Univalency of certain analytic functions

By Dinggong YANG^{*)} and Shigeyoshi OwA^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 12, 2002)

Abstract: Let \mathcal{A} be the class of functions f(z) which are analytic in the open unit disk **U** with f(0) = 0 and f'(0) = 1. Using $g(z) \in \mathcal{A}$, the subclass $\mathcal{T}(\lambda, \mu, g)$ of \mathcal{A} consisting of functions f(z) is introduced. The object of the present paper is to consider some univalence conditions for functions f(z) belonging to the class $\mathcal{T}(\lambda, \mu, g)$ applying the subordination properties of analytic functions.

Key words: Analytic function; univalent function; starlike function; subordination.

1. Introduction. Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disc $\mathbf{U} = \{z \in \mathbf{C} : |z| < 1\}$. We denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions f(z) which are univalent in \mathbf{U} . Let $g(z) \in \mathcal{A}$ with $(g(z)/z) \neq 0$ for $z \in \mathbf{U}$. Then we say that $f(z) \in \mathcal{A}$ is in the class $\mathcal{T}(\lambda, \mu, g)$ if and only if it satisfies the conditions $(f(z)/z) \neq 0$ in \mathbf{U} and

(1)
$$\left| z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) - \lambda z^2 \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right|$$

 $< \mu \quad (z \in \mathbf{U}),$

where λ is complex with $\operatorname{Re}(\lambda) \geq 0$ and $\mu > 0$.

Let f(z) and g(z) be analytic in **U**. Then f(z) is said to be subordinate to g(z) in **U**, written $f(z) \prec g(z)$, if there exists an analytic function w(z) in **U** such that $|w(z)| \leq |z|$ and f(z) = g(w(z)) for $z \in$ **U**. If g(z) is univalent in **U**, then the subordination $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(\mathbf{U}) \subset$ $g(\mathbf{U})$.

To discuss our problems, we need to recall here the following lemmas.

Lemma 1.1. Let $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots$ $(n \in \mathbf{N} = 1, 2, 3, \cdots)$ be analytic in **U** and let h(z) be analytic and convex univalent in **U** with h(0) = 1. If

$$p(z) + \frac{1}{c}zp'(z) \prec h(z)$$

for $\operatorname{Re}(c) \geq 0$ and $c \neq 0$, then

$$p(z) \prec \frac{c}{n} z^{-(c/n)} \int_0^z t^{(c/n)-1} h(t) dt.$$

The above lemma is due to Miller and Mocanu ([2], p. 170).

Lemma 1.2. Let $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots$ $(n \in \mathbf{N})$ be analytic in \mathbf{U} and h(z) be analytic and starlike (with respect to the origin) univalent in \mathbf{U} with h(0) = 0. If $zp'(z) \prec h(z)$, then

$$p(z) \prec 1 + \frac{1}{n} \int_0^z \frac{h(t)}{t} dt.$$

Lemma 1.2 was given by Yang [5].

2. Univalency of functions. Now, our first result is contained in

Theorem 2.1. If
$$f(z) \in \mathcal{T}(\lambda, \mu, g)$$
 and

(2)
$$\delta(g) \ge \frac{\mu}{|1+2\lambda|}$$

for $\operatorname{Re}(\lambda) \geq 0$, $\mu > 0$ and

(3)
$$\delta(g) = \inf \left\{ \left| \frac{\frac{1}{g(z_1)} - \frac{1}{g(z_2)}}{z_1 - z_2} \right| : z_1 \neq z_2, \\ 0 < |z_1| < 1, 0 < |z_2| < 1 \right\},$$

then $f(z) \in \mathcal{S}$.

Proof. Let us define the function p(z) by

(4)
$$p(z) = 1 + z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right)$$

for $f(z) \in \mathcal{T}(\lambda, \mu, g)$. Then $p(z) = 1 + p_2 z^2 + p_3 z^3 + \cdots$ is analytic in **U**,

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C45. *) Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, People's Republic of China.

