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Universality of Hecke L-functions in the Grossencharacter-aspect

By Hidehiko MisHou*) and Shin-ya KOyAMa**)
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Abstract:

We consider the Hecke L-function L(s, A™) of the imaginary quadratic field

Q(i) with the m-th Grossencharacter A™. We obtain the universality property of L(s, A™) as both

m and ¢t = Im(s) go to infinity.
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1. Introduction. Voronin [V] discovered
the universality property of the Riemann zeta func-
tion in 1975, which is stated as follows:

Voronin’s theorem. Let C' be a compact
subset of the strip {s =c+ir € C | (1/2) <o <
1} with connected complement. Let f(s) be a non-
vanishing continuous function on C' which is analytic

in the interior of C'. Then for any ¢ > 0,

u({t €10, 7]
lim

T—o0 T

sup|G(s +it) — f(s)] <<} )

seC

>0,

where p is the Lebesgue measure on R.

This result was extended to various zeta func-
tions. The first author proved it for Hecke L-
functions with ideal class characters [M1] and for
those with Grossencharacters [M2]. The universal-
ity properties are also generalized to various aspects
of zeta functions. Recently Nagoshi proved them
for automorphic L-functions of GL(2) in the aspect
where their weight or level of the cusp forms grows
[N1]. Nagoshi also generalized it to Maass cusp forms
for GL(2) in the aspect of the Laplace eigenvalues
[N2].

In this paper we deal with the Hecke L-functions
L(s,A™) of Q(i) with Grossencharacters A™ (m €
Z), where ) is a fixed generator of Grossencharacters.
We consider the universality property as both 7 and
m grow. More precisely our results are stated as
follows:
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Let K = Q(i), and for an ideal a = («a) €
K, the m-th Grossencharacter is given by A™(a) :=
(a/laf)¥™ for m € Z. The Hecke L-function is
defined by L(s,\™) = > A"(a)N(a)~® for ¢ =
Re(s) > 1.

Theorem 1.1. Let C be a compact subset in
the strip {s € C | (1/2) < ¢ < 1}. For any func-
tion f(s) which is nonzero and continuous on C and
which is holomorphic on Int(C), and for any € > 0,
we have
(1.1) lim %u'({(t,m) € (0,7 % {0,.... [T} |

T—o00

r;1eag<|L(s +it, A™) — f(s)] <e}) >0,

where p' is the product measure on R x Z.
Remark 1.2. (a) It is possible to extend
Theorem 1.1 to any imaginary quadratic field K
of class number one, and to general Hecke char-
acter YA with nontrivial narrow class character
X-

(b) In case K is a general number field of finite de-
gree, (1.1) would be formulated as follows: Let
n=[K:Q]and A\j,...,A\p,_1 be a fixed set
of generators of Grossencharacters of K. Put

AT = NP AT for mo= (Mg, .., Mym1) €
Z"~1. Then under the above settings we would
have

tim e ({(0.m) € [0.77"

T—o0

max |L(s +it, \"") — f(s)] < 5}) >0
seC
with i’ the product measure on R x Z"~!. This
will be treated in the forthcoming paper [M3].
(¢) In Theorem 1.1, it is unfortunate that the range
of m and ¢t must be the same. The universal-
ity in the m-aspect with ¢ being fixed should
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also be proved. Difficulty lies in the proof of
the mean value theorem for Dirichlet series over
O twisted by A™. Duke proves it in [D, The-
oreom 1.1], where he takes the average over
(m,t) € {0,...,[T]} x [0,T]. He conjectures
that the mean value theorem should hold in case
of (m,t) € {0,..., M} x [0,T]. We see from the
proof of our Theorem 1.1 that Duke’s conjecture
would imply the universality in the m-aspect.
(d) The Grossencharacter-aspect is also considered
in a different context. Petridis and Sarnak [PS]
obtain a subconvexity estimate of automorphic
L-functions L(s, ¢) for a Maass cusp form ¢ of
SL(2, Z[i]). In order to prove it they consider
the twists with Grossencharacters and take an
average y_ [|L((1/2)~+it, p@A™)|dt, where the
summation and the integration is taken over cer-
tain range of (m,t). Consequently they succeed
in obtaining subconvexities in the both m and ¢
aspects.
2. Propositions.
our main result, we put for z > 0

e I (-)

N(p)<z

For describing the proof of

where p denotes a prime ideal. Theorem 1.1 is an
immediate consequence of the following propositions:
Proposition 2.1. For any € > 0 there exists

zo > 0 such that for any z > 2

max |log L(s +it, \™) —log L.(s + it, \™")| < &
se

holds as T — oo for any (t,m) in a subset of [0,T] x
{0,...,[T)} with positive density which is greater
than 1 — €.

Proposition 2.2. For any € > 0 there exists
z1 > 0 such that for any z > z;

max |[log L.(s + it, A\™) — log f(s)] < &
se

holds as T — oo for any (t,m) in a subset of [0, T] x
{0,...,[T)} with positive density which depends only
on €.

