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Resolvent equations technique for general variational inclusions

By Zeqing Liu,∗) Jeong Sheok Ume,∗∗) and Shin Min Kang∗∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Dec. 12, 2002)

Abstract: In this paper, we introduce and study a new class of variational inclusions and
resolvent equations, respectively, and establish the equivalence between the variational inclusions
and the resolvent equations. Using the resolvent equations technique, we construct some new
iterative algorithms for solving the classes of varitional inclusions and resolvent equations. Under
suitable conditions, the convergence analyses of the iterative algorithms are also studied. Our
results include several previously known results as special cases.
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1. Introduction. Using the projection tech-
nique, Verma [9–11] and Yao [12] established the
solvability of the generalized variational inequalities
involving the relaxed Lipschitz and relaxed mono-
tone operators. Recently, Noor [4–6], Noor-Noor [7]
and Noor-Noor-Rassias [8] introduced and studied
some new classes of variational inequalities, varia-
tional inclusions, resolvent equations and Wiener-
Hopf equations.

Inspired and motivated by the results in [4–12],
in this paper, we introduce and study a new class
of variational inclusions and resolvent equations, re-
spectively. These classes are more general and in-
clude the previously known classes of variational in-
equalities and variational inclusions and resolvent
equations, respectively, as special cases. We establish
the equivalence between the variational inclusions
and the resolvent equations. Using the resolvent
equations technique, we construct some new itera-
tive algorithms for solving the classes of variational
inclusions and resolvent equations. Under suitable
conditions, the convergence analyses of the iterative
algorithms are also studied. The results presented in
this paper generalize, improve and unify a number of
recent results due to Noor [4, 6], Noor-Noor [7] and
Noor-Noor-Rassias [8].
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2. Preliminaries. Throughout this paper,
we assume that H is a real Hilbert space endowed
with the norm ‖ · ‖ and inner product 〈·, ·〉, respec-
tively, and I denotes the identity operator on H . Let
2H and CB(H) stand for the families of all nonempty
subsets and all nonempty closed bounded subsets
of H , respectively. Let ϕ : H → R ∪ {+∞} be a
proper convex lower semicontinuous function on H

and ∂ϕ denote the subdifferential of function ϕ. Let
A, B, C : H → 2H be multivalued mappings, g : H →
H be a mapping and N : H ×H ×H → H be a non-
linear mapping. Suppose that M : H → 2H is a
multivalued maximal monotone mapping. For each
given f ∈ H , we consider the following problem:

Find u ∈ H , x ∈ Au, y ∈ Bu, z ∈ Cu such that

(2.1) f ∈ N(x, y, z) + M(gu).

Problem (2.1) is called the general variational inclu-
sion.

Definition 2.1 [1]. If M is a maximal mono-
tone from H into 2H , then for a constant ρ > 0, the
resolvent operator associate with M is defined by

JM (u) = (I + ρM)−1(u), for all u ∈ H.

It is known (cf. [1]) that the resolvent operator
JM is single-valued and nonexpansive.

In relation to problem (2.1), we consider the
problem of finding w, u ∈ H , x ∈ Au, y ∈ Bu, z ∈
Cu such that

(2.2) N(x, y, z) + ρ−1RMw = f,

where ρ > 0 is a constant, RM = I − JM and
JM is the resolvent operator. The equations of the
type (2.2) are called the general resolvent equations.
Moreover, if M(u) = IK(u) is the indicator function
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of K, the resolvent operator JM ≡ PK , the projec-
tion of H onto K. Consequently, problem (2.2) is
equivalent to finding w, u ∈ H , x ∈ Au, y ∈ Bu,
z ∈ Cu such that

(2.3) N(x, y, z) + ρ−1QKw = f,

where QK = I − PK and ρ > 0 is a constant.
The equations (2.3) are called the Wiener-Hopf equa-
tions. For the formulations and applications of the
resolvent equations and Wiener-Hopf equations, see
[4–8].

