A note on the $Z_p \times Z_q$ -extension over Q

By Kuniaki HORIE

Department of Mathematics, Tokai University, 1117, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Communicated by Shigefumi MORI, M. J. A., June 12, 2001)

Abstract: Let S be a non-empty set of prime numbers; $1 \leq |S| \leq \infty$. Let \mathbf{Q}^S denote the abelian extension of the rational field \mathbf{Q} whose Galois group over \mathbf{Q} is topologically isomorphic to the direct product of the additive groups of *l*-adic integers for all $l \in S$. In this note, we shall give simple examples of S such that, for some $l \in S$, the Hilbert *l*-class field over \mathbf{Q}^S is a nontrivial extension of \mathbf{Q}^S . Our results imply that, if S contains 2, 3, 31, and 73, then there exists an unramified cyclic extension of degree $2263 = 31 \cdot 73$ over \mathbf{Q}^S .

Key words: Hilbert class field; Iwasawa theory.

We shall suppose that all algebraic extensions over the rational field \mathbf{Q} are contained in the complex field. For each prime number l, let \mathbf{Z}_l denote the ring of l-adic integers. As in the above abstract, let S be a non-empty set of prime numbers and let \mathbf{Q}^S denote the unique abelian extension over \mathbf{Q} such that the Galois group Gal(\mathbf{Q}^S/\mathbf{Q}) is topologically isomorphic to the additive group of the direct product $\prod_{l \in S} \mathbf{Z}_l$. Clearly, for any finite algebraic number field k in \mathbf{Q}^S , there exists a tower

$$k = k_1 \subset \cdots \subset k_n \subset k_{n+1} \subset \cdots \subset \mathbf{Q}^S$$

of intermediate fields of \mathbf{Q}^S/k with finite degrees such that

$$igcup_{n=1}^{\infty} oldsymbol{k}_n = \mathbf{Q}^S$$

and that, for each positive integer n, some prime ideal of k_n is fully ramified in k_{n+1} . We thus obtain:

Lemma 1. Let k be a finite algebraic number field in \mathbf{Q}^S , and k' a finite unramified Galois extension over k. Then not only the composite $\mathbf{Q}^S k'$ is an unramified Galois extension over \mathbf{Q}^S but the restriction map $\operatorname{Gal}(\mathbf{Q}^S k'/\mathbf{Q}^S) \to \operatorname{Gal}(k'/k)$ is an isomorphism.

Now let p be any prime number in $S: p \in S$. For each algebraic number field K and for each prime number l, let $H_l(K)$ denote the Hilbert *l*-class field over K, namely, the maximal unramified abelian *l*extension over K. Then, in particular,

$$H_p(\mathbf{Q}^S) = \bigcup_k H_p(k),$$

with k ranging over the finite algebraic number fields in \mathbf{Q}^{S} (cf. [7]). Therefore, both [5] and [6] show us that

$$H_p(\mathbf{Q}^S) = \mathbf{Q}^S$$
 when $|S| = 1$, i.e., $S = \{p\}$.

We assume henceforth that S contains a prime number q other than p:

$$\{p,q\} \subseteq S, \quad q \neq p.$$

The $\mathbf{Z}_p \times \mathbf{Z}_q$ -extension over \mathbf{Q} is nothing but \mathbf{Q}^S for the case $S = \{p,q\}$. Let L_q denote the unique subfield of \mathbf{Q}^S of degree q. Then L_q is contained in $\mathbf{Q}(\cos(\pi/q^2))$, the maximal real subfield of the $2q^2$ th cyclotomic field. Let E_q denote the unit group of L_q , $R_{p,q}$ the p-adic regulator of L_q , and \mathbf{Q}_p the field of p-adic numbers. We understand that $R_{p,q}$ is an element of a fixed algebraic closure Ω_p of \mathbf{Q}_p , considering L_q to be a subfield of Ω_p by means of a fixed embedding $L_q \to \Omega_p$. Furthermore, $R_{p,q} \neq 0$ as [1] implies. Let C_q denote the group of circular units of L_q : namely, in the case q = 2, let C_q be the subgroup of E_q generated by -1 and $1 + \sqrt{2}$; in the case q > 2, let C_q be the subgroup of E_q generated by -1 and by all conjugates, over \mathbf{Q} , of the norm of

$$\frac{\sin(r\pi/q^2)}{\sin(\pi/q^2)} = \frac{e^{r\pi i/q^2} - e^{-r\pi i/q^2}}{e^{\pi i/q^2} - e^{-\pi i/q^2}}$$

for the extension $\mathbf{Q}(\cos(\pi/q^2))/L_q$, where r is a primitive root modulo q^2 (obviously, C_q does not depend on the choice of r). Then, in Ω_p , the p-adic regulator for C_q is defined in the usual way. We de-

