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Abstract:

We study curves of order 2 from the viewpoint of submanifold theory. We give

a characterization of the parallel Kédhler embeddings of a complex projective space into an ambient
complex projective space from this point of view. This characterization is an improvement of the

results in [N, PS].
Key words:

1. Introduction. When we study Rieman-
nian submanifolds, it is natural to investigate their
properties by observing the extrinsic shape of their
geodesics. In this paper we pay attention to the ex-
trinsic shape of geodesics on a complex projective
space CP™(c) of constant holomorphic sectional cur-
vature ¢ in a complex projective space CPN (&) of
constant holomorphic sectional curvature ¢ through
a Kéhler isometric full immersion. By virtue of
the classification theorem ([C, NOJ) this K&hler im-
mersion is nothing but a Kahler embedding fj
CP"(c/k) — CP(c) given by

k—!zko...zkn
kol kp! ™0 n

means the point of the projective
space with the homogeneous coordinates * and
N = (n+ k)!/(nlk!) — 1. We usually call f; the
k-th Veronese embedding. It is known that the sec-
ond fundamental form of f; is parallel if and only if
k=1lork=2.

These parallel embeddings fx (k = 1,2) have
various geometric properties. For example, the sec-
ond Veronese embedding fo maps each geodesic on
the submanifold CP"(c¢/2) to a circle of curvature
V/¢/2 in a real projective plane RP?(¢/4) of cur-
vature ¢/4 which is a totally real totally geodesic
submanifold of the ambient manifold CP™"+3)/2(¢).
Using such a property, for a Kahler isometric full

[Zi]ogz'gn =

Lo+-~+kn—k,

where  [#]
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immersion f : M,, — CP"(c) of an n-dimensional
Kaéhler manifold into an N-dimensional complex pro-
jective space of constant holomorphic sectional cur-
vature ¢, K. Nomizu [N] showed that either M,, =
CP"(¢) and N = n, or M,, = CP"(¢/2), N =
n(n + 3)/2 and f is locally equivalent to the sec-
ond Veronese embedding fo if and only if for each
geodesic v on M, the curve f o~ is a circle on
CP¥(c). The main purpose of this paper is to im-
prove this characterization. We relax the condition
that fo~ is a circle to the condition that it is a curve
of order 2. Our main result is also an improvement of
the result for £k = 1,2 by J.S. Pak and K. Sakamoto
(see Theorem B).

2. Curves of order 2. Let M be a Rieman-
nian manifold with Riemannian metric (, ). In order
to state our result, we introduce the notion of curves
of order 2. A smooth curve v on M parametrized
by its arclength s is called a curve of order 2 if it
satisfies the following differential equation

IV33I*{V5 Vi + V57 174}
= (V57 V5 V59 Vs,
where V5 denotes the covariant differentiation along

~v with respect to the Riemannian connection V of
M.

(2.1)

To see that the class of curves of order 2 is very
wide, we recall the notion of Frenet curves. A smooth
curve 7 = 7y(s) parametrized by its arclength s is
called a Frenet curve of proper order d if there ex-
ist orthonormal frame fields {V4 = 4,...,V;} along
~ and positive functions k1(s),...,kq—1(s) which
satisfy the following system of ordinary differential
equations
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(22) V5Vj(s) = —jo1(s)Vi-1(s)

+15(8)Vj41(s),

where Vy = Vi1 = 0. The equation (2.2) is called
the Frenet formula for the Frenet curve v. The func-
tions k;(s) (j = 1,...,d — 1) and the orthonormal
frame {V1,...,Vy} are called the curvatures and the
Frenet frame of -, respectively.

A Frenet curve is called a Frenet curve of order
d if it is a Frenet curve of proper order r(< d). For
a Frenet curve of order d which is of proper order
r(< d), we use the convention in (2.2) that k; = 0
(r£jsd—1)and V; =0 (r+1= 5 £ d). We call
a curve a helix when all its curvatures are constant.
A helix of order 1 is nothing but a geodesic. A helix
of order 2, namely a curve which satisfies V; V1 (s) =
kVa(s), ViVa(s) = —kVi(s) and Vi(s) = A(s), is
called a circle of curvature k. We regard a geodesic
as a circle of null curvature. By direct calculation we
know that in any Riemannian manifold every Frenet
curve of order 2 satisfies the equation (2.1), so that
in particular all geodesics and circles must satisfy
this equation. But, in general, a curve of order 2 is
not a Frenet curve of order 2. In fact, we admit the
case that a curve -y of order 2 has an inflection point
v(s0), that is a point which satisfies (V47)(s¢) = 0.

We now state our main result in this paper.

