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A characterization of the second Veronese embedding

into a complex projective space

By Sadahiro Maeda
∗) and Toshiaki Adachi

∗∗)

(Communicated by Shigefumi Mori, m. j. a., Sept. 12, 2001)

Abstract: We study curves of order 2 from the viewpoint of submanifold theory. We give
a characterization of the parallel Kähler embeddings of a complex projective space into an ambient
complex projective space from this point of view. This characterization is an improvement of the
results in [N, PS].
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1. Introduction. When we study Rieman-
nian submanifolds, it is natural to investigate their
properties by observing the extrinsic shape of their
geodesics. In this paper we pay attention to the ex-
trinsic shape of geodesics on a complex projective
space CPn(c) of constant holomorphic sectional cur-
vature c in a complex projective space CPN (c̃) of
constant holomorphic sectional curvature c̃ through
a Kähler isometric full immersion. By virtue of
the classification theorem ([C, NO]) this Kähler im-
mersion is nothing but a Kähler embedding fk :
CPn(c/k) → CPN (c) given by

[zi]0�i�n �→
[√

k!
k0! · · · kn!

zk0
0 · · · zkn

n

]
k0+···+kn=k,

where [∗] means the point of the projective
space with the homogeneous coordinates ∗ and
N = (n + k)!/(n!k!) − 1. We usually call fk the
k-th Veronese embedding. It is known that the sec-
ond fundamental form of fk is parallel if and only if
k = 1 or k = 2.

These parallel embeddings fk (k = 1, 2) have
various geometric properties. For example, the sec-
ond Veronese embedding f2 maps each geodesic on
the submanifold CPn(c/2) to a circle of curvature√
c/2 in a real projective plane RP 2(c/4) of cur-

vature c/4 which is a totally real totally geodesic
submanifold of the ambient manifold CPn(n+3)/2(c).
Using such a property, for a Kähler isometric full

2000 Mathematics Subject Classification. Primary 53B25,

Secondary 53C40.
∗) Department of Mathematics, Shimane University, 1060,

Nishi-Kawatsucho, Matsue, Shimane 690-8504.
∗∗) Department of Mathematics, Nagoya Institute of Tech-

nology, Gokisocho, Showa-ku, Nagoya, Aichi 466-8555.

immersion f : Mn → CPN (c) of an n-dimensional
Kähler manifold into an N -dimensional complex pro-
jective space of constant holomorphic sectional cur-
vature c, K. Nomizu [N] showed that either Mn =
CPn(c) and N = n, or Mn = CPn(c/2), N =
n(n + 3)/2 and f is locally equivalent to the sec-
ond Veronese embedding f2 if and only if for each
geodesic γ on Mn the curve f ◦ γ is a circle on
CPN (c). The main purpose of this paper is to im-
prove this characterization. We relax the condition
that f ◦γ is a circle to the condition that it is a curve
of order 2. Our main result is also an improvement of
the result for k = 1, 2 by J.S. Pak and K. Sakamoto
(see Theorem B).

2. Curves of order 2. Let M be a Rieman-
nian manifold with Riemannian metric 〈 , 〉. In order
to state our result, we introduce the notion of curves
of order 2. A smooth curve γ on M parametrized
by its arclength s is called a curve of order 2 if it
satisfies the following differential equation

‖∇γ̇ γ̇‖2{∇γ̇∇γ̇ γ̇ + ‖∇γ̇ γ̇‖2γ̇}(2.1)

= 〈∇γ̇ γ̇,∇γ̇∇γ̇ γ̇〉∇γ̇ γ̇,

where ∇γ̇ denotes the covariant differentiation along
γ with respect to the Riemannian connection ∇ of
M .

To see that the class of curves of order 2 is very
wide, we recall the notion of Frenet curves. A smooth
curve γ = γ(s) parametrized by its arclength s is
called a Frenet curve of proper order d if there ex-
ist orthonormal frame fields {V1 = γ̇, . . . , Vd} along
γ and positive functions κ1(s), . . . , κd−1(s) which
satisfy the following system of ordinary differential
equations
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∇γ̇Vj(s) = −κj−1(s)Vj−1(s)(2.2)

+ κj(s)Vj+1(s), j = 1, . . . , d,

where V0 ≡ Vd+1 ≡ 0. The equation (2.2) is called
the Frenet formula for the Frenet curve γ. The func-
tions κj(s) (j = 1, . . . , d − 1) and the orthonormal
frame {V1, . . . , Vd} are called the curvatures and the
Frenet frame of γ, respectively.