For a suitable choice of the mappings A, B, C,
N , M , the element f , and the space H , one can
obtain a number of known and new classes of varia-
tional inequalities, variational inclusions, and resol-
vent equations from the general variational inclusions
(2.1) and the general resolvent equations (2.2). Fur-
ther, these types of variational inclusion and resol-
vent equations enable us to study many important
problems arising in mathematical, regional, physi-
cal and engineering sciences in a general and unified
framework.

Definition 2.2. A multivalued mapping A :
H → 2H is said to be strongly monotone with respect
to the first argument of N(·, ·, ·) : H × H × H → H ,
if there exists a constant r > 0 such that

〈N(x, ·, ·)− N(y, ·, ·), u− v〉
≥ r‖u − v‖2 for all x ∈ Au, y ∈ Av.

Definition 2.3. A multivalued mapping B :
H → 2H is said to be relaxed Lipschitz with respect
to the second argument of N(·, ·, ·) : H × H × H →
H , if there exists a constant r > 0 such that

〈N(·, x, ·)− N(·, y, ·), u− v〉
≤ −r‖u − v‖2 for all x ∈ Bu, y ∈ Bv.

Definition 2.4. A multivalued mapping C :
H → 2H is said to be relaxed monotone with respect
to the third argument of N(·, ·, ·) : H ×H ×H → H ,
if there exists a constant r > 0 such that

〈N(·, ·, x)− N(·, ·, y), u− v〉
≥ −r‖u − v‖2 for all x ∈ Cu, y ∈ Cv.

Definition 2.5. A mapping N : H×H×H →
H is said to be Lipschitz continuous with respect to
the first argument if there exists a constant t > 0
such that

‖N(x, ·, ·)− N(y, ·, ·)‖ ≤ t‖x − y‖ for all x, y ∈ H.

In a similar way, we can define Lipschitz con-
tinuity of the mapping N(·, ·, ·) with respect to the
second or third argument.

Definition 2.6. A multivalued mapping A :
H → CB(H) is said to be H-Lipschitz continuous if
there exists a constant r > 0 such that

H(Ax, Ay) ≤ r‖x − y‖ for all x, y ∈ H,

where H(·, ·) is the Hausdorff metric on CB(H).
Definition 2.7. (i) A mapping g : H → H is

said to be strongly monotone if there exists a con-
stant σ > 0 such that

〈gx − gy, x − y〉 ≥ σ‖x − y‖2 for all x, y ∈ H ;

(ii) A mapping g : H → H is said to be Lipschitz
continuous if there exists a constant δ > 0 such that

‖gx − gy‖ ≤ δ‖x − y‖ for all x, y ∈ H.

Obviously, if the mapping g is strongly monotone
and Lipschitz continuous, then δ ≥ σ.

3. Iterative algorithms.
Lemma 3.1. The general variational inclu-

sion (2.1) has a solution u ∈ H, x ∈ Au, y ∈ Bu,

z ∈ Cu if and only if the general resolvent equation
(2.2) has a solution w, u ∈ H, x ∈ Au, y ∈ Bu, z ∈
Cu, where

gu = JMw,(3.1)

w = (gu + ρf − ρN(x, y, z))(3.2)

and ρ > 0 is a constant.
Proof. Suppose that the general variational in-

clusion (2.1) has a solution u ∈ H , x ∈ Au, y ∈ Bu,
z ∈ Cu. Then for ρ > 0, we have

ρf ∈ ρN(x, y, z) + ρM(gu)

= −gu + ρN(x, y, z) + (I + ρM)(gu),

which implies that

(3.3) gu = JM (gu + ρf − ρN(x, y, z)),

which ensures that

RM (gu + ρf − ρN(x, y, z))

= gu + ρf− ρN(x, y, z) −JM (gu + ρf− ρN(x, y, z))

= ρf − ρN(x, y, z).

That is,

N(x, y, z) + ρ−1RM(w) = f,

where w = gu + ρf − ρN(x, y, z). Thus (3.1) follows
from (3.3).
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Conversely, suppose that the general resolvent
equation (2.2) has a solution w, u ∈ H , x ∈ Au, y ∈
Bu, z ∈ Cu satisfying (3.1) and (3.2). By virtue of
(3.1) and (3.2), we conclude that (3.3) holds. Hence

gu+ρf −ρN(x, y, z) ∈ (I+ρM)(gu) = gu+ρM(gu),

which means that

f ∈ N(x, y, z) + M(gu).

