A proof of an order preserving inequality

By Takayuki Furuta

Department of Applied Mathematics, Science University of Tokyo, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601
(Communicated by Shokichi Iyanaga, m. J. a., Feb. 12, 2002)

Abstract: Simplified proof of an order preserving operator inequality is given.
Key word: Order preserving inequality.

A capital letter means a bounded linear operator on a Hilbert space. Löwner-Heinz inequality asserts:
(*) $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$.
We obtain the following result in [1].
Theorem A. If $A \geq B>0$, then for each $t \in[0,1]$ and $p \geq 1$

holds for $r \geq t$ and $s \geq 1$.
M. Uchiyama [3] shows the following interesting extension of Theorem A.

Theorem B. If $A \geq B \geq C>0$, then for each $t \in[0,1]$ and $p \geq 1$
(2) $A^{1+r-t} \geq\left\{A^{\frac{r}{2}}\left(B^{\frac{-t}{2}} C^{p} B^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1+r-t}{(p-t) s+r}}$
holds for $r \geq t$ and $s \geq 1$.
Here we show a simplified proof of Theorem B by using Theorem A itself. We need the following result which is Lemma 1 in [1].

Lemma. Let $X>0$ and Y be invertible. For any real number λ

$$
\left(Y X Y^{*}\right)^{\lambda}=Y X^{\frac{1}{2}}\left(X^{\frac{1}{2}} Y^{*} Y X^{\frac{1}{2}}\right)^{\lambda-1} X^{\frac{1}{2}} Y^{*} .
$$

Proof of Theorem B. Put $Y=A^{\frac{t}{2}} B^{\frac{-t}{2}}$. As $A^{t} \geq B^{t}$ by $(*)$ since $t \in[0,1]$, we have by the hypotheses

$$
Y^{*} Y=B^{\frac{-t}{2}} A^{t} B^{\frac{-t}{2}} \geq I \quad \text { and }
$$

$$
\begin{equation*}
\lambda=\frac{1}{(p-t) s+t} \in[0,1] . \tag{3}
\end{equation*}
$$

Put $D=B^{\frac{t}{2}}\left(B^{\frac{-t}{2}} C^{p} B^{\frac{-t}{2}}\right)^{s} B^{\frac{t}{2}}$. As $B \geq C>0$, we have by Theorem A for $r=t$

$$
\begin{equation*}
B \geq D^{\lambda} \tag{4}
\end{equation*}
$$

2000 Mathematics Subject Classification. 47A63.
Dedicated to Professor Masanori Fukamiya on his 90th birthday with respect and affection.

Then we have

$$
\begin{aligned}
B_{1} & =\left\{A^{\frac{t}{2}}\left(B^{\frac{-t}{2}} C^{p} B^{\frac{-t}{2}}\right)^{s} A^{\frac{t}{2}}\right\}^{\frac{1}{(p-t) s+t}} \\
& =\left(A^{\frac{t}{2}} B^{\frac{-t}{2}} D B^{\frac{-t}{2}} A^{\frac{t}{2}}\right)^{\lambda} \\
& =Y D^{\frac{1}{2}}\left(D^{\frac{1}{2}} Y^{*} Y D^{\frac{1}{2}}\right)^{\lambda-1} D^{\frac{1}{2}} Y^{*} \text { by Lemma } \\
& \leq Y D^{\frac{1}{2}} D^{\lambda-1} D^{\frac{1}{2}} Y^{*} \\
& =Y D^{\lambda} Y^{*} \\
& \leq A^{\frac{t}{2}} B^{\frac{-t}{2}} B B^{\frac{-t}{2}} A^{\frac{t}{2}} \text { by }(4) \\
& =A^{\frac{t}{2}} B^{1-t} A^{\frac{t}{2}} \\
& \leq A^{\frac{t}{2}} A^{1-t} A^{\frac{t}{2}}=A \text { since } A^{1-t} \geq B^{1-t} \text { by }(*)
\end{aligned}
$$

because the first inequality follows by (3) and (*) since $1-\lambda \in[0,1]$, finally taking inverses of both sides since $\lambda-1 \in[-1,0]$. Whence $A \geq B_{1}>0$ holds, so that we obtain $A^{1+r_{1}} \geq\left(A^{\frac{r_{1}}{2}} B_{1}^{p_{1}} A^{\frac{r_{1}}{2}}\right)^{\frac{1+r_{1}}{p_{1}+r_{1}}}$ for $p_{1} \geq 1$ and $r_{1} \geq 0$ by Theorem A for $t=0$ and $s=1$. We have only to put $r_{1}=r-t \geq 0$ and $p_{1}=(p-t) s+t \geq 1$ to obtain (2).

We remark that although there are many proofs of Theorem A, we cite one-page proof in [2, p. 133] and a proof of Theorem B in this paper is given along this one-page proof.

Acknowledgements. We would like to express our cordial thanks to Professor M. Uchiyama for sending his nice paper [3] before its publication.

References

[1] Furuta, T.: Extension of the Furuta inequality and Ando-Hiai log majorization. Linear Algebra and Its Appl., 219, 139-155 (1995).
[2] Furuta, T.: Invitation to Linear Operators. Taylor \& Francis, London (2001).
[3] Uchiyama, M.: Criteria for monotonicity of operator means. J. Math. Soc. Japan. (To appear).