A Frenet curve is called a Frenet curve of order
d if it is a Frenet curve of proper order r(� d). For
a Frenet curve of order d which is of proper order
r(� d), we use the convention in (2.2) that κj ≡ 0
(r � j � d− 1) and Vj ≡ 0 (r + 1 � j � d). We call
a curve a helix when all its curvatures are constant.
A helix of order 1 is nothing but a geodesic. A helix
of order 2, namely a curve which satisfies ∇γ̇V1(s) =
κV2(s), ∇γ̇V2(s) = −κV1(s) and V1(s) = γ̇(s), is
called a circle of curvature κ. We regard a geodesic
as a circle of null curvature. By direct calculation we
know that in any Riemannian manifold every Frenet
curve of order 2 satisfies the equation (2.1), so that
in particular all geodesics and circles must satisfy
this equation. But, in general, a curve of order 2 is
not a Frenet curve of order 2. In fact, we admit the
case that a curve γ of order 2 has an inflection point
γ(s0), that is a point which satisfies (∇γ̇ γ̇)(s0) = 0.

We now state our main result in this paper.
Theorem 1. Let f : Mn → CPN (c) be a

Kähler isometric full immersion of an n-dimensional
Kähler manifold into an N -dimensional complex pro-
jective space of constant holomorphic sectional cur-
vature c. If the image f ◦ γ of each geodesic γ on
Mn is a curve of order 2 in CPN (c), then one of the
following holds:
(i) Mn is locally congruent to CPn(c) and N = n,
(ii) Mn is locally congruent to CPn(c/2), N =

n(n+3)/2 and f is locally equivalent to the sec-
ond Veronese embedding f2.
3. Veronese embeddings. It should be

better to briefly recall some fundamental results on
Veronese embeddings fk (k = 1, 2, . . .) before we
prove our main result (for details, see [PS]). An iso-
metric immersion f of a Riemannian manifold M

into an ambient Riemannian manifold M̃ is called
a d-planar geodesic immersion if for each geodesic
γ on M the curve f ◦ γ is locally contained in a d-
dimensional totally geodesic submanifold of M̃ . In
particular, a curve ρ is called d-planar if it is lo-
cally contained in a d-dimensional totally geodesic
submanifold. A d-planar curve ρ is said to be proper

d-planar if it is not (d−1)-planar. We call a d-planar
geodesic immersion f : M → M̃ proper if the curve
f ◦ γ is proper d-planar for each geodesic γ on the
submanifold M .

Proposition A. The k-th Veronese embed-
ding fk : CPn(c/k) → CPN (c) is proper k-planar
geodesic.

In their paper [PS] J.S. Pak and K. Sakamoto
considered the converse of Proposition A to obtain a
characterization of each fk:

Theorem B. Let f : Mn → CPN (c) be a
proper k-planar geodesic Kähler isometric full
immersion of an n-dimensional Kähler manifold
into an N -dimensional complex projective space of
constant holomorphic sectional curvature c. Suppose
that for each geodesic γ on Mn the curve f ◦ γ is
locally contained in a k-dimensional totally real
totally geodesic submanifold RP k(c/4) of CPN (c).
Then Mn is locally congruent to CPn(c/k),
N = (n+k)!/(n!k!)− 1 and f is locally equivalent to
the k-th Veronese embedding fk.

We remark that for each geodesic γ on
CPn(c/k) the curve fk ◦ γ is a helix of proper or-
der k in RP k(c/4) with the curvatures κ1, . . . , κk−1

which are independent of the choice of γ.
The following is another (local) characterization

of each Veronese embedding fk (see [NO]). We de-
note byMn(c) a nonflat complex space form, which is
locally complex analytically isometric to a complex
projective space CPn(c) when c > 0 or a complex
hyperbolic space CHn(c) when c < 0.

Theorem C. Let Mn(c) be a Kähler sub-
manifold immersed in M̃N (c̃). If c̃ > 0 and the
isometric immersion is full, then c̃ = kc and
N = (n+ k)!/(n!k!) − 1 for some positive integer k.

