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Universality of Hecke L-functions in the Grossencharacter-aspect

By Hidehiko Mishou∗) and Shin-ya Koyama∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., May 13, 2002)

Abstract: We consider the Hecke L-function L(s, λm) of the imaginary quadratic field
Q(i) with the m-th Grossencharacter λm. We obtain the universality property of L(s, λm) as both
m and t = Im(s) go to infinity.
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1. Introduction. Voronin [V] discovered
the universality property of the Riemann zeta func-
tion in 1975, which is stated as follows:

Voronin’s theorem. Let C be a compact
subset of the strip {s = σ + iτ ∈ C | (1/2) < σ <

1} with connected complement. Let f(s) be a non-
vanishing continuous function on C which is analytic
in the interior of C. Then for any ε > 0,

lim
T→∞

µ
({

t ∈ [0, T ]
∣∣∣ sup

s∈C
|ζ(s + it) − f(s)| < ε

})
T

> 0,

where µ is the Lebesgue measure on R.
This result was extended to various zeta func-

tions. The first author proved it for Hecke L-
functions with ideal class characters [M1] and for
those with Grossencharacters [M2]. The universal-
ity properties are also generalized to various aspects
of zeta functions. Recently Nagoshi proved them
for automorphic L-functions of GL(2) in the aspect
where their weight or level of the cusp forms grows
[N1]. Nagoshi also generalized it to Maass cusp forms
for GL(2) in the aspect of the Laplace eigenvalues
[N2].

In this paper we deal with the Hecke L-functions
L(s, λm) of Q(i) with Grossencharacters λm (m ∈
Z), where λ is a fixed generator of Grossencharacters.
We consider the universality property as both τ and
m grow. More precisely our results are stated as
follows:
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Let K = Q(i), and for an ideal a = (α) ∈
K, the m-th Grossencharacter is given by λm(a) :=
(α/|α|)4m for m ∈ Z. The Hecke L-function is
defined by L(s, λm) =

∑
a λm(a)N(a)−s for σ =

Re(s) > 1.
Theorem 1.1. Let C be a compact subset in

the strip {s ∈ C | (1/2) < σ < 1}. For any func-
tion f(s) which is nonzero and continuous on C and
which is holomorphic on Int(C), and for any ε > 0,
we have

lim
T→∞

1
T 2

µ′({(t, m) ∈ [0, T ]× {0, . . . , [T ]}
∣∣(1.1)

max
s∈C

|L(s + it, λm) − f(s)| < ε
})

> 0,

where µ′ is the product measure on R × Z.
Remark 1.2. (a) It is possible to extend
Theorem 1.1 to any imaginary quadratic field K

of class number one, and to general Hecke char-
acter χλm with nontrivial narrow class character
χ.

(b) In case K is a general number field of finite de-
gree, (1.1) would be formulated as follows: Let
n = [K : Q] and λ1, . . . , λn−1 be a fixed set
of generators of Grossencharacters of K. Put
λm = λm1

1 · · ·λmn−1
n−1 for m = (m1, . . . , mn−1) ∈

Zn−1. Then under the above settings we would
have

lim
T→∞

1
Tn

µ′
({

(t, m) ∈ [0, T ]n
∣∣∣

max
s∈C

|L(s + it, λm) − f(s)| < ε
})

> 0

with µ′ the product measure on R×Zn−1. This
will be treated in the forthcoming paper [M3].

(c) In Theorem 1.1, it is unfortunate that the range
of m and t must be the same. The universal-
ity in the m-aspect with t being fixed should
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also be proved. Difficulty lies in the proof of
the mean value theorem for Dirichlet series over
OK twisted by λm. Duke proves it in [D, The-
oreom 1.1], where he takes the average over
(m, t) ∈ {0, . . . , [T ]} × [0, T ]. He conjectures
that the mean value theorem should hold in case
of (m, t) ∈ {0, . . . , M}× [0, T ]. We see from the
proof of our Theorem 1.1 that Duke’s conjecture
would imply the universality in the m-aspect.

