A new conjecture concerning the Diophantine equation $x^2 + b^y = c^z$

By Zhenfu Cao,* Xiaolei Dong,* and Zhong Li*** (Communicated by Shigefumi Mori, M. J. A., Dec. 12, 2002)

Abstract: In this paper, using a recent result of Bilu, Hanrot and Voutier on primitive divisors, we prove that if $a=|V_r|,\ b=|U_r|,\ c=m^2+1,$ and $b\equiv 3\pmod 4$ is a prime power, then the Diophantine equation $x^2+b^y=c^z$ has only the positive integer solution (x,y,z)=(a,2,r), where r>1 is an odd integer, $m\in {\bf N}$ with $2\mid m$ and the integers $U_r,\ V_r$ satisfy $(m+\sqrt{-1})^r=V_r+U_r\sqrt{-1}$.

Key words: Exponential Diophantine equation; Lucas sequence; primitive divisor; Gauss integer.

1. Introduction. Let \mathbf{Z} , \mathbf{N} , \mathbf{P} and \mathbf{Q} be the sets of integers, positive integers, odd primes and rational numbers respectively, and $\mathbf{P}^{\mathbf{N}} = \{p^n \mid p \in \mathbf{P} \text{ and } n \in \mathbf{N}\}$. In 1993, N. Terai [13] conjectured that if (a,b,c) be a primitive Pythagorean triple such that

$$a^{2} + b^{2} = c^{2}$$
, $a, b, c \in \mathbb{N}$, $gcd(a, b, c) = 1, 2 \mid a$,

then the Diophantine equation

$$x^2 + b^y = c^z, \quad x, y, z \in \mathbf{N}$$

has the only solution (x, y, z) = (a, 2, 2). He proved that if $b, c \in \mathbf{P}$ such that (i) $b^2 + 1 = 2c$, (ii) d = 1 or even if $b \equiv 1 \pmod{4}$, where d is the order of a prime divisor of [c] in the ideal class group of $\mathbf{Q}(\sqrt{-b})$, then his conjecture holds. Later, some further results on Terai's conjecture were published in [8], [2, 3], [15], [5] and [6].

As an analogue of Terai's conjecture, the following new conjecture is considered in [4]:

Conjecture. If $a,b,c,p,q,r \in \mathbf{N}$ are fixed, and

(1)
$$a^p + b^q = c^r$$
, $\min(a, b, c, p, q, r) \ge 2$, $\gcd(a, b) = 1, 2 \mid a$,

then the Diophantine equation

(2)
$$x^p + b^y = c^z, \quad x, y, z \in \mathbf{N}$$

has only the solution (x, y, z) = (a, q, r) with y, z > 1

However, the condition y, z > 1 of the conjecture is neglected in [4]. We point out that there are some counterexamples if no condition y, z > 1 in the conjecture. For example, let $\varepsilon = 7 + 4\sqrt{3}$ and $\overline{\varepsilon} = 7 - 4\sqrt{3}$. For any positive integer n, let $u_n = (\varepsilon^n + \overline{\varepsilon}^n)/2$, $v_n = (\varepsilon^n - \overline{\varepsilon}^n)/(2\sqrt{3})$. Clearly, u_n and v_n are positive integers satisfying

(3)
$$u_n^2 - 3v_n^2 = 1, \quad 2 \mid v_n.$$

Let

(4)
$$a = 8u_n^3 + 3v_n$$
, $b = u_n$, $c = u_n^2 + v_n^2$, $p = 2$, $q = 2$, $r = 3$.

By (3) and (4), we get

$$c^{3} = (u_{n}^{2} + v_{n}^{2})^{3} = (4v_{n}^{2} + 1)^{3}$$

$$= 64v_{n}^{6} + 48v_{n}^{4} + 12v_{n}^{2} + 1$$

$$= (8v_{n}^{3} + 3v_{n})^{2} + 3v_{n}^{2} + 1$$

$$= (8v_{n}^{3} + 3v_{n})^{2} + u_{n}^{2} = a^{2} + b^{2}.$$

Therefore, the positive integers a, b, c, p, q, r in (4) satisfy (1), but equation (2) has two solutions $(x, y, z) = (v_n, 2, 1)$ and (a, 2, 3).

