Remark on the dimension of Kohnen's spaces of half integral weight with square free level

By Hisashi Kojima

Department of Mathematics, Faculty of Education, Iwate University, 3-18-33, Ueda, Morioka, Iwate 020-8550 (Communicated by Heisuke Hironaka, M. J. A., Feb. 12, 2002)

Abstract: In this note we determine explicitly the dimension of Kohnen's spaces of half integral weight with odd square free level and arbitrary character χ , and show that it coincides with that of spaces of modular cusp forms of weight 2k with square free level and character χ^2 .

Key words: Modular forms; modular forms of half integral weight.

Introduction. Let N and k be positive integers such that N is odd. For a character χ modulo N, we denote by $S_{k+1/2}(N,\chi)$ the Kohnen's space of half integral weight k+1/2 with level N and character χ . In [2], Kohnen calculated the trace of Hecke operators in $S_{k+1/2}(N,\chi)$ and showed that there exists a theory of new forms in it under the assumption that N is square free and $\chi^2 = 1$. Ueda [7] generalized those results to the case of Kohnen's space of weight k+1/2 with non-square free level N and character χ satisfying $\chi^2 = 1$. Kohnen [3] proved that the square of Fourier coefficients of modular forms fbelonging to $S_{k+1/2}(N,\chi)$ essentially coincides with the central value of quadratic twisted L-series determined by the Shimura correspondence in the case that N is square free and $\chi = 1$. In the proof of this theorem the result in [2] plays an essential role. In [4], we extended this result [3] to the case of arbitrary N and χ under the assumption that f satisfies multiplicity one theorem of Hecke operators. It is an open problem whether there exists the theory of new forms in $S_{k+1/2}(N,\chi)$ in the case of arbitrary odd

The purpose of this note is to determine explicitly $\dim S_{k+1/2}(N,\chi)$ and to verify that $\dim S_{k+1/2}(N,\chi) = \dim S_{2k}(N,\chi^2)$ in the case of square free level N as a first step for the solution of above question. Using trace formula [6] and results in [2] and [7], we prove this. We remark that the above problem still remains open.

0. Notation and preliminaries. We denote by **Z** and **C** the ring of rational integers and the complex number field, respectively. For a $z \in \mathbf{C}$, we define $\sqrt{z} = z^{1/2}$ so that $-\pi/2 < \arg z^{1/2} \le \pi/2$

and put $z^{k/2} = (\sqrt{z})^k$ for every $k \in \mathbb{Z}$. Further we put $e[z] = \exp(2\pi i z)$ for $z \in \mathbb{C}$. For a commutative ring R with identity element, we denote by SL(2, R) the special linear group of all matrices of degree 2 with coefficients in R. For a positive integer m, we put

$$\Gamma_0(m) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{Z}) \middle| c \equiv 0 \pmod{m} \right\}.$$

The symbol $(\frac{*}{*})$ indicates the same as that of [5, p. 442].

1. Modular forms of half integral weight. For integers l, M and Dirichlet character ψ modulo M, we denote by $S_l(M,\psi)$ the space of modular cusp forms of weight l with level M and character ψ . Let N be an odd integer, χ a Dirichlet character modulo N such that $\chi(-1) = \epsilon$ and k a non negative integer. We denote by $S_{k+1/2}(N,\chi)$ the subspace of $S_{k+1/2}(4N,\chi_{\epsilon})$ consisting of those f whose Fourier expansion has the form $f(z) = \sum_{\epsilon(-1)^k n \equiv 0, 1(4)} a(n)e[nz]$, where $\chi_{\epsilon} = (\frac{4\epsilon}{*})\chi$ and $S_{k+1/2}(4N,\chi_{\epsilon})$ is the space of cusp forms of half integral weight k+1/2 with level 4N and a character χ modulo 4N in the sence of Shimura [5]. By the table of [1], we derive the following theorem.