(d) The Grossencharacter-aspect is also considered
in a different context. Petridis and Sarnak [PS]
obtain a subconvexity estimate of automorphic
L-functions L(s, φ) for a Maass cusp form φ of
SL(2, Z[i]). In order to prove it they consider
the twists with Grossencharacters and take an
average

∑∫
|L((1/2)+it, φ⊗λm)|2dt, where the

summation and the integration is taken over cer-
tain range of (m, t). Consequently they succeed
in obtaining subconvexities in the both m and t

aspects.
2. Propositions. For describing the proof of

our main result, we put for z > 0

Lz(s, λm) :=
∏

N(p)≤z

(
1 − λm(p)

N(p)s

)−1

,

where p denotes a prime ideal. Theorem 1.1 is an
immediate consequence of the following propositions:

Proposition 2.1. For any ε > 0 there exists
z0 > 0 such that for any z > z0

max
s∈C

| logL(s + it, λm) − log Lz(s + it, λm)| < ε

holds as T → ∞ for any (t, m) in a subset of [0, T ]×
{0, . . . , [T ]} with positive density which is greater
than 1 − ε.

Proposition 2.2. For any ε > 0 there exists
z1 > 0 such that for any z > z1

max
s∈C

| logLz(s + it, λm) − log f(s)| < ε

holds as T → ∞ for any (t, m) in a subset of [0, T ]×
{0, . . . , [T ]} with positive density which depends only
on ε.

Since the intersection of the sets of (t, m) in
Propositions 2.1 and 2.2 has a positive density, The-
orem 1.1 follows.

3. Proof of Proposition 2.1. Put am(n)
to be the coefficient in the Dirichlet series expan-
sion of L(s, λm) : L(s, λm) =

∑∞
n=1 am(n)n−s. We

use the following approximate functional equation of
Ramachandra type:

Lemma 3.1. For s = σ + it and x, y > 0,

xy = t2, under the conditions that σ < α < 2, 0 <

β < σ, 0 < γ < 2, we have

L(s, λm) = A +B + J1 +J2 −
W (m)
2πi

π2s−1(J3 +J4),

where |W (m)| = 1 and

A =
∑
n≤x

am(n)
ns

,

B = W (m)π2s−1 Γ(1 − s + 2m)
Γ(s + 2m)

∑
n≤y

am(n)
n1−s

,

J1 =
1

2πi

∫
(−γ)

xw Γ(1 + w
2 )

w

∑
n≤x

am(n)
ns+w

dw,

J2 =
∑
n>x

am(n)
ns

e−(n/x)2 ,

J3 =
1

2πi

∫
(β)

(π2x)w Γ(1 − s− w + 2m)
Γ(s + w + 2m)

Γ(1 + w
2 )

w

×
∑
n≤y

am(n)
n1−s−w

dw,

J4 =
1

2πi

∫
(−α)

(π2x)w Γ(1 − s− w + 2m)
Γ(s + w + 2m)

Γ(1 + w
2 )

w

×
∑
n>y

am(n)
n1−s−w

dw.

Let C1 be a compact set in {s ∈ C | (1/2) < σ <

1} such that C ⊂ C1. We will compute the integral

I =
2T∑

m=T

∫ 2T

T

∫∫
C1

∣∣∣∣ L(s + it, λm)
Lz(s + it, λm)

− 1
∣∣∣∣
2

dσ dτ dt.

By changing the order of the integration and the
sum, it follows that

I =
∫∫

C1

2T∑
m=T

∫ 2T

T

∣∣∣∣ L(s + it, λm)
Lz(s + it, λm)

− 1
∣∣∣∣
2

dt dσ dτ.