This completes the proof.
Remark 3.1. Lemma 3.1 generalized Theo-

rem 3.1 in [4] and [6], Theorem 5.1 in [7] and Theo-
rem 3.2 in [8].

Using Lemma 3.1 and Nadler’s result [3], we can
suggest the following iterative algorithms for solving
the general resolvent equation (2.2) and the general
Wiener-Hopf equation (2.3).

Algorithm 3.1. Let g : H → H , N : H ×H ×
H → H , A, B, C : H → CB(H), M : H → 2H .
Let f be a given element in H , ρ > 0 be a con-
stant and g(H) ⊇ JM (H). For given w0, u0 ∈ H ,
x0 ∈ Au0, y0 ∈ Bu0, z0 ∈ Cu0, compute {wn}∞n=0,
{un}∞n=0, {xn}∞n=0, {yn}∞n=0, and {zn}∞n=0 by the it-
erative schemes

(3.4) gun = JMwn,

‖xn − xn+1‖(3.5)

≤ (1 + (n + 1)−1)H(Aun, Aun+1), xn ∈ Aun,

‖yn − yn+1‖
≤ (1 + (n + 1)−1)H(Bun, Bun+1), yn ∈ Bun,

‖zn − zn+1‖
≤ (1 + (n + 1)−1)H(Cun, Cun+1), zn ∈ Cun,

(3.6)
wn+1 = (1 − λ)wn + λ(gun + ρf− ρN(xn, yn, zn)),

for all n ≥ 0, where λ ∈ (0, 1] is a parameter.
Algorithm 3.2. Let g : H → H , N : H ×H ×

H → H , A, B, C : H → CB(H). Let f be a given el-
ement in H, ρ > 0 be a constant and g(H) ⊇ PK(H).
Let K be a closed convex subset of H and ϕ denote
the indicator function on K. For given w0, u0 ∈ H ,
x0 ∈ Au0, y0 ∈ Bu0, z0 ∈ Cu0, compute {wn}∞n=0,
{un}∞n=0, {xn}∞n=0, {yn}∞n=0, and {zn}∞n=0 by the it-
erative schemes (3.5), (3.6) and gun = PKwn for all
n ≥ 0.

Remark 3.2. For a suitable choice of map-
pings N , g, M , A, B, C, element f , closed convex
set K and parameter λ, one can obtain a wide class

of iterative algorithms for solving various classes of
resolvent equations and Wiener-Hopf equations. Al-
gorithm 3.1 and Algorithm 3.2 include a few known
algorithms in [4, 6–8] as special cases.

4. Existence and convergence theorems.
In this section, we prove two results that deal with
the existence of a solution of the general resolvent
equations (2.2) and the convergence of an iterative
sequence generalized by Algorithm 3.1.

Theorem 4.1. Let g : H → H be strongly
monotone and Lipschitz continuous with constants
σ and δ, respectively, M : H → 2H be a maximal
monotone mapping with g(H) ⊇ JM (H). Let N

be Lipschitz continuous with respect to the first, sec-
ond and third arguments with constants β, η and a,
respectively, A, B, C : H → CB(H) be H-Lipschitz
continuous with constants µ, ξ and b, respectively,
and A be strongly monotone with respect to the first
argument of N with constant α. Let

k =
√

1 − 2σ + δ2,(4.1)

m =
√

1 − 2σ + β2µ2 + ηξ + ab, βµ ≥ α.