Theorem 1.1. Let N and k be positive integers such that N is odd square free and $k \ge 2$. Then

(1.1)
$$\dim S_{k+1/2}(4N, \chi_{\epsilon}) = \dim S_{2k}(2N, \chi^2).$$

Proof. According to the decomposition $N = p_1 \cdots p_l$ of prime factors of N, we have the decomposition $\chi = \chi_1 \cdots \chi_p$ of χ . By Cohn-Oesterlé [1], we obtain

$$(1.2)\dim S_{k+1/2}(4N,\chi_{\epsilon}) = \frac{2k-1}{4} \prod_{p|N} (p+1) - 2^{l-1} \zeta$$

and

$$\dim S_{2k}(2N, \chi^2) = \frac{2k-1}{4} \prod_{p|N} (p+1) - 2^l + \frac{1}{4} (-1)^k \sum_{\substack{x \in \mathbf{Z}/2N\mathbf{Z} \\ x^2+1 \equiv 0 (\text{mod } 2N)}} \chi^2(x)$$

with

$$\zeta = \begin{cases} 2 - \frac{1}{2}(-1)^k \epsilon & \text{if } p_i \equiv 1 \pmod{4} \text{ for every } i, \\ 2 & \text{otherwise.} \end{cases}$$

It is easy to check that

$$(1.3) \sum_{\substack{x \in \mathbf{Z}/2N\mathbf{Z} \\ x^2 + 1 \equiv 0 \pmod{2N}}} \chi^2(x) = \prod_{i=1}^l \left(\sum_{\substack{x_i \in \mathbf{Z}/p_i\mathbf{Z} \\ x_i^2 + 1 \equiv 0 \pmod{p_i}}} \chi_i^2(x_i) \right).$$

Let ξ_i be a primitive root modulo p_i . If x_i is a solution of congruence $x_i^2 + 1 \equiv 0 \pmod{p_i}$, then $p_i \equiv 1 \pmod{4}$ and x_i is $\xi_i^{(p_i-1)/4}$ or $-\xi_i^{(p_i-1)/4}$. Therefore, (1.3) is equal to $\epsilon \prod_{p|N} (1 + (\frac{-1}{p}))$. Combining this with (1.2), we conclude our assertion.

2. The dimension of Kohnen's space. In this section, we shall deduce the following theorem.

Theorem 2.1. Suppose that N and k are positive integers such that N is odd square free and $k \ge 2$. Then

(2.1)
$$\dim S_{k+1/2}(N,\chi) = \dim S_{2k}(N,\chi^2).$$

Proof. For a integer t satisfying |t| < 8, $t \equiv 0 \pmod{4}$, we put

(2.2)
$$B(t,1) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbf{Z},$$

 $a + d = t, \ (a - d, b, c) = 1, \ (a, b, c, d) = 1,$
 $ad - bc = 16 \text{ and } c > 0 \right\}.$

Furthermore, for $A \in B(t, 1)$, we put

(2.3)
$$D(A) = \left\{ B \in SL(2, \mathbf{Z}) \middle| \right.$$

 $4^{-1}B^{-1}AB \in \Gamma_0(4N) \begin{pmatrix} 1 & 1/4 \\ 0 & 1 \end{pmatrix} \Gamma_0(4N) \right\}.$

For $A, A' \in B(t, 1)$, define an equivalence relation $A \sim A'$ by

(2.4)
$$A \sim A'$$
 if and only if $A' = g^{-1}Ag$ for some $g \in SL(2, \mathbf{Z})$.

Then we denote by $B(t,1)/\sim$ a set of representatives of all equivalence classes of B(t,1) under this relation. Moreover, $\Gamma_0(4N)$ acts on D(A) by means of the multiplication from the right. We denote by $D(A)/\Gamma_0(4N)$ a set of representatives of D(A) by means of this multiplication. We consider a set C determined by

$$(2.5) \ C = \left\{ \beta = \frac{1}{4} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N) \begin{pmatrix} 1 & 1/4 \\ 0 & 1 \end{pmatrix} \Gamma_0(4N) \middle| \right.$$

$$\beta \text{ is elliptic } \right\}.$$

For

$$\beta = \frac{1}{4} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in C,$$

we define $\chi(\beta)$ by

$$\chi(\beta) = \left(\frac{\operatorname{sgn}(d)}{-\operatorname{sgn}(c)}\right) \chi\left(\frac{a}{4}\right) \left(\frac{d}{b}\right) \left(\frac{\epsilon}{b}\right).$$

By [5, p. 442], we can verify the following lemma.