Since the intersection of the sets of (¢,m) in
Propositions 2.1 and 2.2 has a positive density, The-
orem 1.1 follows.

3. Proof of Proposition 2.1. Put a,(n)
to be the coefficient in the Dirichlet series expan-
sion of L(s, \™): L(s,A™) = >0° | am(n)n=%. We
use the following approximate functional equation of
Ramachandra type:

[Vol. 78(A),

Lemma 3.1. For s = o + it and xz,y > 0,
xy = t2, under the conditions that 0 < a < 2, 0 <
0 <o, 0<7v<2, we have

w ,
L(s, ™) =A+B+J, +Jy — ﬂw%—l(h +J4),

2
where |W(m) | =1 and
A=y ot
n<x
B W(m)ﬂQé_lF(l —s+2m) Z am(n)
['(s+ 2m) = nl=s’
1 (1 + am(n
g i) Dk o
™ (=v) w n<w n
a
B 3 et
oo b s wl(l—s—w+2m)T(1+3)
° 7 omi ) I'(s+w+ 2m) w
am(n)
X Z nl-—s—w dw’
n<y
1 I'l—s— 2m) (1 + %
J4:—' (7T2$)w ( S w + m) ( +2)
2mi J(—a) (s 4w+ 2m) w
am(n)
x Z nl—s—w dw
n>y

Let Cy be a compact set in {s € C | (1/2) <o <
1} such that C' C Cy. We will compute the integral

=3 LR

By changing the order of the integration and the
sum, it follows that

LS

By Lemma 3.1 we have

2

Lls 4t A") do dr dt.

-1
2(s 4+ it, Am)

2

Lls it A") 1 4o dr

-1
2 (s + it L. (s +it, \™)

(3.1)
> [
=/

A+ B+ Jy+Jo = Bmp2s-1( 13 4 gy) |2
—1| dt
L.(s+it,\™)

2

L(s +it, \™) it

-1
2(s 4 it, Am)
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2T 27T 2

A
——— —1| dt
<3 | lmeree
2T .o 2
B
—| dt
+3 [ e

2
dt.

+ if: /2T W(m)ﬂ25—1 Jy
2mi L.(s+it,\™)

m=T T

We will compute each term in (3.1) which we put as

Ia, Ip, 1y,,...,1;,. By putting x = T we have for
some coefficients by, (n) with |b,,(n)| < n® such that
my—1 am(n) _
n<T z<n<zsT
Thus
2
3.2 Iy = - dt
(82) la= Z / (s + it, ’™)
2
z/ el
z<n<z5T

By the theorem of Montgomery-Vaughn, (3.2) is es-
timated by

(3.3) T(T 3 #Jr > #)

z<n<zT z<n<zeT

< T2(21—20+e + T1—20'+E).

The contribution I from the term B to (3.1) is com-
puted by using Stirling’s formula as

(3.4) Ip < T3727%,

The third term I, from Jp is dealt with by our using
the Cauchy inequality as

(3.5) I;, < T37%0Fe,

The remaining terms Ij,,..., I , are similarly esti-
mated. Taking (3.3), (3.4), (3.5) into account we
have

S

where 01 = min{o € Ci}. Since o1 > (1/2), by

: 1-201+e _ _3
taking zp as 2 =

2

L+t A" 4 dodr

(s +it, Am)

<o T2(21—20'1+€+T1—20'1+6)
1 b

, we have
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L(s+it,A™)

-1
2 (s 4+ it, L. (s +it, \'™)

2
do d7'> dt < &3

(.

for z > z9, T > Tp(z). It follows from (3.6) that
there exists a subset Ap of [0,T] x {0, ..., [T]} with
positive density greater than 1 — ¢ such that

N

for any (t,m) € Ap. We then have

2

Lis +1t, )\m) do dr < &2

-1
2(s 4 it, Am)

L(s+it, A™)
L.(s+it,Am)

max
seC

— 1‘ <Lc,0q €

This means that

max [log L(s + it, \™) —log L.(s +1it, \"")| <c¢,cy €

se

for (t,m) € Ar.
Remark 3.2.

make it possible to deal with the variables m and

t separately.

Duke’s conjecture [D] would

4. Proof of Proposition 2.2.

Lemma 4.1 (Gonek [G]). Let C be a simply
connected compact set of the strip (1/2) < o < 1. Let
h(s) be a continuous function on C which is regular
onInt(C). For any y > 0 there exist vy = vo(C, h,y)
and 9,(;0) € [0,1] such that

h(s) > ;") <oy ?
max |h(s) —
seC ps ¢
y<p<v
p=1 (mod 4)

for any v > vy, where p denotes the prime numbers.