Theorem 1. Let f : M, — CPY(c) be a
Kihler isometric full immersion of an n-dimensional
Kahler manifold into an N -dimensional complex pro-
jective space of constant holomorphic sectional cur-
vature c. If the image f o~y of each geodesic v on
M,, is a curve of order 2 in CPN(c), then one of the
following holds:

(i) M, is locally congruent to CP™(c) and N = n,

(ii) M, is locally congruent to CP™(c/2), N =
n(n+3)/2 and f is locally equivalent to the sec-
ond Veronese embedding fs.

3. Veronese embeddings. It should be
better to briefly recall some fundamental results on
Veronese embeddings fr (kK = 1,2,...) before we
prove our main result (for details, see [PS]). An iso-
metric immersion f of a Riemannian manifold M
into an ambient Riemannian manifold M is called
a d-planar geodesic immersion if for each geodesic
7 on M the curve f o is locally contained in a d-
dimensional totally geodesic submanifold of M. In
particular, a curve p is called d-planar if it is lo-
cally contained in a d-dimensional totally geodesic
submanifold. A d-planar curve p is said to be proper

i=1,....d,
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d-planar if it is not (d—1)-planar. We call a d-planar
geodesic immersion f : M — M proper if the curve
f o~y is proper d-planar for each geodesic v on the
submanifold M.

Proposition A. The k-th Veronese embed-
ding fr : CP"(c/k) — CPN(c) is proper k-planar
geodesic.

In their paper [PS] J.S. Pak and K. Sakamoto
considered the converse of Proposition A to obtain a
characterization of each fj:

Theorem B. Let f : M, — CPY(c) be a
proper k-planar geodesic Kahler isometric full
immersion of an n-dimensional Kdhler manifold
into an N-dimensional complex projective space of
constant holomorphic sectional curvature c. Suppose
that for each geodesic v on M, the curve f o~ is
locally contained in a k-dimensional totally real
totally geodesic submanifold RP*(c/4) of CPN(c).
Then M, is locally congruent to CP™(c/k),
N = (n+k)!/(nlk!) =1 and f is locally equivalent to
the k-th Veronese embedding f.

We remark that for each geodesic + on
CP"(c/k) the curve fj o~ is a helix of proper or-
der k in RP*(c/4) with the curvatures x1,...
which are independent of the choice of ~.

The following is another (local) characterization
of each Veronese embedding f;, (see [NO]). We de-
note by M,,(¢) a nonflat complex space form, which is
locally complex analytically isometric to a complex
projective space CP"(c) when ¢ > 0 or a complex
hyperbolic space CH™(¢) when ¢ < 0.

Theorem C. Let M,(c) be a Kdihler sub-
manifold immersed in MN(é). If ¢ > 0 and the
isometric immersion s full, then ¢ = kc and
N = (n+k)!/(nlk!) — 1 for some positive integer k.

4. Proof of the main result. Let v be
a Frenet curve of proper order 2 which satisfies
ViVi(s) = k(s)Va(s), V4Va(s) = —r(s)Vi(s) and
Vi(s) = 4(s) on a Kéhler manifold M with complex
structure J. We set 7,(s) = (Vi(s), JVa(s)) and call
it the complex torsion of v. As we have

7,(s) = V5(Vi(s), JVa(s))

= (V5 Vi(s), JVa(s)) + (Vi(s), JV4Va(s))
= r(s) - (Va(s), JVa(s)) — K(s) - (Vi(s), JVi(s))
=0,

y Kk—1

the complex torsion 7., is constant. The complex
torsion is an important invariant for Frenet curves of
proper order 2 (cf. [MO]).
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An isometric immersion f : M — M is said to
be isotropic at x € M if ||o(X, X)|/IIX|*(= A(z))
is constant for each X (# 0) € T,(M), where o is
the second fundamental form of f. If the immer-
sion is isotropic at every point, then the immersion
is said to be isotropic. When the function A = A(z)
is constant on M, we call M a constant (A-)isotropic
submanifold. Note that a totally umbilic immersion
is isotropic, but not wvice versa. The following is well-
known ([O]).

Lemma D. Let f be an isometric immersion
of M into (M,{ , )). Then f is isotropic at x €
M if and only if the second fundamental form o of
f satisfies (0(X,X),0(X,Y)) = 0 for an arbitrary
orthogonal pair X,Y € T,(M).

