Univalency of certain analytic functions

By Dinggong Yang*) and Shigeyoshi Owa**)
(Communicated by Heisuke Hironaka, M. J. a., Sept. 12, 2002)

Abstract

Let \mathcal{A} be the class of functions $f(z)$ which are analytic in the open unit disk \mathbf{U} with $f(0)=0$ and $f^{\prime}(0)=1$. Using $g(z) \in \mathcal{A}$, the subclass $\mathcal{T}(\lambda, \mu, g)$ of \mathcal{A} consisting of functions $f(z)$ is introduced. The object of the present paper is to consider some univalence conditions for functions $f(z)$ belonging to the class $\mathcal{T}(\lambda, \mu, g)$ applying the subordination properties of analytic functions.

Key words: Analytic function; univalent function; starlike function; subordination.

1. Introduction. Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disc $\mathbf{U}=$ $\{z \in \mathbf{C}:|z|<1\}$. We denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions $f(z)$ which are univalent in \mathbf{U}. Let $g(z) \in \mathcal{A}$ with $(g(z) / z) \neq 0$ for $z \in \mathbf{U}$. Then we say that $f(z) \in \mathcal{A}$ is in the class $\mathcal{T}(\lambda, \mu, g)$ if and only if it satisfies the conditions $(f(z) / z) \neq 0$ in \mathbf{U} and
(1) $\left|z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)-\lambda z^{2}\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime}\right|$

$$
<\mu \quad(z \in \mathbf{U})
$$

where λ is complex with $\operatorname{Re}(\lambda) \geqq 0$ and $\mu>0$.
Let $f(z)$ and $g(z)$ be analytic in \mathbf{U}. Then $f(z)$ is said to be subordinate to $g(z)$ in \mathbf{U}, written $f(z) \prec$ $g(z)$, if there exists an analytic function $w(z)$ in \mathbf{U} such that $|w(z)| \leqq|z|$ and $f(z)=g(w(z))$ for $z \in$ \mathbf{U}. If $g(z)$ is univalent in \mathbf{U}, then the subordination $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(\mathbf{U}) \subset$ $g(\mathbf{U})$.

To discuss our problems, we need to recall here the following lemmas.

Lemma 1.1. Let $p(z)=1+p_{n} z^{n}+$ $p_{n+1} z^{n+1}+\cdots(n \in \mathbf{N}=1,2,3, \cdots)$ be analytic in \mathbf{U} and let $h(z)$ be analytic and convex univalent in \mathbf{U} with $h(0)=1$. If

[^0]$$
p(z)+\frac{1}{c} z p^{\prime}(z) \prec h(z)
$$
for $\operatorname{Re}(c) \geqq 0$ and $c \neq 0$, then
$$
p(z) \prec \frac{c}{n} z^{-(c / n)} \int_{0}^{z} t^{(c / n)-1} h(t) d t .
$$

The above lemma is due to Miller and Mocanu ([2], p. 170).

Lemma 1.2. Let $p(z)=1+p_{n} z^{n}+$ $p_{n+1} z^{n+1}+\cdots(n \in \mathbf{N})$ be analytic in \mathbf{U} and $h(z)$ be analytic and starlike (with respect to the origin) univalent in \mathbf{U} with $h(0)=0$. If $z p^{\prime}(z) \prec h(z)$, then

$$
p(z) \prec 1+\frac{1}{n} \int_{0}^{z} \frac{h(t)}{t} d t .
$$

Lemma 1.2 was given by Yang [5].
2. Univalency of functions. Now, our first result is contained in

Theorem 2.1. If $f(z) \in \mathcal{T}(\lambda, \mu, g)$ and

$$
\begin{equation*}
\delta(g) \geqq \frac{\mu}{|1+2 \lambda|} \tag{2}
\end{equation*}
$$

for $\operatorname{Re}(\lambda) \geqq 0, \mu>0$ and

$$
\begin{align*}
& \delta(g)=\inf \left\{\left|\frac{\frac{1}{g\left(z_{1}\right)}-\frac{1}{g\left(z_{2}\right)}}{z_{1}-z_{2}}\right|: z_{1} \neq z_{2}\right. \tag{3}\\
&\left.0<\left|z_{1}\right|<1,0<\left|z_{2}\right|<1\right\}
\end{align*}
$$

then $f(z) \in \mathcal{S}$.
Proof. Let us define the function $p(z)$ by

$$
\begin{equation*}
p(z)=1+z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right) \tag{4}
\end{equation*}
$$