By Lemma 3.1 we have

(3.1)

2T∑
m=T

∫ 2T

T

∣∣∣∣ L(s + it, λm)
Lz(s + it, λm)

− 1
∣∣∣∣
2

dt

=
2T∑

m=T

∫ 2T

T∣∣∣∣A + B + J1 + J2 − W(m)
2πi

π2s−1(J3 + J4)
Lz(s + it, λm)

− 1
∣∣∣∣
2

dt
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2T∑

m=T

∫ 2T

T

∣∣∣∣ A

Lz(s + it, λm)
− 1
∣∣∣∣
2

dt

+
2T∑

m=T

∫ 2T

T

∣∣∣∣ B

Lz(s + it, λm)

∣∣∣∣
2

dt

+ · · ·

+
2T∑

m=T

∫ 2T

T

∣∣∣∣W (m)
2πi

π2s−1 J4

Lz(s + it, λm)

∣∣∣∣
2

dt.

We will compute each term in (3.1) which we put as
IA, IB , IJ1 , . . . , IJ4 . By putting x = T we have for
some coefficients bm(n) with |bm(n)| < nε such that

Lz(s, λm)−1
∑
n≤T

am(n)
ns

= 1 +
∑

z<n<zεT

bm(n)
ns

.

Thus

IA =
2T∑

m=T

∫ 2T

T

∣∣∣∣ A

Lz(s + it, λm)
− 1
∣∣∣∣
2

dt(3.2)

=
2T∑

m=T

∫ 2T

T

∣∣∣∣∣
∑

z<n<zεT

bm(n)
ns

∣∣∣∣∣
2

dt.

By the theorem of Montgomery-Vaughn, (3.2) is es-
timated by

T

(
T

∑
z<n<zεT

1
n2σ−ε

+
∑

z<n<zεT

1
n2σ−ε−1

)
(3.3)


 T 2(z1−2σ+ε + T 1−2σ+ε).

The contribution IB from the term B to (3.1) is com-
puted by using Stirling’s formula as

(3.4) IB 
 T 3−2σ+ε.

The third term IJ1 from J1 is dealt with by our using
the Cauchy inequality as

(3.5) IJ1 
 T 3−2σ+ε.

The remaining terms IJ2 , . . . , IJ4 are similarly esti-
mated. Taking (3.3), (3.4), (3.5) into account we
have

2T∑
m=T

∫∫
C1

∫ 2T

T

∣∣∣∣ L(s + it, λm)
Lz(s + it, λm)

− 1
∣∣∣∣
2

dt dσ dτ


C1 T 2(z1−2σ1+ε + T 1−2σ1+ε),

where σ1 = min{σ ∈ C1}. Since σ1 > (1/2), by
taking z0 as z1−2σ1+ε

0 = ε3, we have

(3.6)
1
T 2

2T∑
m=T

∫ 2T

T(∫∫
C1

∣∣∣∣ L(s + it, λm)
Lz(s + it, λm)

− 1
∣∣∣∣
2

dσ dτ

)
dt < ε3

for z > z0, T > T0(z). It follows from (3.6) that
there exists a subset AT of [0, T ]× {0, . . . , [T ]} with
positive density greater than 1 − ε such that∫∫

C1

∣∣∣∣ L(s + it, λm)
Lz(s + it, λm)

− 1
∣∣∣∣
2

dσ dτ < ε2

for any (t, m) ∈ AT . We then have

max
s∈C

∣∣∣∣ L(s + it, λm)
Lz(s + it, λm)

− 1
∣∣∣∣
C,C1 ε.

This means that

max
s∈C

|logL(s + it, λm) − log Lz(s + it, λm)| 
C,C1 ε

for (t, m) ∈ AT .

Remark 3.2. Duke’s conjecture [D] would
make it possible to deal with the variables m and
t separately.