We are now in a position to prove Theorem 1.
It is enough to prove our theorem in case that the
immersion f is not totally geodesic, namely f is not
of case (i). We shall show that the submanifold M
is isotropic at its each point in the ambient manifold
CP¥(c). As at an arbitrary geodesic point of M
Lemma D holds in a trivial sense, we consider a non-
geodesic point p € M and a unit vector X € T,,(M)
with o(X, X) # 0. We take the geodesic v = 7(s)
(for s € I) on M with initial condition that v(0) = p
and 4(0) = X. Here, I is a sufficiently small open
interval in R satisfying o(%(s),¥(s)) # 0 for all s €
I. By hypothesis the curve ¥ = f o~y satisfies the
following differential equation:

o SN20T .. & oS24
(4.1) IVl Ve + [IV1177
=(V:7, V;V:7) V27,
where %gf denotes the covariant differentiation along

4 with respect to the Riemannian connection V of
CPN(c). Put k(s) = HV,Y(S 4(s)|| for s € I. In the
following, we shall study on the interval I. By the
Gauss formula VxZ = Vx Z 4 o(X, ,Z) we find that
k(s) > 0 for all s € I. Note that <V,Y’y,V V 7y =
k(s)k(s). Then the equation (4.1) reduces to

(42) #(5)(V:(V23) + (ViH, V:A)F) = i(s) VA

We can set ﬁif? = k(s)Va(s). Hence, from (4.2) we

obtain
ad 1 ~ . *
=V (@Va’a = —r(s)7,

which yields that our curve f o+ is a Frenet curve
of proper order 2. Since f is a Kéhler immersion,
we find that (3, JV2) = —(1/k(5)){J3,0(%, 7)) = 0,

%a‘/é(s)
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where J is the complex structure of CPY(c). So we
can take the totally real totally geodesic RP?(c/4)
passing p satisfying that the vectors 4(0) and Vx(0)
span the tangent space T,(RP?(c/4)). We here con-
sider the Frenet curve p of proper order 2 on the
surface RP?(c/4) passing the point p = p(0) with
the same curvature function x(s) and the same ini-
tial frame {(0), V2(0)}. Then by the uniqueness of
solutions for ordinary differential equations we can
see that the curve 7 locally coincides with p, so that
7 is locally contained in RP?(¢/4). The following
discussion is the same as in page 40 in [PS].

As RP?(c/4) is a 2-dimensional
geodesic submanifold of CPN(c),
5(s) and o(¥(s),%(s)) span the tangent space
I::Y(S)(RP2(C/4)) for each s. This, together with
Vi(o(1,7) € Ts(s)(RP?(c/4)), implies

totally
the vectors

(4.3) Vi(o(%,9) =u-y+v-o(¥,7)

for smooth functions v = u(s) and v = v(s) on the
interval I. Let Y be an arbitrary vector at p which is
perpendicular to the vector X. We extend the vector
Y to a vector field Y on the curve 7. The equation
(4.3) gives

I
/q\

~(V:(o(3, )) 37>(0)
= —(u(0) - X +v(0) - o(X, X),Y) = 0.

So it follows from Lemma D that the submanifold M
is isotropic at its each point in CP™(c). Moreover,
due to the argument in page 41 in [PS] we know that
M is a constant isotropic submanifold in the ambient
space CPY (c).

On the other hand we denote by R (resp. R) the
curvature tensor of M (resp. CP™ (c)). We recall the
Gauss equation

(R(X,Y)Z,W)
= (R(X,Y)Z,W) + (0(X, Z),
—(o(X,W),a(Y, Z)).

o(Y,W))

Since M is a Kéhler submanifold in CP¥(c), from
this equation and
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R(X,Y)Z = §(<Y7 )X — (X, Z2)X

+(JY, Z)JX — (JX,2)JY
+2(X,JY)IZ),

we find that the holomorphic sectional curvature
K(X,JX) of M determined by a unit vector X is
given by

K(X,JX) = (R(X,JX)JX, X)
= c—2[lo(X, X)|*.

Thus by virtue of the above discussion M is a com-
plex space form. Therefore from Theorem C and
Proposition A we can see that M, is locally congru-
ent to CP"(¢/2), N = n(n+ 3)/2 and f is locally
equivalent to the second Veronese embedding fs.

5. Appendix. In his paper [S] Sakamoto
classified 2-planar geodesic submanifolds in a com-
plete simply connected real space form MY (o)(=
RY, SN(c) or HY(c)) of curvature c:

Theorem E. Let f : M" — M"?(c) be a
2-planar geodesic immersion of an n-dimensional
Riemannian manifold into an (n + p)-dimensional
complete simply connected real space form Mn+P (c).
Then M™ is totally umbilic in M’H‘p(C) or M™ is lo-
cally congruent to a compact symmetric space of rank
one embedded into some totally umbilic submanifold
in Mn+p (¢) through the first standard minimal em-
bedding.

Combining Theorem E with our discussion in
this paper, we obtain the following immediately:

Theorem 2. Let f : M™ — M"+?(c) be an
isometric immersion of an n-dimensional Rieman-
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nian manifold into an (n + p)-dimensional complete
simply connected real space form ]/\\4/"“’(0). Suppose
that for each geodesic v on M™ the curve f o~y is
a curve of order 2 in the ambient space M™P(c).
Then M™ is totally umbilic in M™ P (c) or M™ is lo-
cally congruent to a compact symmetric space of rank
one embedded into some totally umbilic submanifold
in ]Tj”“’(c) through the first standard minimal em-
bedding.
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