^{**)} Department of Mathematics, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502.

No. 7]

Univalency of certain analytic functions

$$p(z) = 1 + \left(\frac{z}{f(z)} - \frac{z}{g(z)}\right) - z\left(\frac{z}{f(z)} - \frac{z}{g(z)}\right)'$$

and

(5)
$$zp'(z) = -z^2 \left(\frac{z}{f(z)} - \frac{z}{g(z)}\right)''.$$

Hence

$$p(z) + \lambda z p'(z) = 1 + z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) - \lambda z^2 \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)''$$

and it follows from (1) that

$$p(z) + \lambda z p'(z) \prec 1 + \mu z.$$

Since $h(z) = 1 + \mu z$ is analytic and convex univalent in **U** with h(0) = 1, an application of Lemma 1.1 with n = 2 and $c = (1/\lambda)$ yields

(6)
$$p(z) \prec 1 + \frac{\mu}{1+2\lambda}z,$$

where $\operatorname{Re}(\lambda) \geq 0$, $\lambda \neq 0$, and $\mu > 0$. It is clear that the subordination (6) is also valid for $\lambda = 0$.

From (4), (6) and the Schwarz lemma, we have that

(7)
$$\left|\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2}\right| \leq \frac{\mu}{|1+2\lambda|} \quad (z \in \mathbf{U})$$

for $\operatorname{Re}(\lambda) \geq 0$ and $\mu > 0$. Since

$$\int_{z_1}^{z_2} \left(\frac{f'(t)}{f(t)^2} - \frac{g'(t)}{g(t)^2} \right) dt$$

= $\left(\frac{1}{f(z_1)} - \frac{1}{g(z_1)} \right) - \left(\frac{1}{f(z_2)} - \frac{1}{g(z_2)} \right),$

where $z_1 \in \mathbf{U}, z_2 \in \mathbf{U}, z_1 \neq z_2$, and the path of the integration is the line segment from z_1 to z_2 , it follows from (7) that

(8)
$$\left| \left(\frac{1}{f(z_1)} - \frac{1}{f(z_2)} \right) - \left(\frac{1}{g(z_1)} - \frac{1}{g(z_2)} \right) \right| \leq \frac{\mu}{|1+2\lambda|} |z_1 - z_2|.$$

We wish to show that $f(z_1) \neq f(z_2)$. If we suppose that $f(z_1) = f(z_2)$, then (8) becomes

$$\left|\frac{1}{g(z_1)} - \frac{1}{g(z_2)}\right| \le \frac{\mu}{|1 + 2\lambda|} |z_1 - z_2|$$

where $z_1 \neq z_2$ and $z_1 z_2 \neq 0$. This contradicts the conditions (2) and (3) of the theorem. Hence we conclude that $f(z) \in S$.

Corollary 2.1. Let $f(z) \in \mathcal{A}$ satisfy $(f(z)/z) \neq 0$ in U and

$$\begin{split} & \left| \frac{z^2 f'(z)}{f(z)^2} - \frac{1 + 2\alpha z}{(1 + \alpha z)^2} \right. \\ & \left. - \lambda z^2 \bigg\{ \left(\frac{z}{f(z)} \right)'' - \frac{2\alpha^2}{(1 + \alpha z)^3} \bigg\} \bigg| < \mu \quad (z \in \mathbf{U}), \end{split}$$
where $\operatorname{Re}(\lambda) \ge 0, \ \mu > 0, \ |\alpha| < (1/2) \ and$

$$\frac{\mu}{|1+2\lambda|} \leq \frac{1-2|\alpha|}{(1-|\alpha|)^2}.$$

Then $f(z) \in \mathcal{S}$.

