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A new conjecture concerning the Diophantine equation x2? 4 b¥ = ¢*

By Zhenfu Ca0,* Xiaolei DoNG,**) and Zhong L1***

(Communicated by Shigefumi MORI, M. J. A., Dec. 12, 2002)

Abstract:

In this paper, using a recent result of Bilu, Hanrot and Voutier on primitive

divisors, we prove that if a = |V;|, b = |U,|, c = m?+ 1, and b =3 (mod 4) is a prime power, then
the Diophantine equation 22 + b¥ = ¢* has only the positive integer solution (z,y,2) = (a,2,7),
where r > 1 is an odd integer, m € N with 2 | m and the integers U,., V, satisfy (m + v/—1)" =

V;“ +Ur\/ —1.
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1. Introduction. Let Z, N, P and Q be the
sets of integers, positive integers, odd primes and
rational numbers respectively, and PN = {p" | p €
P and n € N}. In 1993, N. Terai [13] conjectured
that if (a, b, ¢) be a primitive Pythagorean triple such
that

a>+ v =c* a,bceN, ged(a,b,c)=1, 2]a,
then the Diophantine equation

22+ =, z,y,2€N

has the only solution (z,vy, z) = (a,2,2). He proved
that if b, c € P such that (i) b*+1 = 2¢, (ii)d=1or
evenifb =1 (mod 4), where d is the order of a prime
divisor of [¢] in the ideal class group of Q(v/—b), then
his conjecture holds. Later, some further results on
Terai’s conjecture were published in [8], [2, 3], [15],
[5] and [6].

As an analogue of Terai’s conjecture, the follow-
ing new conjecture is considered in [4]:

Conjecture. If a,b,c,p,q,r € N are fized,
and

(1) a? + b7 =¢c", min(a,b,c,p,q,1)> 2,
ged(a,b) =1, 2] a,
then the Diophantine equation

(2) P+ =c* x,y,2z€N
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has only the solution (z,y,z) = (a,q,r) with y,z >
1.

However, the condition y,z > 1 of the conjec-
ture is neglected in [4]. We point out that there are
some counterexamples if no condition y,z > 1 in
the conjecture. For example, let ¢ = 7 4+ 4v/3 and
Z = 7 — 4y/3. For any positive integer n, let u,, =
(e" +8")/2, v, = (" —E")/(2V/3). Clearly, u,, and
v, are positive integers satisfying

(3) u? — 302 =1,
Let

2 | vp.

(4)  a=8u +3v,, b=wu,, c=u+1v2,

p=2, q=2, r=3.

By (3) and (4), we get
¢’ = (up +v;)° = (40 +1)°

= 64v)) + 48v;, + 1202 + 1

= (803 +3v,)% + 302 +1

= (802 +3v,)? +u? = a® + b2
Therefore, the positive integers a, b, ¢, p, ¢, 7 in
(4) satisfy (1), but equation (2) has two solutions
(,9,2) = (vn,2,1) and (a,2,3).

It seems that the proof of this conjecture is very
difficult. For the case p = ¢ = 2, 2t r > 1, it is
proved [4] that if a = |V,|, b = |U,|, ¢ = m? + 1,
be Pand b > 8-10° b = 3 (mod 4), then the
Diophantine equation

(5) 22+ =, z,y,2€N

has only the solution (x,y, 2) = (a,2,7), where m €
N with 2 | m and the integers U,., V,. satisfy (m +

V-1 =V 4+ UL
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In this paper, using a recent result of Bilu, Han-
rot and Voutier [1] on primitive divisors, we prove
the following result.

Theorem. Let r,m e N with2{r >1,2|m.
Define the integers U, V,. by (m + /=1)" =V, +
Uv—1. Ifa= |V, b=|U],c=m?>+1,b=3
(mod 4), and b € PN, then equation (5) has only
the solution (z,y,z) = (a,2,r).

From the theorem, we have

Corollary. If m € N such that m > 1 and
3m2 — 1 € PN, then the Diophantine equation

22+ (Bm? - 1)Y= (m?+1)*, z,y,2€N

has only the solution (z,y, z) = (m3 — 3m, 2, 3).