¹⁹⁹¹ Mathematics Subject Classification. Primary 11R20; Secondary 11R23.

note it by $R_{p,q}^*$. On the other hand, the group index of C_q in E_q equals the class number of L_q (cf. [3]). Hence

$$R_{p,q}^*|_p[H_p(L_q):L_q] = |R_{p,q}|_p \neq 0$$

where $|\cdot|_p$ denotes the normalized absolute value on Ω_p ; $|p|_p = p^{-1}$. Put

$$a_q(p) = p^{1-q} |R_{p,q}^*|_p^{-1} = p^{1-q} [H_p(L_q) : L_q] |R_{p,q}|_p^{-1}.$$

Note that the following three conditions are equivallent:

(i) p is completely decomposed in L_q ,

(ii) $L_q \subset \mathbf{Q}_p$,

(iii) $p^{q-1} \equiv 1 \pmod{q^2}$ or $p^2 \equiv 1 \pmod{16}$ according as q > 2 or q = 2.

We easily see that, if one of the above conditions is satisfied, then $R_{p,q}$ belongs to $p^{q-1}\mathbf{Z}_p$ so that

$$a_q(p) = p^u$$

with some integer $u \ge 0$.

Let us first consider the case q = 2.

Lemma 2. Assume that

$$q = 2, \quad p^2 \equiv 1 \pmod{16}$$

Then $H_p(\mathbf{Q}^S)$ contains an extension of degree $a_2(p)$ over \mathbf{Q}^S .

Proof. We have

$$\mathbf{Q}(\sqrt{2}) = L_q \subset \mathbf{Q}_p$$

by the assumption. As readily verified,

$$a_2(p) = p^{-1} |(1 + \sqrt{2})^{p-1} - 1|_p^{-1}$$

Let F be the unique intermediate field of $\mathbf{Q}^S/\mathbf{Q}(\sqrt{2})$ with degree $a_2(p)$ over $\mathbf{Q}(\sqrt{2})$. Proposition 1 of [2] then implies that $a_2(p)$ divides $[H_p(F):F]$ (cf. also [8, Theorem 1.1]). This fact, together with Lemma 1, proves the present lemma.

Proposition 1. If 2 and 31 belong to S, then $H_{31}(\mathbf{Q}^S)$ is a nontrivial extension of \mathbf{Q}^S .

Proof. As $31^2 \equiv 1 \pmod{16}$, we let p = 31 in the assumption of Lemma 2. It is not difficult to see that

$$(1+\sqrt{2})^{30} - 1 \equiv 31^2 \cdot 2\sqrt{2} \pmod{31^3}$$

in the ring of algebraic integers in $\mathbf{Q}(\sqrt{2})$. Hence we have $a_2(31) = 31$ and the proposition is proved by Lemma 2.

Remark. One knows from [4] that, in the case q = 2, there exists no example of $p \neq 31$ satisfying

$$p^2 \equiv 1 \pmod{16}, \quad p \mid a_2(p), \quad p < 20000.$$

We next consider the case q > 2. Lemma 3. Assume that

$$p > 2$$
, $q > 2$, $p^{q-1} \equiv 1 \pmod{q^2}$.

Then $H_p(\mathbf{Q}^S)$ contains an extension of degree $a_q(p)$ over \mathbf{Q}^S .

Proof. In fact, Theorem 1.1 of [8] combined with [1] implies that there exists an intermediate field k of \mathbf{Q}^S/L_q with finite degree for which

$$a_q(p) \mid [H_p(k):k].$$

Proposition 2. If 3 and 73 belong to S, then $H_{73}(\mathbf{Q}^S)$ is a nontrivial extension of \mathbf{Q}^S .