Proof. Let $g(z) = z + \alpha z^2$ with $|\alpha| < (1/2)$. Then, for $z_1 \neq z_2$, $0 < |z_1| < 1$ and $0 < |z_2| < 1$,

$$\frac{z_1 - z_2}{\frac{1}{g(z_1)} - \frac{1}{g(z_2)}} \bigg| = \bigg| \frac{z_1 z_2 (1 + \alpha z_1) (1 + \alpha z_2)}{1 + \alpha (z_1 + z_2)} \bigg|$$
$$= |z_1 z_2| \bigg| 1 + \frac{\alpha^2 z_1 z_2}{1 + \alpha (z_1 + z_2)} \bigg|$$
$$\leq |z_1 z_2| \bigg(1 + \frac{|\alpha|^2 |z_1 z_2|}{1 - |\alpha| (|z_1| + |z_2|)} \bigg)$$
$$< \frac{(1 - |\alpha|)^2}{1 - 2|\alpha|}.$$

Thus we easily have

$$\delta(g) = \frac{1 - 2|\alpha|}{(1 - |\alpha|)^2} > 0.$$

Now the corollary follows immediately from Theorem 2.1. $\hfill \Box$

Remark 1. Taking $\lambda = \alpha = 0$ and $\mu = 1$, the corollary reduces to the result by Ozaki and Nunokawa [4].

Corollary 2.2. Let

(9)
$$f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} \alpha_n z^n} \in \mathcal{A} \quad and$$
$$g(z) = \frac{z}{1 + \sum_{n=1}^{\infty} \beta_n z^n} \in \mathcal{A},$$

and let $\operatorname{Re}(\lambda) \geq 0$, $\mu > 0$, $\delta(g) \geq (\mu/|1+2\lambda|)$, where $\delta(g)$ is given by (3). If

(10)
$$\sum_{n=2}^{\infty} (n-1)|1+n\lambda||\alpha_n-\beta_n| \leq \mu,$$

then $f(z) \in \mathcal{S}$.

Proof. From (9) and (10), we have

$$\left| z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) - \lambda z^2 \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right|$$
$$= \left| -\sum_{n=2}^{\infty} (n-1)(1+n\lambda)(\alpha_n - \beta_n) z^n \right|$$

D. YANG and S. OWA

$$\leq \sum_{n=2}^{\infty} (n-1)|1+n\lambda||\alpha_n - \beta_n| \leq \mu$$

for $z \in \mathbf{U}$. Hence $f(z) \in \mathcal{T}(\lambda, \mu, g) \subset S$ by using Theorem 1.1.

Next, we derive

Theorem 2.2. Let $0 \leq \lambda_1 < \lambda_2$ and $\mu > 0$. Then $\mathcal{T}(\lambda_2, \mu, g) \subset \mathcal{T}(\lambda_1, \mu, g)$.

Proof. Let the function f(z) be in the class $\mathcal{T}(\lambda_2, \mu, g)$. Then

$$\left| z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) - \lambda_2 z^2 \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right|$$

< μ ($z \in \mathbf{U}$)

and from (7) in the proof of Theorem 1.1, we have

$$\left|\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2}\right| \leq \frac{\mu}{1+2\lambda_2} < \mu \quad (z \in \mathbf{U}).$$

Therefore, for $0 \leq \lambda_1 < \lambda_2$,

$$\begin{split} \left| z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) - \lambda_1 z^2 \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right| \\ = \left| \frac{\lambda_1}{\lambda_2} \left\{ z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) - \lambda_2 z^2 \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right\} \\ + \left(1 - \frac{\lambda_1}{\lambda_2} \right) z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) \right| \\ < \frac{\lambda_1}{\lambda_2} \mu + \left(1 - \frac{\lambda_1}{\lambda_2} \right) \mu = \mu \qquad (z \in \mathbf{U}). \end{split}$$

This shows that $f(z) \in \mathcal{T}(\lambda_1, \mu, g)$.

Next, we find the radius of univalency for functions $f(z) \in \mathcal{T}(\lambda, \mu, g)$.