2. Preliminaries. A Lucas pair (resp. a
Lehmer pair) is a pair (a,3) of algebraic integers
such that o+ 3 and af (resp. (o + 3)? and a3) are
non-zero coprime rational integers and «/f3 is not a
root of unity. For a given Lucas pair (a, 3), one de-
fines the corresponding sequence of Lucas numbers
by

a” — ﬁn
Un = un(av, B) = R
For a given Lehmer pair (a, ), one defines the cor-
responding sequence of Lehmer numbers by
a” — ﬁn

a—p
a” — ﬁn
a? — 32

It is clear that every Lucas pair (a, 3) is also a
Lehmer pair, and

(n=0,1,2,...).

if n is odd,

Up = Un (v, f) =
if m is even.

if m is odd,

it
Up = ~
(a+ B)uy, if nis even.

Let (o, 8) be a Lucas (resp. Lehmer) pair. The
prime number p is a primitive divisor of the Lucas
(resp. Lehmer) number u, (o, 8) (resp. un (e, 3)) if p
divides u,, but does not divide (a — 5)2u1 Ce o Up—q
(resp. if p divides u, but does not divide (a? —
%)%y -+ Up—1). The following lemmas are classi-
cal.

Lemma 1. Let («,8) be a Lucas (resp.
Lehmer) pair. If the prime number p is a primitive
divisor of the Lucas (resp. Lehmer) number u,(c, )
(resp. Un(a, B)), then n = £1 (mod p).

Lemma 2. If uy, # 1, then upy, | uy iff m | n.

Proof. For example, see W. L. McDaniel [11].

[Vol. 78(A),

Recently, Y. Bilu, G. Hanrot and P. Voutier [1]
proved the following

Lemma 3. For any integer n > 30, every n-
th term of any Lucas or Lehmer sequence has a prim-
itive divisor.

A Lucas (resp. Lehmer) pair (a, 3) such that
Uun(a, B) (resp. Un(a, 3)) has no primitive divisors
will be called n-defective Lucas (resp. Lehmer) pair.
Two Lucas pairs (ag, 1) and (ag,32) are equiva-
lent if (a1 /a2) = (61/52) = £1. Two Lehmer pairs
(a1, 1) and (ag, B2) are equivalent if

a1 B

o~ B © {1, +V/-1}.

In 1995, P. Voutier [14] proved the following

Let n satisfy 4 <n < 30 and n #
6. Then, up to equivalence, all n-defective Lucas
pairs are of form ((a — v/b)/2, (a + Vb)/2), where
(a,b) are given in Table 1 of [1].

Let n satisfy 6 < n < 30 and n ¢ {8,10,12}.
Then, up to equivalence, all n-defective Lehmer pairs
are of form ((/a—/b)/2, (v/a++/b)/2), where (a,b)
are given in Table 2 of [1].

In [1], for any positive integer n < 30, all Lucas
sequences and all Lehmer sequences whose n-th term

Lemma 4.

has no primitive divisor are explicitely determined.
i.e., Y. Bilu, G. Hanrot and P. Voutier [1] proved also
the following

Lemma 5. Any Lucas pair is 1-defective, and
any Lehmer pair is 1-and 2-defective.

For n € {2,3,4,6}, all (up to equivalence) n-
defective Lucas pairs are of form ((a — v/b)/2, (a +
Vb)/2), where (a,b) are given in Table 3 of [1].

For n € {3,4,5,6,8,10,12}, all (up to equiva-
lence) n-defective Lehmer pairs are of form ((v/a —
Vb)/2, (va + Vb)/2), where (a,b) are given in Ta-
ble 4 of [1].

We will use the following Lemmas to prove the
theorem.

Lemma 6. Let r,m € N with 2tr > 1, 2|
m. Define the integers U,, V,. by (m—i—\/—_l)’“ =V.+
UN—-1. Ifa=|V.|,b=|Ul,c=m>+1,0b0=
3 (mod 4), and b € PN, then equation (5) has no
solution (x,y, z) with 2| z.

Proof. See the proof of Theorem in [4]. U

Lemma 7. If 247 and r > 1, then all solu-
tions (X,Y, Z) of the equation

X 4Yi=27", XY, Z€Z, gd(X,Y)=1
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are given by

X +YV-1T=MX1+XY1V-1), Z=X]+Y?,
where

A € {-1,1}, X1,Y1 €N and ged(Xy1,Y1) =1.

Lemma 7 follows directly from a theorem in the
book of Mordell [12] pp. 122-123.

