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Note on the ring of integers of a Kummer extension of prime degree. V
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Abstract: Let £ be a prime number, and K a number field with {, € K*. We give a
simple necessary and sufficient condition for all tame Kummer extensions over K of degree ¢ to
have a relative normal integral basis. The result is given in terms of the class number and the
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group of units of K.
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1. Introduction. Let K be a number field.
In this note, we give a simple necessary and suffi-
cient condition for all tame Kummer extensions over
K of a given prime degree to have a relative normal
integral basis (NIB for short). Let O be the ring of
integers of K, and hx the class number of K. For a
commutative ring R with identity, we denote by R*
the group of units of R. In particular, Ex = O
is the group of units of K. For an element a € R,
we write R/a = R/aR for brevity. For an integer
n > 2, we denote by [Ek], the subgroup of the mul-
tiplicative group (O /n)* generated by the classes
containing units of K. For a prime number ¢, let
(¢ be a primitive ¢-th root of unity. We say that a
finite extension of a number field is tame when it is
at most tamely ramified at all finite primes.

For a prime number ¢ and a number field K,
Greither et al. [3, Corollary 7] gave a necessary con-
dition for all tame cyclic extensions over K of degree
¢ to have a NIB. The following is a consequence of
this result.

Proposition 1. Let £ be a prime number with
{ > 5. Then, there exists no number field K with
(o € K* satisfying the following condition:

(i) Any tame Kummer extension over K of de-
gree £ has a NIB.

When ¢ = 2, 3, the following assertions hold.

Proposition 2. Let { =2 or 3, and let K be a
number field with {; € K*. The following conditions
are equivalent:

(i) Any tame Kummer extension over K of de-
gree £ has a NIB.

(i) We have hix =1 and (O /0)* = [Ex]s.
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Proposition 3. Let £ = 2, and K a number
field. The following conditions are equivalent:

(i) Any tame Kummer extension over K of ex-
ponent 2 has a NIB.

(ii) Any tame Kummer extension over K of
exponent 2 and of degree dividing 4 has a NIB.

(iii) We have hxg =1 and (O /4)* = [Ek]a.

Remark. (1) In [2, Theorem 2.1], Gdémez
Ayala gave a necessary and sufficient condition for
a tame Kummer extension of prime degree to have
a NIB. The implication (ii) = (i) in Proposition 2 is
an immediate consequence of this theorem. When
¢ = 2, (i)=(ii) is shown in [3]. So, the new part
in Proposition 2 is the implication (i) = (ii) for £ =
3. (2) When ¢ = 3, we could not obtain an asser-
tion corresponding to Proposition 3 by the method
of this note.

Example 1. Let ¢ = 3. The condition (ii) in
Proposition 2 is satisfied when K = Q(v/—3) as is
shown in [2, p.110]. It is known by Uchida [8] that
among biquadratic fields K = Q(v/—3, \/E) with d €
Z, there are 13 fields with hx = 1. (For this, confer
also Yamamura [10].) Among these 13 K’s, we see
that the condition (ii) in Proposition 2 is satisfied
when and only when d = —1, —2, —11. To check
the condition (O /3)* = [Ek]s, we have to know
a fundamental unit of K. For this, we have used
some results of Hasse [4, Section 26] on unit index of
imaginary abelian fields.

Example 2. The condition (Ok/4)* = [Exk]4
in Proposition 3 is satisfied only when K is totally
real. This is shown in a way similar to the proof of
Proposition 1 in Section 2. Let K be a real quadratic
field with hxg = 1, and € a fundamental unit of K.
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When 2 splits in K, we easily see that the condition
(Ok/2)* = [Ek]2 holds, and that (O /4)* = [Fk]4
holds if and only if N(¢) = —1. Here, N(e) is the
norm of €. When 2 does not split, there are several
real quadratic fields K = Q(\/E) satisfying the con-
dition (iii) in Proposition 3, such as d = 2, 5, 13, 29
(etc.).

2. Proofs of Propositions 1 and 2. The
following assertion was shown in [3, Corollary 7].

Lemma 1. Let ¢ be a prime number, and K a
number field. Assume that any tame cyclic extension
over K of degree { has a NIB. Then, the exponent of
the quotient group (O /0)* /|Ek]e divides ((—1)2/2
when £ >3, and (Ok /0)* = [Ex]¢ when £ =2.

As in Section 1, let {; be a primitive ¢-th root
of unity, and mp = {, — 1.