for $f(z) \in \mathcal{T}(\lambda, \mu, g)$. Then $p(z)=1+p_{2} z^{2}+p_{3} z^{3}+$ \cdots is analytic in \mathbf{U},

$$
p(z)=1+\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)-z\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime}
$$

and

$$
\begin{equation*}
z p^{\prime}(z)=-z^{2}\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime} \tag{5}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& p(z)+\lambda z p^{\prime}(z) \\
& =1+z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)-\lambda z^{2}\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime}
\end{aligned}
$$

and it follows from (1) that

$$
p(z)+\lambda z p^{\prime}(z) \prec 1+\mu z .
$$

Since $h(z)=1+\mu z$ is analytic and convex univalent in \mathbf{U} with $h(0)=1$, an application of Lemma 1.1 with $n=2$ and $c=(1 / \lambda)$ yields

$$
\begin{equation*}
p(z) \prec 1+\frac{\mu}{1+2 \lambda} z, \tag{6}
\end{equation*}
$$

where $\operatorname{Re}(\lambda) \geqq 0, \lambda \neq 0$, and $\mu>0$. It is clear that the subordination (6) is also valid for $\lambda=0$.

From (4), (6) and the Schwarz lemma, we have that

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right| \leqq \frac{\mu}{|1+2 \lambda|} \quad(z \in \mathbf{U}) \tag{7}
\end{equation*}
$$

for $\operatorname{Re}(\lambda) \geqq 0$ and $\mu>0$. Since

$$
\begin{aligned}
& \int_{z_{1}}^{z_{2}}\left(\frac{f^{\prime}(t)}{f(t)^{2}}-\frac{g^{\prime}(t)}{g(t)^{2}}\right) d t \\
& \quad=\left(\frac{1}{f\left(z_{1}\right)}-\frac{1}{g\left(z_{1}\right)}\right)-\left(\frac{1}{f\left(z_{2}\right)}-\frac{1}{g\left(z_{2}\right)}\right)
\end{aligned}
$$

where $z_{1} \in \mathbf{U}, z_{2} \in \mathbf{U}, z_{1} \neq z_{2}$, and the path of the integration is the line segment from z_{1} to z_{2}, it follows from (7) that

$$
\begin{align*}
& \left|\left(\frac{1}{f\left(z_{1}\right)}-\frac{1}{f\left(z_{2}\right)}\right)-\left(\frac{1}{g\left(z_{1}\right)}-\frac{1}{g\left(z_{2}\right)}\right)\right| \tag{8}\\
& \quad \leqq \frac{\mu}{|1+2 \lambda|}\left|z_{1}-z_{2}\right| .
\end{align*}
$$

We wish to show that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$. If we suppose that $f\left(z_{1}\right)=f\left(z_{2}\right)$, then (8) becomes

$$
\left|\frac{1}{g\left(z_{1}\right)}-\frac{1}{g\left(z_{2}\right)}\right| \leqq \frac{\mu}{|1+2 \lambda|}\left|z_{1}-z_{2}\right|
$$

where $z_{1} \neq z_{2}$ and $z_{1} z_{2} \neq 0$. This contradicts the conditions (2) and (3) of the theorem. Hence we conclude that $f(z) \in \mathcal{S}$.

Corollary 2.1. Let $f(z) \in \mathcal{A}$ satisfy $(f(z) / z) \neq 0$ in \mathbf{U} and

$$
\begin{aligned}
& \left\lvert\, \frac{z^{2} f^{\prime}(z)}{f(z)^{2}}-\frac{1+2 \alpha z}{(1+\alpha z)^{2}}\right. \\
& \left.\quad-\lambda z^{2}\left\{\left(\frac{z}{f(z)}\right)^{\prime \prime}-\frac{2 \alpha^{2}}{(1+\alpha z)^{3}}\right\} \right\rvert\,<\mu \quad(z \in \mathbf{U})
\end{aligned}
$$

where $\operatorname{Re}(\lambda) \geqq 0, \mu>0,|\alpha|<(1 / 2)$ and

$$
\frac{\mu}{|1+2 \lambda|} \leqq \frac{1-2|\alpha|}{(1-|\alpha|)^{2}}
$$

Then $f(z) \in \mathcal{S}$.
Proof. Let $g(z)=z+\alpha z^{2}$ with $|\alpha|<(1 / 2)$. Then, for $z_{1} \neq z_{2}, 0<\left|z_{1}\right|<1$ and $0<\left|z_{2}\right|<1$,

