hn+1

nn .

Thus, by applying Lemma 1 of [1] to (3.9) we find

(3.11)

2hn+1
11

(
hn+1

22 + · · ·+ hn+1
n1n1

)
≥ η + 2

∑
1≤i<j≤n

(
hn+1
ij

)2 +
2m∑

r=n+2

n∑
i,j=1

(
hrij

)2

− 2
∑

2≤α<β≤n1

hn+1
αα hn+1

ββ − 2
∑

n1+1≤s<t≤n
hn+1
ss hn+1

tt

which is nothing but

(3.12)∑
1≤α<β≤n1

hn+1
αα hn+1

ββ +
∑

n1+1≤s<t≤n
hn+1
ss hn+1

tt

≥ η

2
+

∑
1≤j<k≤n

(
hn+1
jk

)2 +
1
2

2m∑
r=n+2

n∑
j,k=1

(
hrjk

)2
.

The equality sign of (3.12) holds if and only if
the following condition:

(3.13)

hn+1
11 + · · ·+ hn+1

n1n1
= hn+1

n1+1n1+1 + · · ·+ hn+1
nn

holds.
By applying (3.3) and (3.4) of Gauss, we have

n2∆f

f
= τ −

∑
α<β

K(eα ∧ eβ)−
∑
s<t

K(es ∧ et)

(3.14)

= τ − n1(n1 − 1)
2

c− n2(n2 − 1)
2

c

−
2m∑

r=n+1

∑
α<β

(
hrααh

r
ββ − (hrαβ)

2
)

−
2m∑

r=n+1

∑
s<t

(
hrssh

r
tt − (hrst)

2
)

−
∑
α<β

3c 〈Peα, eβ〉2 −
∑
s<t

3c 〈Pes, et〉2 .

Therefore, by applying (3.6), (3.12) and (3.14), we
obtain

n2∆f

f
≤ τ − n(n − 1)

2
c+ n1n2c− η

2

(3.15)

−
∑
α,t

(
hn+1
αt

)2 − 1
2

m∑
r=n+2

n∑
j,k=1

(
hrjk

)2

+
2m∑

r=n+2

∑
α<β

(
(hrαβ)

2 − hrααh
r
ββ

)
+

2m∑
r=n+2

∑
s<t

(
(hrst)

2 − hrssh
r
tt

)
−

∑
α<β

3c 〈Peα, eβ〉2 −
∑
s<t

3c 〈Pes, et〉2

= τ − n(n − 1)
2

c+ n1n2c− η

2

−
2m∑

r=n+1

∑
α,t

(
hrαt

)2 − 1
2

2m∑
r=n+2

(∑
α

hrαα

)2

− 1
2

2m∑
r=n+2

(∑
t

hrtt

)2

−
∑
α<β

3c 〈Peα, eβ〉2

−
∑
s<t

3c 〈Pes, et〉2 ,
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where the equality case of the inequality holds if and
only if (3.13) is satisfied.

From (3.15) we find

(3.16)

n2∆f

f
≤ τ − n(n− 1)

2
c+ n1n2c − η

2

−
∑
α<β

3c 〈Peα, eβ〉2 −
∑
s<t

3c 〈Pes, et〉2

with the equality holding if and only we have

h(TN1, TN2) = {0},(3.17) ∑
α

hrαα =
∑
t

hrtt = 0,

for r = n+ 2, . . . , 2m.
Finally, by applying (3.6) and (3.16), we obtain

n2∆f

f
=
n2

4
H2 + n1n2c+ 3c

∑
α,t

〈Peα, et〉2(3.18)

≤ n2

4
H2 + n1n2c

which implies inequality (1.1).
If the equality sign of (1.1) holds, then all of

the inequalities in (3.12), (3.16) and (3.18) become
equalities. Hence, we obtain (3.13), (3.17) and the
equation:

〈Peα, et〉 = 0.

Therefore, we have Conditions (1), (2) and (3) of
Theorem 1.

Conversely, if Conditions (1), (2) and (3) of The-
orem 1 hold, then the equality case of inequalities in
(3.15), (3.16) and (3.18) become equalities. Hence,
we obtain the equality case of (1.1). This proves
Theorem 1.

If φ : N1×fN2 → CHm(4c) is an isometric min-
imal immersion of a warped product N1 ×f N2 into
the complex hyperbolicm-space, then Theorem 1 im-
plies that

∆f

f
≤ n1c < 0.(3.19)

Thus, f cannot be a harmonic function or an eigen-
function of Laplacian with positive eigenvalue. This
proves Theorems 2 and 3.

Since the warping function f is positive, (3.19)
implies that ∆f < 0. Thus, if N1 is compact,
the warping function f must be constant by apply-
ing Hopf’s lemma which contradicts to Theorem 2.
Hence, we obtain Theorem 4.

4. Additional results. A submanifoldN in
CHm is called totally real if J(TN) ⊂ T⊥N (see [4]).

When dimN1 = dimN2 = 1, Theorem 1 implies
immediately the following:

Corollary 1. If dimN1 = dimN2 = 1, then
an isometric immersion of a warped product N1 ×f
N2 into CHm(4c) satisfies the equality case of in-
equality (1.1) if and only if it is a totally real totally
umbilical surface.