4. Proof of the main result. Let γ be
a Frenet curve of proper order 2 which satisfies
∇γ̇V1(s) = κ(s)V2(s), ∇γ̇V2(s) = −κ(s)V1(s) and
V1(s) = γ̇(s) on a Kähler manifold M with complex
structure J . We set τγ(s) = 〈V1(s), JV2(s)〉 and call
it the complex torsion of γ. As we have

τ ′γ(s) = ∇γ̇〈V1(s), JV2(s)〉
= 〈∇γ̇V1(s), JV2(s)〉 + 〈V1(s), J∇γ̇V2(s)〉
= κ(s) · 〈V2(s), JV2(s)〉 − κ(s) · 〈V1(s), JV1(s)〉
= 0,

the complex torsion τγ is constant. The complex
torsion is an important invariant for Frenet curves of
proper order 2 (cf. [MO]).
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An isometric immersion f : M → M̃ is said to
be isotropic at x ∈ M if ‖σ(X,X)‖/‖X‖2(= λ(x))
is constant for each X(�= 0) ∈ Tx(M), where σ is
the second fundamental form of f . If the immer-
sion is isotropic at every point, then the immersion
is said to be isotropic. When the function λ = λ(x)
is constant on M , we call M a constant (λ-)isotropic
submanifold. Note that a totally umbilic immersion
is isotropic, but not vice versa. The following is well-
known ([O]).

Lemma D. Let f be an isometric immersion
of M into (M̃, 〈 , 〉). Then f is isotropic at x ∈
M if and only if the second fundamental form σ of
f satisfies 〈σ(X,X), σ(X,Y )〉 = 0 for an arbitrary
orthogonal pair X,Y ∈ Tx(M).

We are now in a position to prove Theorem 1.
It is enough to prove our theorem in case that the
immersion f is not totally geodesic, namely f is not
of case (i). We shall show that the submanifold M

is isotropic at its each point in the ambient manifold
CPN (c). As at an arbitrary geodesic point of M
Lemma D holds in a trivial sense, we consider a non-
geodesic point p ∈ M and a unit vector X ∈ Tp(M)
with σ(X,X) �= 0. We take the geodesic γ = γ(s)
(for s ∈ I) on M with initial condition that γ(0) = p

and γ̇(0) = X. Here, I is a sufficiently small open
interval in R satisfying σ(γ̇(s), γ̇(s)) �= 0 for all s ∈
I. By hypothesis the curve γ̃ = f ◦ γ satisfies the
following differential equation:

‖∇̃ ˙̃γ
˙̃γ‖2{∇̃ ˙̃γ∇̃ ˙̃γ

˙̃γ + ‖∇̃ ˙̃γ
˙̃γ‖2 ˙̃γ}(4.1)

= 〈∇̃ ˙̃γ
˙̃γ, ∇̃ ˙̃γ∇̃ ˙̃γ

˙̃γ〉∇̃ ˙̃γ
˙̃γ,

where ∇̃ ˙̃γ denotes the covariant differentiation along
γ̃ with respect to the Riemannian connection ∇̃ of
CPN (c). Put κ(s) = ‖∇̃ ˙̃γ(s)

˙̃γ(s)‖ for s ∈ I. In the
following, we shall study on the interval I. By the
Gauss formula ∇̃XZ = ∇XZ + σ(X,Z) we find that
κ(s) > 0 for all s ∈ I. Note that 〈∇̃ ˙̃γ

˙̃γ, ∇̃ ˙̃γ∇̃ ˙̃γ
˙̃γ〉 =

κ(s)κ̇(s). Then the equation (4.1) reduces to

κ(s)
(∇̃ ˙̃γ(∇̃ ˙̃γ

˙̃γ) + 〈∇̃ ˙̃γ
˙̃γ, ∇̃ ˙̃γ

˙̃γ〉 ˙̃γ) = κ̇(s)∇̃ ˙̃γ
˙̃γ.(4.2)

We can set ∇̃ ˙̃γ
˙̃γ = κ(s)V2(s). Hence, from (4.2) we

obtain

∇̃ ˙̃γV2(s) = ∇̃ ˙̃γ

(
1

κ(s)
∇̃ ˙̃γ

˙̃γ
)

= −κ(s) ˙̃γ,

which yields that our curve f ◦ γ is a Frenet curve
of proper order 2. Since f is a Kähler immersion,
we find that 〈 ˙̃γ, JV2〉 = −(1/κ(s))〈Jγ̇, σ(γ̇, γ̇)〉 = 0,

where J is the complex structure of CPN (c). So we
can take the totally real totally geodesic RP 2(c/4)
passing p satisfying that the vectors ˙̃γ(0) and V2(0)
span the tangent space Tp(RP 2(c/4)). We here con-
sider the Frenet curve ρ of proper order 2 on the
surface RP 2(c/4) passing the point p = ρ(0) with
the same curvature function κ(s) and the same ini-
tial frame { ˙̃γ(0), V2(0)}. Then by the uniqueness of
solutions for ordinary differential equations we can
see that the curve γ̃ locally coincides with ρ, so that
γ̃ is locally contained in RP 2(c/4). The following
discussion is the same as in page 40 in [PS].

