A note on the $\mathrm{Z}_{p} \times \mathrm{Z}_{q}$-extension over Q

By Kuniaki Horie

Department of Mathematics, Tokai University, 1117, Kitakaname, Hiratsuka, Kanagawa 259-1292
(Communicated by Shigefumi Mori, M. J. A., June 12, 2001)

Abstract

Let S be a non-empty set of prime numbers; $1 \leq|S| \leq \infty$. Let \mathbf{Q}^{S} denote the abelian extension of the rational field \mathbf{Q} whose Galois group over \mathbf{Q} is topologically isomorphic to the direct product of the additive groups of l-adic integers for all $l \in S$. In this note, we shall give simple examples of S such that, for some $l \in S$, the Hilbert l-class field over \mathbf{Q}^{S} is a nontrivial extension of \mathbf{Q}^{S}. Our results imply that, if S contains $2,3,31$, and 73 , then there exists an unramified cyclic extension of degree $2263=31 \cdot 73$ over \mathbf{Q}^{S}.

Key words: Hilbert class field; Iwasawa theory.

We shall suppose that all algebraic extensions over the rational field \mathbf{Q} are contained in the complex field. For each prime number l, let \mathbf{Z}_{l} denote the ring of l-adic integers. As in the above abstract, let S be a non-empty set of prime numbers and let \mathbf{Q}^{S} denote the unique abelian extension over \mathbf{Q} such that the Galois group $\operatorname{Gal}\left(\mathbf{Q}^{S} / \mathbf{Q}\right)$ is topologically isomorphic to the additive group of the direct product $\prod_{l \in S} \mathbf{Z}_{l}$. Clearly, for any finite algebraic number field k in \mathbf{Q}^{S}, there exists a tower

$$
k=\boldsymbol{k}_{1} \subset \cdots \subset \boldsymbol{k}_{n} \subset \boldsymbol{k}_{n+1} \subset \cdots \subset \mathbf{Q}^{S}
$$

of intermediate fields of \mathbf{Q}^{S} / k with finite degrees such that

$$
\bigcup_{n=1}^{\infty} \boldsymbol{k}_{n}=\mathbf{Q}^{S}
$$

and that, for each positive integer n, some prime ideal of \boldsymbol{k}_{n} is fully ramified in \boldsymbol{k}_{n+1}. We thus obtain:

Lemma 1. Let k be a finite algebraic number field in \mathbf{Q}^{S}, and k^{\prime} a finite unramified Galois extension over k. Then not only the composite $\mathbf{Q}^{S} k^{\prime}$ is an unramified Galois extension over \mathbf{Q}^{S} but the restriction map $\operatorname{Gal}\left(\mathbf{Q}^{S} k^{\prime} / \mathbf{Q}^{S}\right) \rightarrow \operatorname{Gal}\left(k^{\prime} / k\right)$ is an isomorphism.

Now let p be any prime number in $S: p \in S$. For each algebraic number field K and for each prime number l, let $H_{l}(K)$ denote the Hilbert l-class field over K, namely, the maximal unramified abelian l extension over K. Then, in particular,

[^0]$$
H_{p}\left(\mathbf{Q}^{S}\right)=\bigcup_{k} H_{p}(k)
$$
with k ranging over the finite algebraic number fields in \mathbf{Q}^{S} (cf. [7]). Therefore, both [5] and [6] show us that
$$
H_{p}\left(\mathbf{Q}^{S}\right)=\mathbf{Q}^{S} \quad \text { when }|S|=1, \text { i.e., } S=\{p\}
$$

We assume henceforth that S contains a prime number q other than p :

$$
\{p, q\} \subseteq S, \quad q \neq p .
$$

The $\mathbf{Z}_{p} \times \mathbf{Z}_{q}$-extension over \mathbf{Q} is nothing but \mathbf{Q}^{S} for the case $S=\{p, q\}$. Let L_{q} denote the unique subfield of \mathbf{Q}^{S} of degree q. Then L_{q} is contained in $\mathbf{Q}\left(\cos \left(\pi / q^{2}\right)\right)$, the maximal real subfield of the $2 q^{2}-$ th cyclotomic field. Let E_{q} denote the unit group of $L_{q}, R_{p, q}$ the p-adic regulator of L_{q}, and \mathbf{Q}_{p} the field of p-adic numbers. We understand that $R_{p, q}$ is an element of a fixed algebraic closure Ω_{p} of \mathbf{Q}_{p}, considering L_{q} to be a subfield of Ω_{p} by means of a fixed embedding $L_{q} \rightarrow \Omega_{p}$. Furthermore, $R_{p, q} \neq 0$ as [1] implies. Let C_{q} denote the group of circular units of L_{q} : namely, in the case $q=2$, let C_{q} be the subgroup of E_{q} generated by -1 and $1+\sqrt{2}$; in the case $q>2$, let C_{q} be the subgroup of E_{q} generated by -1 and by all conjugates, over \mathbf{Q}, of the norm of