$$
\begin{aligned}
\left|\frac{z_{1}-z_{2}}{\frac{1}{g\left(z_{1}\right)}-\frac{1}{g\left(z_{2}\right)}}\right| & =\left|\frac{z_{1} z_{2}\left(1+\alpha z_{1}\right)\left(1+\alpha z_{2}\right)}{1+\alpha\left(z_{1}+z_{2}\right)}\right| \\
& =\left|z_{1} z_{2}\right|\left|1+\frac{\alpha^{2} z_{1} z_{2}}{1+\alpha\left(z_{1}+z_{2}\right)}\right| \\
& \leqq\left|z_{1} z_{2}\right|\left(1+\frac{|\alpha|^{2}\left|z_{1} z_{2}\right|}{1-|\alpha|\left(\left|z_{1}\right|+\left|z_{2}\right|\right)}\right) \\
& <\frac{(1-|\alpha|)^{2}}{1-2|\alpha|}
\end{aligned}
$$

Thus we easily have

$$
\delta(g)=\frac{1-2|\alpha|}{(1-|\alpha|)^{2}}>0
$$

Now the corollary follows immediately from Theorem 2.1.

Remark 1. Taking $\lambda=\alpha=0$ and $\mu=1$, the corollary reduces to the result by Ozaki and Nunokawa [4].

Corollary 2.2. Let
(9) $\quad f(z)=\frac{z}{1+\sum_{n=1}^{\infty} \alpha_{n} z^{n}} \in \mathcal{A} \quad$ and

$$
g(z)=\frac{z}{1+\sum_{n=1}^{\infty} \beta_{n} z^{n}} \in \mathcal{A}
$$

and let $\operatorname{Re}(\lambda) \geqq 0, \mu>0, \delta(g) \geqq(\mu /|1+2 \lambda|)$, where $\delta(g)$ is given by (3). If

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-1)|1+n \lambda|\left|\alpha_{n}-\beta_{n}\right| \leqq \mu \tag{10}
\end{equation*}
$$

then $f(z) \in \mathcal{S}$.
Proof. From (9) and (10), we have

$$
\begin{aligned}
& \left|z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)-\lambda z^{2}\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime}\right| \\
& \quad=\left|-\sum_{n=2}^{\infty}(n-1)(1+n \lambda)\left(\alpha_{n}-\beta_{n}\right) z^{n}\right|
\end{aligned}
$$

$$
\leqq \sum_{n=2}^{\infty}(n-1)|1+n \lambda|\left|\alpha_{n}-\beta_{n}\right| \leqq \mu
$$

for $z \in \mathbf{U}$. Hence $f(z) \in \mathcal{T}(\lambda, \mu, g) \subset \mathcal{S}$ by using Theorem 1.1.

Next, we derive

Theorem 2.2. Let $0 \leqq \lambda_{1}<\lambda_{2}$ and $\mu>0$. Then $\mathcal{T}\left(\lambda_{2}, \mu, g\right) \subset \mathcal{T}\left(\lambda_{1}, \mu, g\right)$.

Proof. Let the function $f(z)$ be in the class $\mathcal{T}\left(\lambda_{2}, \mu, g\right)$. Then

$$
\begin{aligned}
& \left|z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)-\lambda_{2} z^{2}\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime}\right| \\
& \quad<\mu \quad(z \in \mathbf{U})
\end{aligned}
$$

and from (7) in the proof of Theorem 1.1, we have

$$
\left|\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right| \leqq \frac{\mu}{1+2 \lambda_{2}}<\mu \quad(z \in \mathbf{U})
$$

Therefore, for $0 \leqq \lambda_{1}<\lambda_{2}$,

$$
\begin{aligned}
& \left|z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)-\lambda_{1} z^{2}\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime}\right| \\
& =\left\lvert\, \frac{\lambda_{1}}{\lambda_{2}}\left\{z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)-\lambda_{2} z^{2}\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime}\right\}\right. \\
& \left.\quad+\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right) \right\rvert\, \\
& \quad<\frac{\lambda_{1}}{\lambda_{2}} \mu+\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) \mu=\mu \quad(z \in \mathbf{U})
\end{aligned}
$$

This shows that $f(z) \in \mathcal{T}\left(\lambda_{1}, \mu, g\right)$.
Next, we find the radius of univalency for functions $f(z) \in \mathcal{T}(\lambda, \mu, g)$.