Proof. Since $73^2 \equiv 1 \pmod{9}$, we let (p,q) = (73,3) in the assumption of Lemma 3. Note that $L_3 = \mathbf{Q}(\cos(\pi/9))$, 2 is a primitive root modulo 9, and

$$\frac{\sin(2\pi/9)}{\sin(\pi/9)} = 2\cos\frac{\pi}{9}$$

is a zero of the polynomial $x^3 - 3x - 1$. Let ε_1 , ε_2 , ε_3 be the conjugates of $2\cos(\pi/9)$ over **Q** so that

$$(\varepsilon_1 - \varepsilon_2)^2 (\varepsilon_2 - \varepsilon_3)^2 (\varepsilon_3 - \varepsilon_1)^2 = 81.$$

Solving the congruence $x^3 - 3x - 1 \equiv 0 \pmod{73^3}$ and rearranging $\varepsilon_1, \varepsilon_2, \varepsilon_3$ if necessary, we then obtain

$$\varepsilon_1 \equiv 157183 \pmod{73^3},$$

$$\varepsilon_2 \equiv 257651 \pmod{73^3}$$

in \mathbf{Z}_{73} . These yield

$$144 \log \varepsilon_1 \equiv 2(\varepsilon_1^{72} - 1) - (\varepsilon_1^{72} - 1)^2 \equiv 4511 \cdot 73 \pmod{73^3}, 144 \log \varepsilon_2 \equiv 2(\varepsilon_2^{72} - 1) - (\varepsilon_2^{72} - 1)^2 \equiv 2106 \cdot 73 \pmod{73^3},$$

where log denotes the 73-adic logarithmic function. On the other hand, ε_1 and ε_2 represent a basis of the free abelian group $C_3/\{\pm 1\}$, and

$$\sigma(\varepsilon_2) = \varepsilon_3 = \varepsilon_1^{-1} \varepsilon_2^{-1}$$

for the $\sigma \in \operatorname{Gal}(L_3/\mathbf{Q})$ with $\sigma(\varepsilon_1) = \varepsilon_2$. Therefore, in view of

$$4511(-4511 - 2106) - 2106^2 \equiv 31 \cdot 73 \pmod{73^2},$$

we know that

$$|R_{73,3}^*|_{73} = 73^{-3}$$
, i.e., $a_3(73) = 73$.

Hence the proposition follows from Lemma 3. \Box

With the help of Kida's UBASIC and a personal computer, we have checked for the case q = 3 that

No. 6]

there exists no example of $p \neq 73$ which satisfies

$$p^2 \equiv 1 \pmod{9}, \quad p \mid a_3(p), \quad p < 10000.$$

It would be interesting to continue our discussion under the assumption $q \ge 5$, but here we only add the following

Remark. In the case $|S| < \infty$, $H_p(\mathbf{Q}^S)$ is a finite extension of \mathbf{Q}^S if and only if Greenberg's conjecture for the \mathbf{Z}_p -extension over k is true for every finite algebraic number field k in \mathbf{Q}^S .

Acknowledgement. The author thanks his wife Mitsuko for her kind assistance in the process of computation.

References

- Brumer, A.: On the units of algebraic number fields. Mathematika, 14, 121–124 (1967).
- [2] Fukuda, T., and Komatsu, K.: On the λ invariants of \mathbb{Z}_p -extensions of real quadratic fields. J. Number Theory, **23**, 238–242 (1986).

- [3] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Academie, Berlin (1952); Springer, Berlin (1985).
- [4] Hatada, K.: Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at 2-p. Comment. Math. Univ. St. Pauli, 36, 41–51 (1987).
- [5] Fröhlich, A.: On the absolute class-group of abelian fields. J. London Math. Soc., 29, 211– 217 (1954).
- [6] Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg, 20, 257–258 (1956).
- [7] Iwasawa, K.: On Γ-extensions of algebraic number fields. Bull. Amer. Math. Soc., 65, 183–226 (1959).
- [8] Taya, H.: On *p*-adic zeta functions and \mathbb{Z}_{p} extensions of certain totally real number fields. Tohoku Math. J., **51**, 21–33 (1999).

86