$$
\frac{\sin \left(r \pi / q^{2}\right)}{\sin \left(\pi / q^{2}\right)}=\frac{e^{r \pi i / q^{2}}-e^{-r \pi i / q^{2}}}{e^{\pi i / q^{2}}-e^{-\pi i / q^{2}}}
$$

for the extension $\mathbf{Q}\left(\cos \left(\pi / q^{2}\right)\right) / L_{q}$, where r is a primitive root modulo q^{2} (obviously, C_{q} does not depend on the choice of r). Then, in Ω_{p}, the p-adic regulator for C_{q} is defined in the usual way. We de-
note it by $R_{p, q}^{*}$. On the other hand, the group index of C_{q} in E_{q} equals the class number of L_{q} (cf. [3]). Hence

$$
\left|R_{p, q}^{*}\right|_{p}\left[H_{p}\left(L_{q}\right): L_{q}\right]=\left|R_{p, q}\right|_{p} \neq 0
$$

where $|\cdot|_{p}$ denotes the normalized absolute value on $\Omega_{p} ;|p|_{p}=p^{-1}$. Put

$$
a_{q}(p)=p^{1-q}\left|R_{p, q}^{*}\right|_{p}^{-1}=p^{1-q}\left[H_{p}\left(L_{q}\right): L_{q}\right]\left|R_{p, q}\right|_{p}^{-1}
$$

Note that the following three conditions are equivallent:
(i) p is completely decomposed in L_{q},
(ii) $L_{q} \subset \mathbf{Q}_{p}$,
(iii) $p^{q-1} \equiv 1\left(\bmod q^{2}\right)$ or $p^{2} \equiv 1(\bmod 16)$ according as $q>2$ or $q=2$.
We easily see that, if one of the above conditions is satisfied, then $R_{p, q}$ belongs to $p^{q-1} \mathbf{Z}_{p}$ so that

$$
a_{q}(p)=p^{u}
$$

with some integer $u \geq 0$.
Let us first consider the case $q=2$.
Lemma 2. Assume that

$$
q=2, \quad p^{2} \equiv 1 \quad(\bmod 16)
$$

Then $H_{p}\left(\mathbf{Q}^{S}\right)$ contains an extension of degree $a_{2}(p)$ over \mathbf{Q}^{S}.

Proof. We have

$$
\mathbf{Q}(\sqrt{2})=L_{q} \subset \mathbf{Q}_{p}
$$

by the assumption. As readily verified,

$$
a_{2}(p)=p^{-1}\left|(1+\sqrt{2})^{p-1}-1\right|_{p}^{-1}
$$

Let F be the unique intermediate field of $\mathbf{Q}^{S} / \mathbf{Q}(\sqrt{2})$ with degree $a_{2}(p)$ over $\mathbf{Q}(\sqrt{2})$. Proposition 1 of $[2]$ then implies that $a_{2}(p)$ divides $\left[H_{p}(F): F\right]$ (cf. also [8, Theorem 1.1]). This fact, together with Lemma 1, proves the present lemma.

Proposition 1. If 2 and 31 belong to S, then $H_{31}\left(\mathbf{Q}^{S}\right)$ is a nontrivial extension of \mathbf{Q}^{S}.

Proof. As $31^{2} \equiv 1(\bmod 16)$, we let $p=31$ in the assumption of Lemma 2. It is not difficult to see that

$$
(1+\sqrt{2})^{30}-1 \equiv 31^{2} \cdot 2 \sqrt{2} \quad\left(\bmod 31^{3}\right)
$$

in the ring of algebraic integers in $\mathbf{Q}(\sqrt{2})$. Hence we have $a_{2}(31)=31$ and the proposition is proved by Lemma 2.

Remark. One knows from [4] that, in the case $q=2$, there exists no example of $p \neq 31$ satisfying

$$
p^{2} \equiv 1 \quad(\bmod 16), \quad p \mid a_{2}(p), \quad p<20000
$$

We next consider the case $q>2$.
Lemma 3. Assume that

$$
p>2, \quad q>2, \quad p^{q-1} \equiv 1 \quad\left(\bmod q^{2}\right)
$$

Then $H_{p}\left(\mathbf{Q}^{S}\right)$ contains an extension of degree $a_{q}(p)$ over \mathbf{Q}^{S}.