If there exists a constant ρ > 0 such that

(4.2) k + ρm < 1,

holds and at least one of the following conditions

(4.3)

m < 1, |σ − (1 − k)m| >
√

[δ2 − (1 − k)2](1 − m2),∣∣∣ρ − σ − (1 − k)m
1 − m2

∣∣∣
<

√
[σ − (1 − k)m]2 − [δ2 − (1 − k)2](1 − m2)

1 − m2
;

(4.4) m = 1, σ + k > 1. ρ >
δ2 − (1 − k)2

2[σ + k − 1]
;

m > 1,(4.5)∣∣∣ρ − m(1 − k) − σ

m2 − 1

∣∣∣
>

√
[δ2 − (1 − k)2](m2 − 1) + [m(1 − k) − σ]2

m2 − 1
,

is satisfied, then for each given f ∈ H, there exist
w, u ∈ H, x ∈ Au, y ∈ Bu and z ∈ Cu satisfying
the resolvent equations (2.2) and (3.1) and (3.2), and
the sequence {wn}∞n=0, {un}∞n=0, {xn}∞n=0, {yn}∞n=0

and {zn}∞n=0 generated by Algorithm 3.1 converge,
respectively, to w, u, x, y and z strongly in H.
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Proof. In view of Algorithm 3.1, we obtain that

(4.6)

‖wn+1 − wn‖
= ‖(1− λ)wn + λ(gun + ρf − ρN(xn, yn, zn))

− (1 − λ)wn−1

− λ(gun−1 + ρf − ρN(xn−1, yn−1, zn−1))‖
≤ (1 − λ)‖wn − wn−1‖ + λ‖gun − gun−1

− ρ(N(xn, yn, zn) − N(xn−1, yn−1, zn−1))‖
≤ (1 − λ)‖wn − wn−1‖
+ λ‖ρ(un − un−1) − (gun − gun−1)‖
+ λρ‖un − un−1

− (N(xn, yn, zn) − N(xn−1, yn−1, zn−1))‖
≤ (1 − λ)‖wn − wn−1‖
+ λ‖ρ(un − un−1) − (gun − gun−1)‖
+ λρ‖un − un−1

− (N(xn, yn, zn) − N(xn−1, yn, zn))‖
+ λρ‖N(xn−1, yn, zn) − N(xn−1, yn−1, zn)‖
+ λρ‖N(xn−1, yn−1, zn) − N(xn−1, yn−1, zn−1)‖.

Since g is Lipschitz continuous and strongly mono-
tone, we have

(4.7)

‖ρ(un − un−1) − (gun − gun−1)‖2

= ρ2‖un − un−1‖2 − 2ρ〈gun − gun−1, un − un−1〉
+ ‖gun − gun−1‖2

≤ ρ2 − 2σρ + δ2)‖un − un−1‖2.

Since A is H-Lipschitz continuous and strongly
monotone with respect to the first argument of N ,
and N is Lipschitz continuous with respect to the
first argument, we conclude that

(4.8)

‖un − un−1 − (N(xn, yn, zn) − N(xn−1, yn, zn))‖2

= ‖un − un−1‖2

− 2〈N(xn, yn, zn) − N(xn−1, yn, zn), un − un−1〉
+ ‖N(xn, yn, zn) − N(xn−1, yn, zn)‖2

≤ (1 − 2α)‖un − un−1‖2 + β2‖xn − xn−1‖2

≤ (1 − 2α + β2µ2(1 + n−1)2)‖un − un−1‖2.

Since N is Lipschitz continuous with respect to the
second and third arguments, respectively, and B and
C are H-Lipschitz continuous, we know that

‖N(xn−1, yn, zn) − N(xn−1, yn−1, zn)‖(4.9)

≤ ξη(1 + n−1)‖un − un−1‖,

‖N(xn−1, yn−1, zn) − N(xn−1, yn−1, zn−1)‖(4.10)

≤ ab(1 + n−1)‖un − un−1‖.
In view of (3.4), (4.1) and (4.7), we infer that

‖un − un−1‖
≤ |un − un−1 − (gun − gun−1)‖

+ ‖JMwn − JMwn−1‖
≤
√

1− 2σ + δ2‖un − un−1‖ + ‖wn − wn−1‖
= k‖un − un−1‖ + ‖wn − wn−1‖,

which implies that

(4.11) ‖un − un−1‖ ≤ (1 − k)−1‖wn − wn−1‖.
Substituting (4.7)–(4.11) into (4.6), we obtain that

(4.12) ‖wn+1 − wn‖ ≤ θn‖wn − wn−1‖,
where

θn = (1 − λ) + λ(1 − k)−1
[√

ρ2 − 2ρσ + δ2

+ ρ
√

1 − 2α + β2µ2(1 + n−1)2

+ (1 + n−1)ρ(ξη + ab)
]
.