Lemma 4.2 ([KV] Theorems 8.1, 8.2). Let
an € R (1 < n < N) be linearly independent over
Q. Then we have

(i) If we put
IA(T) :=={t € [0,T]] ({ast}, ...,

for any closed Jordan measurable set A C [0, 1]V
and for T > 0, where {x} = x — [z], it holds
that limy oo (u(Ia(T))/T) = un(A) with un
the Lebesgue measure on RN

(ii) Let Q be a set of continuous functions on A. If
Q is uniformly bounded and is equicontinuous,
it holds uniformly on f € Q that

{ant}) € A}



66 H. MisHou and S. KOyAMA

. 1
Th—{go?/l o f{ait}, ..., {ant})dt

rn)dxy - day.

Lemma 4.3. Let p=1 (mod 4) and (p) = pp
with p a prime ideal in K. We put 0, as \(p) = %
Then {0p}p=1 (mod 4 i linearly independent over Q.

Proof. Putting p = (a + bi) (a,b € Z), we
have |of = /p and so A(p) = ((a + bi)//P)*
Thus cosb,, sinf, € Z[1/\/p]. Assume an alge-
braic dependence as M6, = mi0,, + - -+ m;0,,
with M,mq,...,m, € Z. Then in the equation
cos(M6,) = cos(m10,, + - - -+ m;0,,.), the left hand
side belongs to Z[1/,/p], whereas the right hand side
isin Z[1/\/p1,...,1//pr]. Hence it holds if and only
if cos(M6,) € Z. Therefore we have M = 0. U

Proof of Proposition 2.2. We have

Z Z 2cos km8,)

p<
p=1 (mod 4)

+ Z Z kp2ks + Z k2ks

p=3 (mod 4)

log L,(s, ™) =

We split the sums over p < z into the ones over
p < yand y < p < z with 0 < y < =z
We also divide the sum over 1 < k < oo into
k=1, 2 < k < N, and £ > N with N =
[olog, y]. For partial sums we have the estimates
Doy<p<z 2ua<ken(2cos(kmly)/kp®) < y'=29 and

Yooy Lrsn(2cos(kmby) /kp*) < y27 N7 <yt
Hence

(4.1)

2

y<p<z 4
p=1 (mod 4)
+ (s +it,y,m) + O(y*~%9),
where
(4.2)
(s, m) — Z Z 2cos kzm@

Py k<N
p=1 (mod 4)

+ Z Z kp2ks Z k2ks

p?<y k<N k<N
p= 3 (mod 4)

We fix sufficiently large y which satisfies y'=27 <
e and y~1/2) < ¢, Apply Lemma 4.1 for h(s) =

[Vol. 78(A),

(1/2)(9(s)

zZ >V,

|log L= (s +it, A™) — g(s)|

—1(s,9,0)) and fix v > vy. Then for any

2 cos(mbp) 2@(9,(;0) )
(43) < Z pstit Z ps
y<pv y<pv
p=1 (mod 4)
2 cos(mbp)
(4.5) + Z W +e.
v<p<lz
p=1 (mod 4)
We first deal with (4.3). Tt is less than
2 | cos(mb,)
(4.6) Y. Sl @(91(;0))‘
y<pv b b
p=1 (mod 4)
2 .
= Z — ‘cos(mep)e_” logp _ 6(9;5;0))‘ .

y<p<v
p=1 (mod 4)

Hence if we take a sufficiently small § > 0 and put
VY ={0<m <T||mb,| <6

(y<p<v,p=1

1
ulh = {te [0, 7] |Ht osp 9<0>H <6

(mod 4))},

(y<p<v,p=1 (mod 4))},

then for any (m, t) € VA" x UL, it holds that (4.6) <
€. By Lemmas 4.2, 4.3, and the linear independence
over Q of {logp}, we have

1 1
(47)  lim p (Vs < Uy)
O T T

for some V), UMW ¢ R™) =) with 7(z) the num-
ber of primes not greater than x.
Next we consider (4.4). It is less than

=4V x u(U®)

2005(km9 )

WYY oee

1<k<N

p=1 (mod 4)
D SRS D17 e
P2<y 1<k<N
p=3 (mod 4)
1
+ D o %_1"
1<k<N
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Again we take a sufficiently small §' > 0 and put
Vi ={0<m < T | [mby| <&
<y p=1

1
v = {tep.1)| |2 <o'w <v)}.
Then for any (m,t) € VT(Q) X U;Q), it holds that
(4.8) <e.

We put

(mod 4))},

[mbpl| <d (y<p<v,p=1 (mod4)),
Imby <& (p<y, p=1 (mod 4))}
and

Ur={tel0,T]]

I
Htﬂ — G(O)H <d(y<p<v, p=1 (mod4)),
2m P
I
Ht@H <& (p <y}
2

Then (4.3) and (4.4) are bounded by e for any
(m,t) € Vp x Ur, and we have

1% (1) =7 (y) ()

lim TT =vol(V) = (28)" = (20)
lim @ — vol(U) = (20)7¥)=7) (267)7(w),
where U and V are subsets of [0,1]*). Here we

have proved that (4.3) and (4.4) are less than e for
any (m,t) in a set with positive density.
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Lastly we can check that (4.5) is less than ¢ for
almost all (m, t) € Ur x V. This completes the proof
of the theorem. I
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