4. Proof of Proposition 2.2.

Lemma 4.1 (Gonek [G]). Let C be a simply
connected compact set of the strip (1/2) < σ < 1. Let
h(s) be a continuous function on C which is regular
on Int(C). For any y > 0 there exist ν0 = ν0(C, h, y)
and θ

(0)
p ∈ [0, 1] such that

max
s∈C

∣∣∣∣∣∣∣∣
h(s) −

∑
y<p≤ν

p≡1 (mod 4)

e(θ(0)
p )

ps

∣∣∣∣∣∣∣∣

C y−

1
2

for any ν > ν0, where p denotes the prime numbers.

Lemma 4.2 ([KV] Theorems 8.1, 8.2). Let
an ∈ R (1 ≤ n ≤ N) be linearly independent over
Q. Then we have
(i) If we put

IA(T ) := {t ∈ [0, T ] | ({a1t}, . . . , {aN t}) ∈ A}

for any closed Jordan measurable set A ⊂ [0, 1]N

and for T > 0, where {x} = x − [x], it holds
that limT→∞(µ(IA(T ))/T ) = µN(A) with µN

the Lebesgue measure on RN .
(ii) Let Ω be a set of continuous functions on A. If

Ω is uniformly bounded and is equicontinuous,
it holds uniformly on f ∈ Ω that
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lim
T→∞

1
T

∫
IA(T )

f({a1t}, . . . , {aN t})dt

=
∫

· · ·
∫

A

f(x1, . . . , xN)dx1 · · ·dxN .

Lemma 4.3. Let p ≡ 1 (mod 4) and (p) = pp

with p a prime ideal in K. We put θp as λ(p) = eiθp.
Then {θp}p≡1 (mod 4) is linearly independent over Q.

Proof. Putting p = (a + bi) (a, b ∈ Z), we
have |α| = √

p and so λ(p) = ((a + bi)/√p)4.
Thus cos θp, sin θp ∈ Z[1/

√
p]. Assume an alge-

braic dependence as Mθp = m1θp1 + · · · + mrθpr

with M, m1, . . . , mr ∈ Z. Then in the equation
cos(Mθp) = cos(m1θp1 + · · ·+ mrθpr ), the left hand
side belongs to Z[1/

√
p], whereas the right hand side

is in Z[1/
√

p1, . . . , 1/
√

pr]. Hence it holds if and only
if cos(Mθp) ∈ Z. Therefore we have M = 0.

Proof of Proposition 2.2. We have

log Lz(s, λm) =
∑
p≤z

p≡1 (mod 4)

∞∑
k=1

2 cos(kmθp)
kps

+
∑
p≤z

p≡3 (mod 4)

∞∑
k=1

1
kp2ks

+
∞∑

k=1

1
k2ks

.

We split the sums over p ≤ z into the ones over
p ≤ y and y < p ≤ z with 0 < y < z.
We also divide the sum over 1 ≤ k < ∞ into
k = 1, 2 ≤ k < N , and k ≥ N with N =
[σ log2 y]. For partial sums we have the estimates∑

y<p≤z

∑
2≤k<N(2 cos(kmθp)/kps) 
 y1−2σ and∑

p≤y

∑
k≥N(2 cos(kmθp)/kps) 
 y2−Nσ 
 y1−2σ.

Hence

(4.1)

logLz(s + it, λm) =
∑

y<p≤z
p≡1 (mod 4)

2 cos(mθp)
ps

+ l(s + it, y, m) + O(y1−2σ),

where

(4.2)

l(s, y, m) =
∑
p≤y

p≡1 (mod 4)

∑
k≤N

2 cos(kmθp)
kpks

+
∑
p2≤y

p≡3 (mod 4)

∑
k≤N

1
kp2ks

+
∑
k≤N

1
k2ks

.