It seems that the proof of this conjecture is very difficult. For the case $p=q=2,\ 2\nmid r>1$, it is proved [4] that if $a=|V_r|,\ b=|U_r|,\ c=m^2+1,\ b\in {\bf P}$ and $b>8\cdot 10^6,\ b\equiv 3\ ({\rm mod}\ 4)$, then the Diophantine equation

(5)
$$x^2 + b^y = c^z, \quad x, y, z \in \mathbf{N}$$

has only the solution (x, y, z) = (a, 2, r), where $m \in \mathbb{N}$ with $2 \mid m$ and the integers U_r , V_r satisfy $(m + \sqrt{-1})^r = V_r + U_r \sqrt{-1}$.

¹⁹⁹¹ Mathematics Subject Classification. 11D61.

^{*)} Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

 $^{^{**)}}$ Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

^{***)} Department of Mathematics, Maoming College, Maoming, Guangdong, P. R. China.

In this paper, using a recent result of Bilu, Hanrot and Voutier [1] on primitive divisors, we prove the following result.

Theorem. Let $r, m \in \mathbb{N}$ with $2 \nmid r > 1, 2 \mid m$. Define the integers U_r , V_r by $(m + \sqrt{-1})^r = V_r + U_r\sqrt{-1}$. If $a = |V_r|$, $b = |U_r|$, $c = m^2 + 1$, $b \equiv 3 \pmod{4}$, and $b \in \mathbf{P}^{\mathbb{N}}$, then equation (5) has only the solution (x, y, z) = (a, 2, r).

From the theorem, we have

Corollary. If $m \in \mathbb{N}$ such that m > 1 and $3m^2 - 1 \in \mathbf{P}^{\mathbb{N}}$, then the Diophantine equation

$$x^{2} + (3m^{2} - 1)^{y} = (m^{2} + 1)^{z}, \quad x, y, z \in \mathbf{N}$$

has only the solution $(x, y, z) = (m^3 - 3m, 2, 3)$.

2. Preliminaries. A Lucas pair (resp. a Lehmer pair) is a pair (α, β) of algebraic integers such that $\alpha + \beta$ and $\alpha\beta$ (resp. $(\alpha + \beta)^2$ and $\alpha\beta$) are non-zero coprime rational integers and α/β is not a root of unity. For a given Lucas pair (α, β) , one defines the corresponding sequence of Lucas numbers by

$$u_n = u_n(\alpha, \beta) = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 $(n = 0, 1, 2, \ldots).$

For a given Lehmer pair (α, β) , one defines the corresponding sequence of Lehmer numbers by

$$\widetilde{u}_n = \widetilde{u}_n(\alpha, \beta) = \begin{cases} \frac{\alpha^n - \beta^n}{\alpha - \beta} & \text{if } n \text{ is odd,} \\ \frac{\alpha^n - \beta^n}{\alpha^2 - \beta^2} & \text{if } n \text{ is even.} \end{cases}$$

It is clear that every Lucas pair (α, β) is also a Lehmer pair, and

$$u_n = \begin{cases} \widetilde{u}_n & \text{if } n \text{ is odd,} \\ (\alpha + \beta)\widetilde{u}_n & \text{if } n \text{ is even.} \end{cases}$$

Let (α, β) be a Lucas (resp. Lehmer) pair. The prime number p is a primitive divisor of the Lucas (resp. Lehmer) number $u_n(\alpha, \beta)$ (resp. $\widetilde{u}_n(\alpha, \beta)$) if p divides u_n but does not divide $(\alpha - \beta)^2 u_1 \cdots u_{n-1}$ (resp. if p divides \widetilde{u}_n but does not divide $(\alpha^2 - \beta^2)^2 \widetilde{u}_1 \cdots \widetilde{u}_{n-1}$). The following lemmas are classical.

Lemma 1. Let (α, β) be a Lucas (resp. Lehmer) pair. If the prime number p is a primitive divisor of the Lucas (resp. Lehmer) number $u_n(\alpha, \beta)$ (resp. $\tilde{u}_n(\alpha, \beta)$), then $n \equiv \pm 1 \pmod{p}$.

Lemma 2. If $u_m \neq 1$, then $u_m \mid u_n$ iff $m \mid n$. *Proof.* For example, see W. L. McDaniel [11].

Recently, Y. Bilu, G. Hanrot and P. Voutier [1] proved the following

Lemma 3. For any integer n > 30, every n-th term of any Lucas or Lehmer sequence has a primitive divisor.