Theorem 2.3. Let $f(z) \in \mathcal{T}(\lambda, \mu, g)$ with $\operatorname{Re}(\lambda) \geqq 0, \mu>0$ and $g(z) \in \mathcal{S}$. Then $f(z)$ is univalent for

$$
|z|<\sqrt{\frac{|1+2 \lambda|}{\mu+|1+2 \lambda|}}
$$

Proof. To prove that $f(z)$ is univalent in $|z| \leqq$ $\rho(0<\rho<1)$, it suffices to show that $f(z)$ is univalent on $|z|=\rho$. Let $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|=$ ρ. Then from the proof of Theorem 2.1, we see that $f\left(z_{1}\right)=f\left(z_{2}\right)$ leads to

$$
\begin{equation*}
\left|\frac{1}{g\left(z_{1}\right)}-\frac{1}{g\left(z_{2}\right)}\right| \leqq \frac{\mu}{|1+2 \lambda|}\left|z_{1}-z_{2}\right| \tag{11}
\end{equation*}
$$

On the other hand, since $g(z) \in \mathcal{S}$, it is known (see, e.g., Duren [1, p. 127]) that

$$
\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{z_{1}-z_{2}}\right| \geqq \frac{1-\rho^{2}}{\rho^{2}}\left|g\left(z_{1}\right) g\left(z_{2}\right)\right|,
$$

and hence

$$
\begin{gather*}
\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{z_{1}-z_{2}}\right|>\frac{\mu}{|1+2 \lambda|}\left|g\left(z_{1}\right) g\left(z_{2}\right)\right| \tag{12}\\
0<\rho<\rho^{*}=\sqrt{\frac{|1+2 \lambda|}{\mu+|1+2 \lambda|}}
\end{gather*}
$$

In view of (11) and (12), we know that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ and so $f(z)$ is univalent on $|z|=\rho\left(0<\rho<\rho^{*}\right)$. Thus we complete the proof of the theorem.

For $\lambda=0$ and $\mu>0$, Theorem 2.3 yields the following corollary.

Corollary 2.3. Let $f(z) \in \mathcal{A}$ with $(f(z) / z) \neq$ 0 for $z \in \mathbf{U}$ and let $g(z) \in \mathcal{S}$. If $f(z)$ satisfies

$$
\left|\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right| \leqq \mu \quad(z \in \mathbf{U})
$$

then $f(z)$ is univalent for

$$
|z|<\frac{1}{\sqrt{1+\mu}} \quad(\mu>0)
$$

Furthermore, we derive
Theorem 2.4. Let $f(z) \in \mathcal{A}, g(z) \in \mathcal{A}$ with $f(z) g(z) \neq 0$ for $0<|z|<1$ and

$$
\begin{equation*}
\delta(g) \geqq 1 \tag{13}
\end{equation*}
$$

where $\delta(g)$ is given by (3). If

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}-\frac{z}{g(z)}\right)^{\prime \prime}\right| \leqq 2 \quad(z \in \mathbf{U}) \tag{14}
\end{equation*}
$$

then $f(z) \in \mathcal{S}$.
Proof. From (5) in the proof of Theorem 2.1 and the condition (14), we see that

$$
z p^{\prime}(z) \prec 2 z
$$

where

$$
p(z)=1+z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)=1+p_{2} z^{2}+\cdots
$$

is analytic in U. Hence, by Lemma 1.2 with $h(z)=$ $2 z$ and $n=2$, we have that

$$
p(z) \prec 1+\frac{1}{2} \int_{0}^{z} \frac{h(t)}{t} d t=1+z
$$

which is equivalent to

$$
\begin{equation*}
\left|z^{2}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right)\right|<1 \quad(z \in \mathbf{U}) \tag{15}
\end{equation*}
$$

Now, from (13) and (15) and Theorem 2.1 with $\lambda=$ 0 and $\mu=1$, we conclude that $f(z) \in \mathcal{S}$.

In [3, Theorem], Nunokawa, Obradović and Owa showed that

Theorem A. Let $f(z) \in \mathcal{A}$ with $(f(z) / z) \neq 0$ for $z \in \mathbf{U}$ and

$$
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leqq 1 \quad(z \in \mathbf{U})
$$

Then $f(z) \in \mathcal{S}$.
Letting $g(z)=z$ in Theorem 2.4, we have an improvement of Theorem A as follows:

Corollary 2.4. Let $f(z) \in \mathcal{A}$ with $(f(z) / z) \neq$ 0 for $z \in \mathbf{U}$ and

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leqq 2 \quad(z \in \mathbf{U}) \tag{16}
\end{equation*}
$$