We fix sufficiently large y which satisfies y1−2σ <

ε and y−(1/2) < ε. Apply Lemma 4.1 for h(s) =

(1/2)(g(s) − l(s, y, 0)) and fix ν > ν0. Then for any
z > ν ,

| logLz(s + it, λm) − g(s)|

≤

∣∣∣∣∣∣∣∣
∑

y<p≤ν
p≡1 (mod 4)

2 cos(mθp)
ps+it

−
∑

y<p≤ν

2e(θ(0)
p )

ps

∣∣∣∣∣∣∣∣
(4.3)

+ |l(s + it, y, m) − l(s, y, 0)|(4.4)

+

∣∣∣∣∣∣∣∣
∑

ν<p≤z
p≡1 (mod 4)

2 cos(mθp)
ps+it

∣∣∣∣∣∣∣∣
+ ε.(4.5)

We first deal with (4.3). It is less than

(4.6)
∑

y<p≤ν
p≡1 (mod 4)

2
pσ

∣∣∣∣cos(mθp)
pit

− e(θ(0)
p )
∣∣∣∣

=
∑

y<p≤ν
p≡1 (mod 4)

2
pσ

∣∣∣cos(mθp)e−it log p − e(θ(0)
p )
∣∣∣ .

Hence if we take a sufficiently small δ > 0 and put

V
(1)
T = {0 ≤ m ≤ T | ‖mθp‖ < δ

(y < p ≤ ν, p ≡ 1 (mod 4))},

U
(1)
T =

{
t ∈ [0, T ] |

∥∥∥t log p

2π
− θ(0)

p

∥∥∥ < δ

(y < p ≤ ν, p ≡ 1 (mod 4))
}
,

then for any (m, t) ∈ V
(1)
T ×U

(1)
T , it holds that (4.6) <

ε. By Lemmas 4.2, 4.3, and the linear independence
over Q of {logp}, we have

(4.7) lim
T→∞

µ′(V (1)
T × U

(1)
T )

T 2
= �(V (1)) × µ(U (1))

for some V (1), U (1) ⊂ Rπ(ν)−π(y) with π(x) the num-
ber of primes not greater than x.

Next we consider (4.4). It is less than

(4.8)
∑
p≤y

p≡1 (mod 4)

∑
1≤k≤N

1
kpkσ

∣∣∣∣2 cos(kmθp)
pikt

− 2
∣∣∣∣

+
∑
p2≤y

p≡3 (mod 4)

∑
1≤k≤N

1
kp2kσ

∣∣∣∣ 1
p2ikt

− 1
∣∣∣∣

+
∑

1≤k≤N

1
2kσ

∣∣∣∣ 1
2ikt

− 1
∣∣∣∣ .
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Again we take a sufficiently small δ′ > 0 and put

V
(2)

T = {0 ≤ m ≤ T | ‖mθp‖ < δ′

(p ≤ y, p ≡ 1 (mod 4))},

U
(2)
T =

{
t ∈ [0, T ] |

∥∥∥t logp

2π

∥∥∥ < δ′(p ≤ y)
}

.

Then for any (m, t) ∈ V
(2)
T × U

(2)
T , it holds that

(4.8) < ε.
We put

VT = {0 ≤ m ≤ T |

‖mθp‖ < δ (y < p ≤ ν, p ≡ 1 (mod 4)),

‖mθp‖ < δ′ (p ≤ y, p ≡ 1 (mod 4))}

and

UT = {t ∈ [0, T ] |∥∥∥t logp

2π
− θ(0)

p

∥∥∥ < δ (y < p ≤ ν, p ≡ 1 (mod 4)),∥∥∥t logp

2π

∥∥∥ < δ′ (p ≤ y)}.

Then (4.3) and (4.4) are bounded by ε for any
(m, t) ∈ VT × UT , and we have

lim
T→∞

�VT

T
= vol(V ) = (2δ)

π(ν)−π(y)
2 (2δ′)

π(y)
2

lim
T→∞

µ(UT )
T

= vol(U) = (2δ)π(ν)−π(y)(2δ′)π(y),

where U and V are subsets of [0, 1]π(ν). Here we
have proved that (4.3) and (4.4) are less than ε for
any (m, t) in a set with positive density.

Lastly we can check that (4.5) is less than ε for
almost all (m, t) ∈ UT ×VT . This completes the proof
of the theorem.
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