A Lucas (resp. Lehmer) pair (α, β) such that $u_n(\alpha, \beta)$ (resp. $\widetilde{u}_n(\alpha, \beta)$) has no primitive divisors will be called *n*-defective Lucas (resp. Lehmer) pair. Two Lucas pairs (α_1, β_1) and (α_2, β_2) are equivalent if $(\alpha_1/\alpha_2) = (\beta_1/\beta_2) = \pm 1$. Two Lehmer pairs (α_1, β_1) and (α_2, β_2) are equivalent if

$$\frac{\alpha_1}{\alpha_2} = \frac{\beta_1}{\beta_2} \in \{\pm 1, \pm \sqrt{-1}\}.$$

In 1995, P. Voutier [14] proved the following

Lemma 4. Let n satisfy $4 < n \le 30$ and $n \ne 6$. Then, up to equivalence, all n-defective Lucas pairs are of form $((a - \sqrt{b})/2, (a + \sqrt{b})/2)$, where (a, b) are given in Table 1 of [1].

Let n satisfy $6 < n \le 30$ and $n \notin \{8, 10, 12\}$. Then, up to equivalence, all n-defective Lehmer pairs are of form $((\sqrt{a} - \sqrt{b})/2, (\sqrt{a} + \sqrt{b})/2)$, where (a, b) are given in Table 2 of [1].

In [1], for any positive integer $n \leq 30$, all Lucas sequences and all Lehmer sequences whose n-th term has no primitive divisor are explicitly determined. i.e., Y. Bilu, G. Hanrot and P. Voutier [1] proved also the following

Lemma 5. Any Lucas pair is 1-defective, and any Lehmer pair is 1-and 2-defective.

For $n \in \{2, 3, 4, 6\}$, all (up to equivalence) n-defective Lucas pairs are of form $((a - \sqrt{b})/2, (a + \sqrt{b})/2)$, where (a, b) are given in Table 3 of [1].

For $n \in \{3, 4, 5, 6, 8, 10, 12\}$, all (up to equivalence) n-defective Lehmer pairs are of form $((\sqrt{a} - \sqrt{b})/2, (\sqrt{a} + \sqrt{b})/2)$, where (a, b) are given in Table 4 of [1].

We will use the following Lemmas to prove the theorem.

Lemma 6. Let $r, m \in \mathbb{N}$ with $2 \nmid r > 1$, $2 \mid m$. Define the integers U_r , V_r by $(m+\sqrt{-1})^r = V_r + U_r\sqrt{-1}$. If $a = |V_r|$, $b = |U_r|$, $c = m^2 + 1$, $b \equiv 3 \pmod{4}$, and $b \in \mathbb{P}^{\mathbb{N}}$, then equation (5) has no solution (x, y, z) with $2 \mid z$.

Proof. See the proof of Theorem in [4].

Lemma 7. If $2 \nmid r$ and r > 1, then all solutions (X, Y, Z) of the equation

$$X^{2} + Y^{2} = Z^{r}, X, Y, Z \in \mathbf{Z}, \gcd(X, Y) = 1$$

are given by

$$X + Y\sqrt{-1} = \lambda_1(X_1 + \lambda_2 Y_1 \sqrt{-1})^r, \quad Z = X_1^2 + Y_1^2,$$

$$\lambda_1, \lambda_2 \in \{-1, 1\}, X_1, Y_1 \in \mathbf{N} \text{ and } \gcd(X_1, Y_1) = 1.$$

Lemma 7 follows directly from a theorem in the book of Mordell [12] pp. 122–123.

Lemma 8. The Diophantine equation

$$x^2 - \lambda = y^n$$
, $n > 1$, $\lambda = \pm 1$

has only solution in positive integers x = 3, y = 2, n = 3, $\lambda = 1$.

It follows from [7, 9] that the only solution of the equation $x^2 - 1 = y^n$ (n > 1) in positive integers is (x, y, n) = (3, 2, 3), the equation $x^2 + 1 = y^n$ (n > 1) has no solutions in positive integers, respectively. Hence Lemma 8 holds.