Then $f(z) \in \mathcal{S}$.
Remark 2. Recently, Yang and Liu [6] obtained the corollary by using the another method. Further, the bound 2 in (16) is best possible as shown by

$$
f(z)=\frac{z}{(1+z)^{2}}
$$

3. Coefficient inequality. The coefficient inequality for $f(z)$ and $g(z)$ when $f(z) \in \mathcal{T}(\lambda, \mu, g)$ is shown in

Theorem 3.1. Let

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{T}(\lambda, \mu, g)
$$

where $\operatorname{Re}(\lambda) \geqq 0, \mu>0$, and

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

Then

$$
\begin{equation*}
\left|\left(a_{2}^{2}-a_{3}\right)-\left(b_{2}^{2}-b_{3}\right)\right| \leqq \frac{\mu}{|1+2 \lambda|} \tag{17}
\end{equation*}
$$

Proof. Since

$$
\left.\left(\frac{1}{g(z)}-\frac{1}{f(z)}\right)\right|_{z=0}=a_{2}-b_{2}
$$

from (7) in the proof of Theorem 2.1, we deduce that

$$
\begin{align*}
& \left|\frac{1}{g(z)}-\frac{1}{f(z)}-\left(a_{2}-b_{2}\right)\right| \tag{18}\\
& \quad=\left|\int_{0}^{z}\left(\frac{f^{\prime}(z)}{f(z)^{2}}-\frac{g^{\prime}(z)}{g(z)^{2}}\right) d t\right|
\end{align*}
$$

$$
\leqq \frac{\mu}{|1+2 \lambda|}|z| \quad(z \in \mathbf{U})
$$

Note that

$$
\begin{align*}
& \frac{1}{f(z)}-\frac{1}{g(z)}+\left(a_{2}-b_{2}\right) \tag{19}\\
& \quad=\left(\left(a_{2}^{2}-a_{3}\right)-\left(b_{2}^{2}-b_{3}\right)\right) z+\sum_{n=2}^{\infty} c_{n} z^{n}
\end{align*}
$$

It follows from (18) and (19) that

$$
\begin{aligned}
& \left|\left(a_{2}^{2}-a_{3}\right)-\left(b_{2}^{2}-b_{3}\right)\right|^{2} r^{2}+\sum_{n=2}^{\infty}\left|c_{n}\right|^{2} r^{2 n} \\
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{1}{f\left(r e^{i \theta}\right)}-\frac{1}{g\left(r e^{i \theta}\right)}+\left(a_{2}-b_{2}\right)\right|^{2} d \theta \\
& \quad \leqq\left(\frac{\mu}{|1+2 \lambda|}\right)^{2} r^{2} \quad(0<r<1)
\end{aligned}
$$

which yields the coefficient inequality (17).
Finally, for $0<\mu \leqq|1+2 \lambda|$, it is readily verified that the equality in (17) is attained, for example, by

$$
\begin{aligned}
f(z) & =\frac{z}{(1-\alpha z)^{2}} \\
& =z+2 \alpha z^{2}+3 \alpha^{2} z^{3}+\cdots \in \mathcal{T}(\lambda, \mu, g)
\end{aligned}
$$

where

$$
g(z)=\frac{z}{(1-\beta z)^{2}}=z+2 \beta z^{2}+3 \beta^{2} z^{3}+\cdots
$$

$0 \leqq \alpha \leqq 1,0 \leqq \beta \leqq 1$, and $\left|\alpha^{2}-\beta^{2}\right|=(\mu /|1+2 \lambda|)$.

References

[1] Duren, P. L.: Univalent Functions. SpringerVerlag, New York (1983).
[2] Miller, S. S., and Mocanu, P. T.: Differential subordinations and univalent functions. Michigan Math. J., 28, 157-171 (1981).
[3] Nunokawa, M., Obradović, M., and Owa, S.: One criterion for univalency. Proc. Amer. Math. Soc., 106, 1035-1037 (1989).
[4] Ozaki, S., and Nunokawa, M.: The Schwarzian derivative and univalent functions. Proc. Amer. Math. Soc., 33, 392-394 (1972).
[5] Yang, D.: Some criteria for multivalently starlikeness. Southeast Asian Bull. Math., 24, 491-497 (2000).
[6] Yang, D., and Liu, J.: On a class of univalent functions. Internat. J. Math. Math. Sci., 22, 605-610 (1999).

[^0]: 2000 Mathematics Subject Classification. Primary 30C45.
 *) Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, People's Republic of China.
 **) Department of Mathematics, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502.