By applying Theorem 1 we also have
Corollary 2. If dimN1 = dimN2, then the

warping function f of every warped product decom-
position N1 ×f N2 of a real space form is an eigen-
function of the Laplacian.

Proof. Assume that N1×fN2 is a warped prod-
uct decomposition of a real space form R2n1(ε) of
constant curvature ε with dimN1 = dimN2 = n1.
Let c be a negative number < ε. Then locally there
is a totally umbilical isometric immersion j of N1×f
N2 into the real hyperbolic space H2n1+1(c) of con-
stant curvature c.

Denote by

ι : H2n1+1(c) → CH2n1+1(4c)

the standard totally real totally geodesic isometric
imbedding of H2n1+1(c) into CH2n1+1(4c). Then
the composition:

φ = ι ◦ j : N1 ×f N2
totally umbilical−−−−−−−−−−→ H2n1+1(c)

totally geodesic−−−−−−−−−−→
totally real

CH2n1+1(4c)

is an isometric immersion which satisfies Conditions
(1), (2) and (3) of Theorem 1. Hence, φ satisfies
the equality case of (1.1) according to Theorem 1.
Therefore, we have

∆f

f
= n1H

2 + n1c.

Since the composition φ is a totally real, totally um-
bilical isometric immersion, it has constant squared
mean curvature. Thus, the warping function f is an
eigenfunction of the Laplacian.

Definition 1. Let ψ : N1 ×f N2 → M be an
isometric immersion of a warped product into a Rie-
mannian manifold. Then ψ is called pseudo umbilical
if the shape operator A−→

H
at the mean curvature vec-

tor satisfies A−→
H
X = λX for some function λ, where

X is an arbitrary vector tangent to N1 ×f N2.
The immersion is called Nj-pseudo umbilical if
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the shape operator A−→
H

satisfies A−→
H
X = λX for tan-

gent vectors X in Dj (j = 1 or 2).
For warped products satisfying the equality case

of (1.1), we also have
Proposition 1. Let φ : N1×fN2 → CHm(4c)

be an isometric immersion of a warped product N1×f
N2 into the complex hyperbolic m-space CHm(4c). If
φ satisfies the equality case of (1.1), then we have:

(i) 〈h(X, Y ), JZ〉 = 0 for tangent vectors X,

Y in D1 and Z in D2.
(ii) φ is N2-pseudo umbilical.
(iii) If dimN1 �= dimN2, then φ is non-pseudo

umbilical.
(iv) If f in non-constant, then we have JD2 �=

D2, i.e., D2 is non-holomorphic.
Proof. Assume that φ : N1×f N2 → CHm(4c)

is an isometric immersion which satisfies the equality
case of (1.1). Then Conditions (1), (2) and (3) of
Theorem 1 holds. Let X, Y be vector fields in D1

and Z in D2. Then we have ∇XY ∈ D1 by (3.1).
Thus, by applying Condition (3) of Theorem 1, we
have 〈J∇XY, Z〉 = 0. Hence, by applying (3.1) and
Conditions (1) and (3) of Theorem 1, we obtain

0 = X 〈JY, Z〉(4.1)

= 〈Jh(X, Y ), Z〉+ 〈JY,∇XZ〉
= 〈Jh(X, Y ), Z〉 ,

which implies statement (i).
From (3.3), (3.4) and Conditions (1) and (3) of

Theorem 1, we have

〈 trace h1, h(Z, Z) 〉 =
∆f

f
− n1c(4.2)

for any unit tangent vector Z in D2. Therefore, by
applying polarization, we find

〈 trace h1, h(Z,W ) 〉 = 0(4.3)

for orthonormal vectors Z,W in D2.
On the other hand, Condition (2) of Theorem 1

implies that

trace h1 =
n

2
−→
H.

Hence, by (4.2), (4.3) and Condition (1) of Theo-
rem 1, we obtain

A−→
H
Z =

2
n

{
∆f

f
− n1c

}
Z

for tangent vector Z in D2. Hence, φ is a N2-pseudo
umbilical immersion. This proves statement (ii).

Statement (iii) follows easily from Condition (2)
of Theorem 1.

Let ĥ and Â denote the second fundamental
form and shape operator of N2 in N1 ×f N2. Then,
by applying (3.1), we have〈

ĥ(Z,W ), X
〉

= 〈∇ZW,X〉(4.4)

= −〈W,∇ZX〉
= −(X lnf) 〈Z,W 〉

for tangent vector fields X in D1 and Z,W in D2.
If D2 is a holomorphic distribution, then each

fiber is immersed in CHm(4c) as a holomorphic sub-
manifold. Hence, we obtain trace ĥ = 0. Thus, from
(4.4) we conclude that the warping function f is con-
stant.

Remark. In views of Theorem 2 and Theo-
rem 3, it is interesting to point out that there do exist
isometric minimal immersions from warped products
into complex hyperbolic spaces such that the warping
functions of the warped products are eigenfunctions
of Laplacian with negative eigenvalue.
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