As RP 2(c/4) is a 2-dimensional totally
geodesic submanifold of CPN (c), the vectors
˙̃γ(s) and σ(γ̇(s), γ̇(s)) span the tangent space
Tγ̃(s)(RP 2(c/4)) for each s. This, together with
∇̃ ˙̃γ(σ(γ̇, γ̇)) ∈ Tγ̃(s)(RP 2(c/4)), implies

∇̃ ˙̃γ(σ(γ̇, γ̇)) = u · ˙̃γ + v · σ(γ̇, γ̇)(4.3)

for smooth functions u = u(s) and v = v(s) on the
interval I. Let Y be an arbitrary vector at p which is
perpendicular to the vector X. We extend the vector
Y to a vector field Ỹ on the curve γ̃. The equation
(4.3) gives

〈σ(X,X), σ(X,Y )〉
= 〈σ(γ̇, γ̇), σ(γ̇, Ỹ )〉(0)

= 〈σ(γ̇, γ̇), ∇̃ ˙̃γ Ỹ 〉(0)

= −〈∇̃ ˙̃γ(σ(γ̇, γ̇)), Ỹ 〉(0)

= −〈u(0) ·X + v(0) · σ(X,X), Y 〉 = 0.

So it follows from Lemma D that the submanifold M
is isotropic at its each point in CPN (c). Moreover,
due to the argument in page 41 in [PS] we know that
M is a constant isotropic submanifold in the ambient
space CPN (c).

On the other hand we denote by R (resp. R̃) the
curvature tensor of M (resp. CPN (c)). We recall the
Gauss equation

〈R̃(X,Y )Z,W 〉
= 〈R(X,Y )Z,W 〉 + 〈σ(X,Z), σ(Y,W )〉

− 〈σ(X,W ), σ(Y,Z)〉.

Since M is a Kähler submanifold in CPN (c), from
this equation and
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R̃(X,Y )Z =
c

4
(〈Y,Z〉X − 〈X,Z〉X

+ 〈JY,Z〉JX − 〈JX,Z〉JY
+ 2〈X,JY 〉JZ),

we find that the holomorphic sectional curvature
K(X,JX) of M determined by a unit vector X is
given by

K(X,JX) = 〈R(X,JX)JX,X〉
= c− 2‖σ(X,X)‖2.

Thus by virtue of the above discussion M is a com-
plex space form. Therefore from Theorem C and
Proposition A we can see that Mn is locally congru-
ent to CPn(c/2), N = n(n + 3)/2 and f is locally
equivalent to the second Veronese embedding f2.

5. Appendix. In his paper [S] Sakamoto
classified 2-planar geodesic submanifolds in a com-
plete simply connected real space form M̃N (c)(=
RN , SN (c) or HN (c)) of curvature c:

Theorem E. Let f : Mn → M̃n+p(c) be a
2-planar geodesic immersion of an n-dimensional
Riemannian manifold into an (n + p)-dimensional
complete simply connected real space form M̃n+p(c).
Then Mn is totally umbilic in M̃n+p(c) or Mn is lo-
cally congruent to a compact symmetric space of rank
one embedded into some totally umbilic submanifold
in M̃n+p(c) through the first standard minimal em-
bedding.

Combining Theorem E with our discussion in
this paper, we obtain the following immediately:

Theorem 2. Let f : Mn → M̃n+p(c) be an
isometric immersion of an n-dimensional Rieman-

nian manifold into an (n+ p)-dimensional complete
simply connected real space form M̃n+p(c). Suppose
that for each geodesic γ on Mn the curve f ◦ γ is
a curve of order 2 in the ambient space M̃n+p(c).
Then Mn is totally umbilic in M̃n+p(c) or Mn is lo-
cally congruent to a compact symmetric space of rank
one embedded into some totally umbilic submanifold
in M̃n+p(c) through the first standard minimal em-
bedding.
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