Put

θ = (1 − λ) + λ(1 − k)−1
[√

ρ2 − 2ρσ + δ2(4.13)

+ ρ
√

1 − 2α + β2µ2 + ρ(ξη + ab)
]
.

It is easy to see that θn ↓ θ as n → ∞. It follows
from (4.1), (4.2) and (4.13) that

θ < 1 ⇔
√

ρ2 − 2ρσ + δ2 < 1 − k − ρm(4.14)

⇔ (1 − m2)ρ2 − 2[α− (1 − k)m]ρ < (1 − k)2 − δ2.

We now assert that

(4.15) δ ≥ 1 − k.

It follows from (4.1) and (4.2) that k ∈ (0, 1]. If δ ≥
1, then (4.15) holds; if δ ∈ (0, 1), we conclude that
by virtue of (4.1) and δ ≥ σ,

k2 = 1− 2σ + δ2 ≥ (1 − δ)2,

which implies that k ≥ 1 − δ. That is, (4.15) holds.
It is easy to verify that (4.14), (4.15) and one

of (4.3) and (4.4) and (4.5) yield that θ < 1. Thus
θn < 1 for n sufficiently large. It is easy to see that
(4.12) means that {wn}∞n=0 is a Cauchy sequence
in H . Consequently, there exists w ∈ H such that
limn→∞ wn = w. By virtue of (4.11), we know that
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the sequence {un}∞n=0 is a Cauchy sequence in H ,
that is, there exists u ∈ H with limn→∞ un = u.
Note that A, B, C are H-Lipschitz continuous. In
view of (3.5), we have

‖xn − xn−1‖ ≤ µ(1 + n−1)‖un − un−1‖,
‖yn − yn−1‖ ≤ ξ(1 + n−1)‖un − un−1‖,
‖zn − zn−1‖ ≤ b(1 + n−1)‖un − un−1‖,

which imply that {xn}∞n=0, {yn}∞n=0, {zn}∞n=0 are
Cauchy sequences in H . Hence there exists x, y, z ∈
H such that limn→∞ xn = x, limn→∞ yn = y,
limn→∞ zn = z. Observe that

d(x, Au) = inf{‖x− t‖ : t ∈ Au}
≤ ‖xn − x‖ + H(Aun, Au)

≤ ‖xn − x‖ + µ‖un − u‖ → 0

as n → ∞. This means that x ∈ Au. Similarly, we
have y ∈ Bu, z ∈ Cu. It follows from the continuity
of the operators A, B, C, g, JM , N and (3.4) and
(3.6) that

gu = JMw

and

w = (1 − λ)w + λ(gu + ρf − ρN(x, y, z)) ∈ H,

which implies that

w = gu + ρf − ρN(x, y, z).

Lemma 3.1 ensures that w, u ∈ H , x ∈ Au, y ∈ Bu

and z ∈ Cu is a solution of the resolvent equation
(2.2). This completes the proof.

Remark 4.1. Theorem 4.1 extends, improves
and unifies Theorem 4.1 in [4], Theorem 3.2 in [6]
and Theorem 5.2 in [7].

Theorem 4.2. Let g, M, N, A, B, C, P, Q

and R be as in Theorem 4.1. Assume that B is re-
laxed Lipschitz with respect to the second argument of
N with constant c, and C is relaxed monotone with
respect to the third argument of N with constant d.
Let

(4.16) βµ ≥ α, ηξ ≥ c, k = 2
√

1 − 2σ + δ2;

m =
√

1 − 2α + β2µ2 +
√

1 − 2c + η2ξ2(4.17)

+
√

1 + 2d + a2b2;

If there exists a constant ρ > 0 satisfying (4.2) and
at least one of (4.3), (4.4) and (4.5) is satisfied, then
for each given f ∈ H, there exist w, u ∈ H, x ∈ Au,

y ∈ Bu and z ∈ Cu satisfying the resolvent equa-
tions (2.2) and (3.1) and (3.2), and the sequences
{wn}∞n=0, {un}∞n=0, {xn}∞n=0, {yn}∞n=0, and {zn}∞n=0

generated by Algorithm 3.1 converge, respectively, to
w, u, x, y and z strongly in H.