Proof of Proposition 1. Let £ be an odd prime
number, and K a number field with {, € K*. As-
sume that the condition (i) in Proposition 1 is satis-
fied. Let p1 and ps be the ¢-ranks of the finite abelian
groups (O /f)* and [Ek]e, respectively. Then, by
Lemma 1, we have py = ps. Let mOg = [, £
be the prime decomposition of 7,Ok. Let n = [K :
Q(¢e)], and f; be the relative degree of £; over Q((y).
Clearly, we have

(O /)" =&, A;

Let B; be the subgroup of A; consisting of classes T

with A; = (O /£ V)x.

with = 1 mod £;'. We see that B; is of exponent
¢, and that |B;| = ¢(*=2¢i_ Hence, we obtain

1 2(6—2)Zeifi=(€—2)n.

On the other hand, we have p; < (¢ — 1)n/2 by the
Dirichlet unit theorem. Therefore, the equality p; =
p2 can not hold when £ > 5. |

To show Proposition 2, we need several lemmas.

The following lemma is well known (cf. Wash-
ington [9, Exercises 9.2, 9.3]).

Lemma 2. Let ¢ be a prime number, and K
a number field with {, € K*. Then, for an element
a € K* relatively prime to ¢, the Kummer extension
K(a'*)/K is tame if and only if a = u’ mod ¢ for
some u € O.

The following lemma was shown in [5], for which
see also [6, Lemma 3]. (We can derive this also from
[2, Theorem 2.1].)

Lemma 3. Let ¢, K be as in Lemma 2. Let
a be an integer of K relatively prime to £ such that
the principal integral ideal aQOk is square free. Then,
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the Kummer extension K(a'/*)/K has a NIB if and
only if a = €’ mod 7’ for some unit € € Fi.

Lemma 4. Let ¢, K be as in Proposition 2.
Assume that the condition (1) in Proposition 2 is sat-
isfied. Then, (O /7)™ is generated by the classes
containing units of K.

Proof. When ¢ = 2, the assertion is contained
in Lemma 1. So, let ¢ # 2. Let u be an integer of
K relatively prime to ¢. By the Chebotarev density
theorem, there exists a principal prime ideal £ =
a@k such that a = uf mod 7. Because of this con-
gruence, the Kummer extension L = K(a'/*) over
K is tame by Lemma 2. Hence, L/K has a NIB by
the assumption. Then, we have a = ¢’ mod ¢ for
some unit € € Fxg by Lemma 3. This implies u =
€ mod 7,. Hence, we obtain the assertion. O

To show Proposition 2, we need one more
lemma, which is a part of [2, Theorem 2.1] mentioned
in Section 1. Let ¢, K be as in Lemma 1, and let 2%
be an ¢-th power free integral ideal of Ox. We can
uniquely write

-1
(1) 2=]J 2
i=1

for some square free integral ideals 2; of Ok rela-
tively prime to each other. As in [2], we define the
associated ideals B; by

-1 3
(2) B = A; [i3 /€]
1

(0<j<t—1).

%

Here, [z] is the largest integer < x. By the definition,
we have By = B, = Og.

Lemma 5. Let ¢, K be as in Lemma 2, and
L/K a tame Kummer extension of degree {. As-
sume that L/K has a NIB. Then, we can write L =
K(a'/*) for some nonzero integer a of K such that
the principal integral ideal aOg is ¢-th power free
and the associated ideals B; of aOk defined by (1),
(2) are principal.

Proof of Proposition 2.
in Remark 1 (1), it suffices to show the implication
(i)= (ii). Let ¢, K be as in Proposition 2, and as-
sume that the condition (i) is satisfied. First, let £ =
2. Then, we have (Og/2)* = [Ek]2 by Lemma 1.
We also have hiy = 1 by Mann [7, p.171] (cf. also
[3, p.165]). So, let £ = 3. Let u be an integer of K
relatively prime to ¢. By Lemma 4, u = ¢ mod 7
for some unit € € Fx. Hence, uf = ¢ mod m,f. As ¢

As we have mentioned

divides 7%, this implies that the exponent of the quo-
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tient (Ok /€)™ /[Ex]¢ divides £. Therefore, it follows
from Lemma 1 that (Og/¢)* = [Ex]¢. It remains
to show that hxg = 1. Let C be an arbitrary ideal
class of K. We show that C = 1. Let €], € be
square free integral ideals of K relatively prime to
¢ such that €] € C?, € € C~! and (€], &) = 1.
We have ¢,€,? = /O for some integer ¢. By the
Chebotarev density theorem, there exists a principal
prime ideal £ = ¢’Ok such that ¢¢’ = 1 mod 7’
and (¢, ¢') = 1. Put ¢ = &/’ and ¢ = ¢/¢”. Then,
we have €,8,% = cOk. Put L = K(c'/?). The ex-
tension L/K is of degree £ as £ || ¢, and is tame by
Lemma 2 as ¢ = 1 mod 7/¢. Then, as we are assum-
ing (i), L/ K has a NIB. Hence, there exists an integer
a of K with L = K (a'/*) satisfying the conditions in
Lemma 5. We have

(3) a=cz'

forsome 1 <s<{¢{—1=2and z € K*. Let A;, B;
be the integral ideals of K defined by (1), (2) for the
{-th power free integral ideal aQk. Then, the ideals
B, are principal by Lemma 5.