3. Proof of Theorem. Since $b \equiv 3 \pmod{4}$ and $c \equiv 1 \pmod{4}$, we have from (5) that $2 \mid x$ and so $3^y \equiv 1 \pmod{4}$, that is, $2 \mid y$. Hence, we can assume that $y = 2y_1, y_1 \in \mathbb{N}$ and $2 \nmid z$ by Lemma 6. Furthermore, since $b \in \mathbb{P}^{\mathbb{N}}$, we have

$$\binom{r}{1}m^{r-3} - \binom{r}{3}m^{r-5} + \dots + (-1)^{(r-3/2)}\binom{r}{r-2} \neq 0$$

and so

$$b = \left| m^2 \binom{r}{1} m^{r-3} - \binom{r}{3} m^{r-5} + \cdots + (-1)^{(r-3/2)} \binom{r}{r-2} \right) + (-1)^{(r-1/2)} \right|$$

$$\geq m^2 \left| \binom{r}{1} m^{r-3} - \binom{r}{3} m^{r-5} + \cdots + (-1)^{(r-3/2)} \binom{r}{r-2} \right| - 1$$

$$\geq m^2 - 1 = c - 2,$$

that is, $b \ge c - 2$. It follows that z > 1 by equation (5). So, we also can assume that $p \mid z, p \in \mathbf{P}$. Hence, (5) gives that

(6)
$$x^2 + b^{2y_1} = (c^{z/p})^p, x, y_1 \in \mathbf{N}, p \in \mathbf{P}.$$

Clearly, gcd(b, c) = gcd(x, b) = 1. By Lemma 7, we have from (6) that

(7)
$$x + b^{y_1} \sqrt{-1} = \lambda_1 (X + \lambda_2 Y \sqrt{-1})^p,$$

$$c^{z/p} = X^2 + Y^2.$$

where $\lambda_1, \lambda_2 \in \{-1, 1\}, X, Y \in \mathbf{N} \text{ and } \gcd(X, Y) = 1$. It follows from (7) that

$$(8) b^{y_1} = \lambda_1 \lambda_2 Y \frac{\alpha^p - \beta^p}{\alpha - \beta}$$

$$= \lambda_1 \lambda_2 Y \left(\binom{p}{1} X^{p-1} - \binom{p}{3} X^{p-3} Y^2 + \cdots + (-1)^{(p-1/2)} \binom{p}{p} Y^{p-1} \right),$$

where $\alpha = X + \lambda_2 Y \sqrt{-1}$, $\beta = X - \lambda_2 Y \sqrt{-1}$. Clearly, (8) gives

(9)
$$\left(Y, \frac{\alpha^p - \beta^p}{\alpha - \beta}\right) = 1 \text{ or } p$$

since gcd(X, Y) = 1.

If Y = 1, then from the last equality of (7) and Lemma 8, we obtain z = p, X = m and so $|U_r|^{y_1} = |U_p|$ by (8). By Lemma 2, we have r = p and so $y_1 = 1$, z = r, that is, the theorem holds.

If Y > 1, since $b \in \mathbf{P}^{\mathbf{N}}$ and

$$p \parallel \frac{\alpha^p - \beta^p}{\alpha - \beta}$$
 if $p \mid \frac{\alpha^p - \beta^p}{\alpha - \beta}$,

we see from (8) and (9) that

(10)
$$\left| \frac{\alpha^p - \beta^p}{\alpha - \beta} \right| = 1 \text{ or } p.$$

Clearly, $(\alpha^p - \beta^p)/(\alpha - \beta)$ is p-th term of Lucas sequence. And from (10) and Lemma 1, we have that $(\alpha^p - \beta^p)/(\alpha - \beta)$ has no primitive divisor. Hence, using Lemmas 3–5 and Tables 1 and 3 in [1], and note that $p \in \mathbf{P}$, we get the following 4 cases:

Case I: p = 5 and

$$(2X, -4Y^2) \in \{(1, 5), (1, -7), (2, -40), (1, -11), (1, -15), (12, -76), (12, -1364)\}.$$

But this is impossible since $Y \in \mathbf{N}$.

Case II: p = 7 and

$$(2X, -4Y^2) \in \{(1, -7), (1, -19)\}.$$

Clearly, this also is impossible.

Case III: p = 13 and $(2X, -4Y^2) = (1, -7)$ which is impossible.