Theorem 2.3. Let $f(z) \in \mathcal{T}(\lambda, \mu, g)$ with $\operatorname{Re}(\lambda) \geq 0, \mu > 0$ and $g(z) \in S$. Then f(z) is univalent for

$$|z| < \sqrt{\frac{|1+2\lambda|}{\mu+|1+2\lambda|}}$$

Proof. To prove that f(z) is univalent in $|z| \leq \rho$ $(0 < \rho < 1)$, it suffices to show that f(z) is univalent on $|z| = \rho$. Let $z_1 \neq z_2$ and $|z_1| = |z_2| = \rho$. Then from the proof of Theorem 2.1, we see that $f(z_1) = f(z_2)$ leads to

(11)
$$\left| \frac{1}{g(z_1)} - \frac{1}{g(z_2)} \right| \leq \frac{\mu}{|1+2\lambda|} |z_1 - z_2|.$$

On the other hand, since $g(z) \in S$, it is known (see, e.g., Duren [1, p. 127]) that

$$\left|\frac{g(z_1) - g(z_2)}{z_1 - z_2}\right| \ge \frac{1 - \rho^2}{\rho^2} |g(z_1)g(z_2)|,$$

and hence

(12)
$$\left| \frac{g(z_1) - g(z_2)}{z_1 - z_2} \right| > \frac{\mu}{|1 + 2\lambda|} |g(z_1)g(z_2)|$$

for

$$0 < \rho < \rho^* = \sqrt{\frac{|1+2\lambda|}{\mu+|1+2\lambda|}}.$$

In view of (11) and (12), we know that $f(z_1) \neq f(z_2)$ and so f(z) is univalent on $|z| = \rho$ ($0 < \rho < \rho^*$). Thus we complete the proof of the theorem.

For $\lambda = 0$ and $\mu > 0$, Theorem 2.3 yields the following corollary.

Corollary 2.3. Let $f(z) \in \mathcal{A}$ with $(f(z)/z) \neq 0$ for $z \in \mathbf{U}$ and let $g(z) \in \mathcal{S}$. If f(z) satisfies

$$\left|\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2}\right| \le \mu \quad (z \in \mathbf{U}),$$

then f(z) is univalent for

$$|z| < \frac{1}{\sqrt{1+\mu}} \quad (\mu > 0).$$

Furthermore, we derive

Theorem 2.4. Let $f(z) \in \mathcal{A}$, $g(z) \in \mathcal{A}$ with $f(z)g(z) \neq 0$ for 0 < |z| < 1 and

(13)
$$\delta(g) \ge 1,$$

where $\delta(g)$ is given by (3). If

(14)
$$\left| \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right| \leq 2 \quad (z \in \mathbf{U}),$$

then $f(z) \in \mathcal{S}$.

Proof. From (5) in the proof of Theorem 2.1 and the condition (14), we see that

$$zp'(z) \prec 2z,$$

where

$$p(z) = 1 + z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) = 1 + p_2 z^2 + \cdots$$

is analytic in **U**. Hence, by Lemma 1.2 with h(z) = 2z and n = 2, we have that

$$p(z) \prec 1 + \frac{1}{2} \int_0^z \frac{h(t)}{t} dt = 1 + z$$

which is equivalent to

(15)
$$\left| z^2 \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) \right| < 1 \quad (z \in \mathbf{U}).$$

[Vol. 78(A),

150

Now, from (13) and (15) and Theorem 2.1 with $\lambda = 0$ and $\mu = 1$, we conclude that $f(z) \in \mathcal{S}$.

In [3, Theorem], Nunokawa, Obradović and Owa showed that

Theorem A. Let $f(z) \in \mathcal{A}$ with $(f(z)/z) \neq 0$ for $z \in \mathbf{U}$ and

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le 1 \quad (z \in \mathbf{U}).$$

Then $f(z) \in \mathcal{S}$.

Letting g(z) = z in Theorem 2.4, we have an improvement of Theorem A as follows:

Corollary 2.4. Let $f(z) \in \mathcal{A}$ with $(f(z)/z) \neq 0$ for $z \in \mathbf{U}$ and

(16)
$$\left| \left(\frac{z}{f(z)} \right)'' \right| \leq 2 \quad (z \in \mathbf{U}).$$

Then $f(z) \in \mathcal{S}$.