Lemma 2.2. The notation being as above, the relation holds

(2.6) (i)
$$\chi(w\beta w) = \epsilon \chi(\beta)$$

(ii)
$$\chi(-w\beta w) \left(\frac{-\epsilon}{b}\right) = -\epsilon \chi(\beta) \left(\frac{\epsilon}{b}\right)$$

if $c > 0$ with $w = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$.

Define a $\tilde{e}_0(1)$ by

$$(2.7) \qquad \tilde{e}_0(1) = 2^{2k} (1 + \epsilon (-1)^k \sqrt{-1})$$

$$\times \sum_{\beta = (1/2) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in C/\sim} \operatorname{sgn}(d) \chi \left(\frac{a}{4}\right) \left(\frac{d}{b}\right) p_k(t) (t+8)^{-1/2},$$

where C/\sim means a set of representatives of all $\Gamma_0(4N)$ -conjugacy classes $[\beta]$ containing $\beta\in C$ such that c>0 and

$$p_k(t) = \frac{\lambda(t)^{-2k+1} - \overline{\lambda(t)}^{-2k+1}}{\lambda(t) - \overline{\lambda(t)}}$$
$$\left(\lambda(t) = \frac{\sqrt{t+8} - \sqrt{t-8}}{2}\right).$$

Then, using Lemma 1.2 and the arguments in [2, p. 53] and [7, pp. 532–534], we may find

(2.8)

$$\tilde{e}_{0}(1) = 2^{2k} (1 + \epsilon(-1)^{k} \sqrt{-1}) \times p_{k}(-4) 4^{-1/2} \sum_{\substack{[A] \in B(-4,1)/\sim \\ B^{-1}AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix}}} \chi \left(\frac{a}{4}\right).$$

For $x \in (\mathbf{Z}/N\mathbf{Z})^{\times}$ and $A \in B(-4,1)$, put

(2.9)
$$V(x,A) = \left\{ B \in SL(2, \mathbf{Z}) \middle| \right.$$

$$B^{-1}AB \equiv \begin{pmatrix} 4x + 4N\nu & * \\ 0 & * \end{pmatrix} \pmod{16N} \right\}.$$

Then, we may check the following decomposition.

(2.10)
$$D(A)/\Gamma_0(4N) = \bigcup_{x \in (\mathbf{Z}/N\mathbf{Z})^{\times}} V(x,A)/\Gamma_0(4N)$$

(a disjoint union).

By [2, p. 53] and [7, p. 533], we see that

(2.11)
$$\sharp (B(-4,1)/\sim) = 2$$
 and $\sharp (V(x,A)/\Gamma_0(4N))$
$$= \begin{cases} 1 & \text{if } x^2 + x + 1 \equiv 0 \pmod{N}, \\ 0 & \text{otherwise.} \end{cases}$$

This implies that

(2.12)
$$\tilde{e}_0(1) = (1 + \epsilon(-1)^k \sqrt{-1}) \tilde{p}_k \sum_{\substack{x \in \mathbf{Z}/N\mathbf{Z} \\ x^2 + x + 1 \equiv 0 \pmod{N}}} \chi(x),$$

where

$$\tilde{p}_k = \begin{cases} 1 & \text{if } k \equiv 0 \pmod{3}, \\ -1 & \text{if } k \equiv 1 \pmod{3}, \\ 0 & \text{otherwise.} \end{cases}$$