Case IV: p = 3, $(2X, -4Y^2) = (u, -3u^2 + 4\lambda)$, u > 1 or $(u, -3u^2 + 4\lambda \cdot 3^l)$, $3 \nmid u$, $(l, u) \neq (1, 2)$, where $\lambda \in \{-1, 1\}$, $l, u \in \mathbf{N}$.

If $(2X, -4Y^2) = (u, -3u^2 + 4\lambda)$, u > 1, then $Y^2 = 3X^2 - \lambda$ and from the last equality of (7), we obtain $4X^2 - \lambda = c^{z/3}$. It follows by Lemma 8 that z = 3. Notice that $c = m^2 + 1$. We have $\lambda = -1$, m = 2X and

$$(11) Y^2 - 3X^2 = 1.$$

By p=3 and (11), we obtain $(\alpha^p - \beta^p)/(\alpha - \beta) = -1$. So, we get from (8) that $Y=b^{y_1}$. However, from $b \geq c-2$ and the last equality of (7), we can obtain $c=X^2+Y^2 \geq 1+b^2 \geq 1+(c-2)^2 > c$, a contradiction.

If $(2X, -4Y^2) = (u, -3u^2 + 4\lambda \cdot 3^l), 3 \nmid u, (l, u) \neq (1, 2)$, then

$$(12) Y^2 = 3X^2 - \lambda \cdot 3^l$$

and so

(13)
$$(\alpha^p - \beta^p)/(\alpha - \beta) = \lambda \cdot 3^l \text{ (note that } p = 3).$$

From (8) and (13), we get $Y=3^t, t\in \mathbb{N}$ and l=1 since $3\|(\alpha^3-\beta^3)/(\alpha-\beta)$. Substituting l=1 and $Y=3^t$ into (12), we have $3^{2t-1}=X^2-\lambda$ and so X=2, Y=3. Substituting these into the last equality of (7), we have $13=c^{z/3}$ which is impossible since $c=m^2+1$.

This proves Theorem.

Acknowledgement. This project was supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China.

References

- [1] Bilu, Y., Hanrot, G., and Voutier, P. (with an appendix by Mignotte, M.): Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math., **539**, 75–122 (2001).
- [2] Cao, Z., and Dong, X.: On Terai's conjecture.Proc. Japan Acad., 74A, 127–129 (1998).

- [3] Cao, Z., and Dong, X.: Some new results on Terai's conjecture. J. Harbin Inst. Tech. New Ser., 5, pp. 1–3 (1998).
- [4] Cao, Z., and Dong, X.: The Diophantine equation $x^2+b^y=c^z$. Proc. Japan Acad., **77A**, 1–4 (2001).
- [5] Chen, X., and Le, M.: A note on Terai's conjecture concerning Pythagorean numbers. Proc. Japan Acad., 74A, 80-81 (1998).
- [6] Dong, X.: Diophantine equations and class numbers of quadratic fields. Ph. D. Thesis, Harbin Institute of Technology, Ch. 4 (2001).
- [7] Ko, C.: On the Diophantine equation $x^2 = y^n + 1$, $xy \neq 0$. Sci. Sin., **14**, 457–460 (1964).
- [8] Le, M.: A note on the Diophantine equation $x^2 + b^y = c^z$. Acta Arith., **71**, 253–257 (1995).
- [9] Lebesgue, V. A.: Sur l'impossibilitéon nombres entiers de l'équation $x^m = y^2 + 1$. Nouv. Ann. Math., 9 (1), 178–181 (1850).
- [10] Ljunggren, W.: Zur Theorie der Gleichung $x^2 + 1 = Dy^4$. Avh. Norske Vid. Akad. Oslo, **5**, 1–27 (1942).
- [11] McDaniel, W. L.: The g.c.d. in Lucas sequences and Lehmer number sequences. Fibonacci Quart., 29, 24–29 (1991).
- [12] Mordell, L. J.: Diophantine Equations. Academic Press, New York-London (1969).
- [13] Terai, N.: The Diophantine equation $x^2 + q^m = p^n$. Acta Arith., **63** (4), 351–358 (1993).
- [14] Voutier, P.: Primitive divisors of Lucas and Lehmer sequences. Math. Comp., 64, 869–888 (1995)
- [15] Yuan, P., and Wang, J.: On the Diophantine equation $x^2 + b^y = c^z$. Acta Arith., **84**, 145–147 (1998).