Remark 2. Recently, Yang and Liu [6] obtained the corollary by using the another method. Further, the bound 2 in (16) is best possible as shown by

$$f(z) = \frac{z}{(1+z)^2}.$$

3. Coefficient inequality. The coefficient inequality for f(z) and g(z) when $f(z) \in \mathcal{T}(\lambda, \mu, g)$ is shown in

Theorem 3.1. Let

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{T}(\lambda, \mu, g),$$

where $\operatorname{Re}(\lambda) \geq 0, \ \mu > 0, \ and$

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n.$$

Then

(17)
$$|(a_2^2 - a_3) - (b_2^2 - b_3)| \leq \frac{\mu}{|1 + 2\lambda|}.$$

Proof. Since

$$\left(\frac{1}{g(z)} - \frac{1}{f(z)}\right)\Big|_{z=0} = a_2 - b_2$$

from (7) in the proof of Theorem 2.1, we deduce that

(18)
$$\left| \frac{1}{g(z)} - \frac{1}{f(z)} - (a_2 - b_2) \right| = \left| \int_0^z \left(\frac{f'(z)}{f(z)^2} - \frac{g'(z)}{g(z)^2} \right) dt \right|$$

$$\stackrel{\leq}{=} \frac{\mu}{|1+2\lambda|} |z| \quad (z \in \mathbf{U}).$$

Note that

19)
$$\frac{1}{f(z)} - \frac{1}{g(z)} + (a_2 - b_2)$$
$$= ((a_2^2 - a_3) - (b_2^2 - b_3))z + \sum_{n=2}^{\infty} c_n z^n.$$

It follows from (18) and (19) that

$$\begin{aligned} |(a_2^2 - a_3) - (b_2^2 - b_3)|^2 r^2 + \sum_{n=2}^{\infty} |c_n|^2 r^{2n} \\ &= \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{1}{f(re^{i\theta})} - \frac{1}{g(re^{i\theta})} + (a_2 - b_2) \right|^2 d\theta \\ &\leq \left(\frac{\mu}{|1 + 2\lambda|} \right)^2 r^2 \quad (0 < r < 1), \end{aligned}$$

which yields the coefficient inequality (17).

Finally, for $0 < \mu \leq |1+2\lambda|$, it is readily verified that the equality in (17) is attained, for example, by

$$f(z) = \frac{z}{(1 - \alpha z)^2}$$

= $z + 2\alpha z^2 + 3\alpha^2 z^3 + \dots \in \mathcal{T}(\lambda, \mu, g),$

where

0

$$g(z) = \frac{z}{(1 - \beta z)^2} = z + 2\beta z^2 + 3\beta^2 z^3 + \cdots,$$

$$\leq \alpha \leq 1, \ 0 \leq \beta \leq 1, \ \text{and} \ |\alpha^2 - \beta^2| = (\mu/|1 + 2\lambda|).$$

References

- Duren, P. L.: Univalent Functions. Springer-Verlag, New York (1983).
- [2] Miller, S. S., and Mocanu, P. T.: Differential subordinations and univalent functions. Michigan Math. J., 28, 157–171 (1981).
- [3] Nunokawa, M., Obradović, M., and Owa, S.: One criterion for univalency. Proc. Amer. Math. Soc., 106, 1035–1037 (1989).
- [4] Ozaki, S., and Nunokawa, M.: The Schwarzian derivative and univalent functions. Proc. Amer. Math. Soc., 33, 392–394 (1972).
- [5] Yang, D.: Some criteria for multivalently starlikeness. Southeast Asian Bull. Math., 24, 491–497 (2000).
- [6] Yang, D., and Liu, J.: On a class of univalent functions. Internat. J. Math. Math. Sci., 22, 605–610 (1999).

151

No. 7]