Define $\tilde{p}_0(1)$ by

(2.13)
$$\tilde{p}_0(1) = \frac{(1 + \epsilon(-1)^k \sqrt{-1})}{2} \times \left(-2^l + \epsilon(-1)^k \prod_{p \mid N} \left(1 + \left(\frac{-1}{p}\right)\right)\right).$$

Then, using Kohnen[2, pp. 47–58] and Ueda [7, pp. 528–538], we may deduce that

(2.14)
$$\dim S_{k+1/2}(N,\chi) = \frac{1}{3} \tilde{p}_k \sum_{\substack{x \in \mathbf{Z}/N\mathbf{Z} \\ x^2 + x + 1 \equiv 0 \pmod{N}}} \chi(x) + \frac{1}{6} \left(-2^l + \epsilon (-1)^k \prod_{p|N} \left(1 + \left(\frac{-1}{p} \right) \right) \right) + \frac{1}{2} \dim S_{k+1/2}(4N, \chi_{\epsilon}).$$

Therefore, by Theorem 1.1 and [1], we may confirm the following

(2.15)
$$\dim S_{k+1/2}(N,\chi) - \dim S_{2k}(N,\chi^2) = \frac{1}{3}\tilde{p}_k \left(\sum_{\substack{x \in \mathbf{Z}/N\mathbf{Z} \\ x^2 + x + 1 \equiv 0 \pmod{N}}} \chi(x) - \sum_{\substack{x \in \mathbf{Z}/N\mathbf{Z} \\ x^2 + x + 1 \equiv 0 \pmod{N}}} \chi^2(x) \right).$$

The solution x_i of the congruence $x_i^2 + x_i + 1 \equiv 0 \pmod{p_i}$ is given by

$$\begin{cases} \xi_i^{(p_i-1)/3} \text{ or } (\xi_i^{(p_i-1)/3})^{-1} & \text{if } \left(\frac{-3}{p_i}\right) = 1, \\ 1 & \text{if } p_i = 3. \end{cases}$$

Assume that $p_i = 3$ or $p_i \equiv 1 \pmod{3}$ for every i. Then

(2.17)
$$\sum_{\substack{x \in \mathbf{Z}/N\mathbf{Z} \\ x^2 + x + 1 \equiv 0 \pmod{N}}} \chi(x)$$

$$= \prod_{i=1, p_i \neq 3}^{l} (\chi_i(\xi_i^{(p_i - 1)/3}) + \overline{\chi}_i(\xi_i^{(p_i - 1)/3}))$$

and

$$\sum_{\substack{x \in \mathbf{Z}/N\mathbf{Z} \\ x^2 + x + 1 \equiv 0 \pmod{N}}} \chi^2(x)$$

$$= \prod_{i=1}^{l} (\chi_i^2(\xi_i^{(p_i - 1)/3}) + \overline{\chi}_i^2(\xi_i^{(p_i - 1)/3})).$$

Since $(\chi_i(\xi_i^{(p_i-1)/3}))^3 = 1$, we conclude our assertion.

References

- Cohn, H., and Oesterlé, J.: Dimension des espaces de formes modulaires. Modular Functions of One Variable VI. Lect. Notes in Math., vol. 627, Springer, Berlin-Heidelberg-New York, pp. 69–78 (1977).
- [2] Kohnen, W.: New forms of half integral-integral weight. J. Reine Angew. Math., 333, 32–72 (1982).
- [3] Kohnen, W.: Fourier coefficients of modular forms of half integral weight. Math. Ann., 271, 237–268 (1985).
- [4] Kojima, H.: On the Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces and the critical values of zeta functions (preprint).

- [5] Shimura, G.: On modular forms of half-integral weight. Ann. Math., 97, 440–481 (1973).
- [6] Shimura, G.: On the trace formula for Hecke operators. Acta Math., 132, 245–281 (1974).
- [7] Ueda, M.: The decomposition of the space of cusp forms of half-integral weight and trace formula of Hecke operators. J. Math. Kyoto Univ., 28, 505–555 (1988).