Lemma 8. The Diophantine equation

2—XA=y", n>1, A==l

has only solution in positive integers r = 3, y = 2,
n=3 A=1.

It follows from [7, 9] that the only solution of
the equation 72 — 1 = y" (n > 1) in positive integers
is (z,y,n) = (3,2,3), the equation 2% +1 = y" (n >
1) has no solutions in positive integers, respectively.
Hence Lemma 8 holds.

3. Proof of Theorem. Sinceb=3 (mod 4)
and ¢ =1 (mod 4), we have from (5) that 2 | z and
so 3¥ = 1 (mod 4), that is, 2|y. Hence, we can
assume that y = 2y1, y1 € N and 21 z by Lemma 6.
Furthermore, since b € PN, we have

R GO

and so

(e
+ (—1)r=3/2) (T i 2>> 4 (1)
(; . (3) s

_per=sy T 1
+ r—2

>m2—1=c—2

- )

> m?

that is, b > ¢ — 2. It follows that z > 1 by equation
(5). So, we also can assume that p | z, p € P. Hence,
(5) gives that

(6) 2?4+ = (P, x,; €N, peP.

Clearly, ged(b, ¢) = ged(z,b) = 1. By Lemma 7, we
have from (6) that

(7) T+ bV =1 =\ (X + Y V-1),
cz/p :X2 +Y2,

where A1, A2 € {—1,1}, X, Y € N and ged(X,Y) =
1. Tt follows from (7) that
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aP — 3P

(g (e
L (1)E-1/2) <p> Yp—1>,
p

where a = X+ XY V/—1, 8 = X—\Y/—1. Clearly,
(8) gives

p_ (3
R ST
since ged(X,Y) = 1.

If Y = 1, then from the last equality of (7) and
Lemma 8, we obtain z = p, X = m and so |U,|¥* =
|Uy| by (8). By Lemma 2, we have r = p and so
y1 = 1, z = r, that is, the theorem holds.

IfY > 1, since b € PN and

(8) b¥' = MAY

Hap_gp £ pl af — (3P
1 )
Pa=s TP a =
we see from (8) and (9) that
p_gp
(10) aa — g =1 or p.

Clearly, (a? — P)/(a — B) is p-th term of Lucas se-

quence. And from (10) and Lemma 1, we have that

(a? — BP)/(a — B) has no primitive divisor. Hence,

using Lemmas 3-5 and Tables 1 and 3 in [1], and

note that p € P, we get the following 4 cases:
Casel: p=>5and

(2X, —4Y?) € {(1,5), (1, =7), (2, —40), (1, —11),
(1,-15), (12, —76), (12, —1364)}.

But this is impossible since Y € N.
Case II: p=7and

(2X, —4Y?) € {(1,-7),(1,—19)}.

Clearly, this also is impossible.

Case III: p = 13 and (2X,-4Y?) =
which is impossible.

Case IV: p=3, (2X,—-4Y?) = (u, —3u? + 4)),
u>1or (u,—3u®+4x-3Y, 3 1 u, (lLu) # (1,2),
where A € {—1,1}, [,u € N.

If (2X,-4Y?) = (u,—3u? + 4)\), u > 1, then
Y2 =3X? — X and from the last equality of (7), we
obtain 4X? — X\ = ¢*/3. Tt follows by Lemma 8 that
z = 3. Notice that ¢ = m? + 1. We have A = —1,
m = 2X and

(L _7)

(11) Y2 -3X?=1.
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By p = 3 and (11), we obtain (a? — P)/(a — f3) =
—1. So, we get from (8) that Y = b¥'. However,
from b > ¢ — 2 and the last equality of (7), we can
obtainc = X24+Y2>1+0>>1+(c—2)?>c a
contradiction.

If (2X, —4Y?) = (u, —3u?+4X-31), 3t u, (I, u) #
(1,2), then

(12) Y?=3X%-)-3
and so
(13)  (a? — BP)/(a — B) = X - 3! (note that p = 3).

From (8) and (13), we get Y = 3f, t € N and [ =1
since 3||(a® — 3%)/(a — B). Substituting { = 1 and
Y = 3%into (12), we have 3% =1 = X2— X and so X =
2, Y = 3. Substituting these into the last equality
of (7), we have 13 = ¢*/3 which is impossible since
c=m?+1.

This proves Theorem.
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