Proof. As in the proof of Theorem 4.1, we have

(4.18) ‖un − un−1‖ ≤ (1 − k)−1‖wn − wn−1‖,
and

(4.19)

‖wn+1 − wn‖
≤ (1 − λ)‖wn − wn−1‖
+ λ‖gun − gun−1 − ρ(un − un−1)‖
+ λρ‖un − un−1 − (N(xn, yn, zn)

− N(xn−1, yn−1, zn−1))‖
≤ (1 − λ)‖wn − wn−1‖
+ λ
√

ρ2 − 2ρσ + δ2‖un − un−1‖
+ λρ‖un − un−1

− (N(xn, yn, zn) − N(xn−1, yn, zn))‖
+ λρ‖N(xn−1, yn, zn)

− N(xn−1, yn−1, zn) + un − un−1‖
+ λρ‖N(xn−1, yn−1, zn)

− N(xn−1, yn−1, zn−1) − (un − un−1)‖
≤ (1 − λ)‖wn − wn−1‖
+ λ
√

ρ2 − 2ρσ + δ2‖un − un−1‖
+ λρ

√
1 − 2α + β2µ2(1 + n−1)2

+ λρ‖N(xn−1, yn, zn)

− N(xn−1, yn−1, zn) + un − un−1‖
+ λρ‖N(xn−1, yn−1, zn)

− N(xn−1, yn−1, zn−1) − (un − un−1)‖.
Since B is H-Lipschitz continuous and relaxed Lips-
chitz with respect to the second argument of N , and
C is H-Lipschitz continuous and relaxed monotone
with respect to the third argument of N , by (3.5) we
conclude that

(4.20)

‖N(xn−1, yn, zn)−N(xn−1, yn−1, zn) + un − un−1‖2

= ‖un − un−1‖2

+2〈N(xn−1, yn, zn)−N(xn−1, yn−1, zn), un − un−1〉
+ ‖N(xn−1, yn, zn) − N(xn−1, yn−1, zn)‖2

≤ (1 − 2c + η2ξ2(1 + n−1)2)‖un − un−1‖2,

and
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(4.21)

‖N(xn−1, yn−1, zn)

− N(xn−1, yn−1, zn−1) − (un − un−1)‖2

= ‖un − un−1‖2 − 2〈N(xn−1, yn−1, zn)

− N(xn−1, yn−1, zn−1), un − un−1〉
+ ‖N(xn−1, yn−1, zn) − N(xn−1, yn−1, zn−1)‖2

≤ (1 + 2d + a2b2(1 + n−1)2)‖un − un−1‖2.

By virtue of (4.18)–(4.21), we know that

‖wn+1 − wn‖
≤ (1 − λ)‖wn − wn−1‖

+ λ
√

ρ2 − 2ρσ + δ2‖un − un−1‖
+ λρ

[√
1 − 2α + β2µ2(1 + n−1)2

+
√

1 − 2c + η2ξ2(1 + n−1)2

+
√

1 + 2d + a2b2(1 + n−1)2
]‖un − un−1‖

≤ θn‖wn − wn−1‖,
where

θn =
[
1 − λ + λ(1 − k)−1

(√
ρ2 − 2ρσ + δ2

+ ρ
√

1 − 2α + β2µ2(1 + n−1)2

+ ρ
√

1 − 2c + η2ξ2(1 + n−1)2

+ ρ
√

1 + 2d + a2b2(1 + n−1)2
)]

.

Set

θ = 1 − λ + λ(1 − k)−1(
√

ρ2 − 2ρσ + δ2 + ρm).

Then θn ↓ θ as n → ∞. The rest of the proof iden-
tical with the proof of Theorem 4.1. This completes
the proof.

Remark 4.2. For appropriate and suitable
choices of the mappings g, M , N , A, B, C, and the
space H , Theorem 3.1 in [9–11] and Theorem 3.6
in[12] can be obtained as special cases of Theo-
rem 4.2.
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