First, let s = 1. It follows from (3) that ;252 =
€1€22(x01()€. Then, we see that 2y = €, Ay =
¢ since A;, €; are square free integral ideals and
(4, A3) = (€1, €2) = Ok. Therefore, we obtain
By = €, by (2). Hence, the ideal class C' containing
(o s trivial. Next, let s = 2. Then, it follows from
(3) that A A2 = €2€12($€2)€. From this, we see
that (2 = €2, A3 = &, and) € = Ok. Therefore,
we obtain C' = 1. |

3. Proof of Proposition 3.

Proof of (iii) = (i). Assume that hx = 1 and
that (Ok /4)* = [Ek]4. For each prime ideal £ of K
with £t 2, we can choose an integer we € Ok such
that £ = weOk and we = 1 mod 4 by the assump-
tion. Let L = K(\/a1,...,/a,) be a tame Kummer
extension with a; € Og. As L/K is tame, we may as
well assume that the integers a; are relatively prime
to 2. We can write
0= [

Lla;

with €; € Fk, eg) > 1,

where £ runs over the prime ideals of K dividing a;.
Hence, we have

LCL=K(/e Jog |1<j<r, Llar--ay).

As L/K is tame, a; = u} mod 4 for some u; € Ok by

Lemma 2. Then, it follows that €; = u? mod 4 from

the choice of we. Hence, the extension K(,/€;)/K
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is unramified (at all finite primes), and K(\/wg)/K
is tame. Therefore, these extensions have a NIB by
Proposition 2. Now, since the discriminants of these
extensions over K are relatively prime to each other,
we see that the extension Z/ K has a NIB. This is
because of a classical theorem on rings of integers in
Frohlich and Taylor [1, ITI, (2.13)]. Therefore, L/ K
has a NIB as L C L. |
Proof of (ii)=-(iii). Assume that the condi-
tion (ii) is satisfied. Then, we have hx = 1 and
(Ok/2)* = [EKk]2 by Proposition 2. Let z be an in-
teger of K relatively prime to 2. It suffices to show
that [z]4 € [Ex]s. Here, [2]4 is the class in (O /4)*
represented by z. To show [z]4 € [Ek]4, we may as
well assume that z = 1 mod 2. This is because z =
e mod 2 for some unit € € Ex as (Ox/2)* = [Ek]2.
By the Chebotarev density theorem, there exist
integers «, 3, v of K such that aOk, Ok, YOk are
prime ideals relatively prime to each other and

a=[=v=zmod4.
Then, as z = 1 mod 2, we have
(4) aff = By =~va =1mod 4.
Put

L =K(/aB, /B, vra),

and G = Gal(L/K). Then, L/K is a tame Kummer
extension by (4) and Lemma 2, and G is isomorphic
to Z /2@ Z /2. Because of the condition (ii), there ex-
ists an integer w € O, such that O = Ok [G|w. Let
xo be the trivial character of G, and let x1, X2, X3
be the characters of G whose kernels correspond to
K(/ap), K(V/Bvy), K(y/y@) by Galois theory, re-
spectively. For 0 < ¢ < 3, let (’)g) be the additive
group of integers © € Of, such that z9 = y;(g)z for
all x € G, and let

(5) wi = Z w?x:(g)

geaG

be the resolvent of w and x;. We see that w; € O
and that (’)g) = Okw; from Op = Og[Glw. As
(’)5:0) = O, we have ¢ = wy € Ex. We have /a8 €
(’)5:1), and hence /o8 = zw; for some integer = €
Ok . We see that z is a unit of K because the integral
ideal o8O0k is square free. Hence, wi = e11/af for
some unit €; € Fx. Similarly, we have wy = €21/B7
and w3z = €34/ for some units €s, €3 € Ex. From
(5), we see that

()
L >
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(eo +€1m+62m+63m) :

Let N = K(,/ya). We see that the norm Ny, /n(w)
equals

[ I e

1 { €2 — e2afB — 36y + ya
2 8

€pez — Pere
| focs 45 1€2 \/’V_O‘}
Asw € Oy, this is an integer of N. Using (4), we see

that Oy is freely generated by 1 and (1 + \/ya)/2
over Ok . Therefore, it follows from the above that

€0€3 — 2€1€9 = €g€3 — [Bereo = 0 mod 4.

Hence, we obtain [z]4 € [Ek]a. U
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