Proof. In fact, Theorem 1.1 of [8] combined with [1] implies that there exists an intermediate field k of \mathbf{Q}^{S} / L_{q} with finite degree for which

$$
a_{q}(p) \mid\left[H_{p}(k): k\right]
$$

Proposition 2. If 3 and 73 belong to S, then $H_{73}\left(\mathbf{Q}^{S}\right)$ is a nontrivial extension of \mathbf{Q}^{S}.

Proof. Since $73^{2} \equiv 1(\bmod 9)$, we let $(p, q)=$ $(73,3)$ in the assumption of Lemma 3. Note that $L_{3}=\mathbf{Q}(\cos (\pi / 9)), 2$ is a primitive root modulo 9 , and

$$
\frac{\sin (2 \pi / 9)}{\sin (\pi / 9)}=2 \cos \frac{\pi}{9}
$$

is a zero of the polynomial $x^{3}-3 x-1$. Let $\varepsilon_{1}, \varepsilon_{2}$, ε_{3} be the conjugates of $2 \cos (\pi / 9)$ over \mathbf{Q} so that

$$
\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}\left(\varepsilon_{2}-\varepsilon_{3}\right)^{2}\left(\varepsilon_{3}-\varepsilon_{1}\right)^{2}=81
$$

Solving the congruence $x^{3}-3 x-1 \equiv 0\left(\bmod 73^{3}\right)$ and rearranging $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ if necessary, we then obtain

$$
\begin{aligned}
& \varepsilon_{1} \equiv 157183 \quad\left(\bmod 73^{3}\right), \\
& \varepsilon_{2} \equiv 257651 \quad\left(\bmod 73^{3}\right)
\end{aligned}
$$

in \mathbf{Z}_{73}. These yield

$$
\begin{aligned}
144 \log \varepsilon_{1} & \equiv 2\left(\varepsilon_{1}^{72}-1\right)-\left(\varepsilon_{1}^{72}-1\right)^{2} \\
& \equiv 4511 \cdot 73 \quad\left(\bmod 73^{3}\right) \\
144 \log \varepsilon_{2} & \equiv 2\left(\varepsilon_{2}^{72}-1\right)-\left(\varepsilon_{2}^{72}-1\right)^{2} \\
& \equiv 2106 \cdot 73 \quad\left(\bmod 73^{3}\right),
\end{aligned}
$$

where \log denotes the 73 -adic logarithmic function. On the other hand, ε_{1} and ε_{2} represent a basis of the free abelian group $C_{3} /\{ \pm 1\}$, and

$$
\sigma\left(\varepsilon_{2}\right)=\varepsilon_{3}=\varepsilon_{1}^{-1} \varepsilon_{2}^{-1}
$$

for the $\sigma \in \operatorname{Gal}\left(L_{3} / \mathbf{Q}\right)$ with $\sigma\left(\varepsilon_{1}\right)=\varepsilon_{2}$. Therefore, in view of

$$
4511(-4511-2106)-2106^{2} \equiv 31 \cdot 73 \quad\left(\bmod 73^{2}\right)
$$ we know that

$$
\left|R_{73,3}^{*}\right|_{73}=73^{-3}, \quad \text { i.e., } \quad a_{3}(73)=73
$$

Hence the proposition follows from Lemma 3.
With the help of Kida's UBASIC and a personal computer, we have checked for the case $q=3$ that
there exists no example of $p \neq 73$ which satisfies

$$
p^{2} \equiv 1 \quad(\bmod 9), \quad p \mid a_{3}(p), \quad p<10000
$$

It would be interesting to continue our discussion under the assumption $q \geq 5$, but here we only add the following

Remark. In the case $|S|<\infty, H_{p}\left(\mathbf{Q}^{S}\right)$ is a finite extension of \mathbf{Q}^{S} if and only if Greenberg's conjecture for the \mathbf{Z}_{p}-extension over k is true for every finite algebraic number field k in \mathbf{Q}^{S}.

Acknowledgement. The author thanks his wife Mitsuko for her kind assistance in the process of computation.

References

[1] Brumer, A.: On the units of algebraic number fields. Mathematika, 14, 121-124 (1967).
[2] Fukuda, T., and Komatsu, K.: On the λ invariants of \mathbf{Z}_{p}-extensions of real quadratic fields. J. Number Theory, 23, 238-242 (1986).
[3] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Academie, Berlin (1952); Springer, Berlin (1985).
[4] Hatada, K.: Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at $2-p$. Comment. Math. Univ. St. Pauli, 36, 41-51 (1987).
[5] Fröhlich, A.: On the absolute class-group of abelian fields. J. London Math. Soc., 29, 211217 (1954).
[6] Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg, 20, 257-258 (1956).
[7] Iwasawa, K.: On Γ-extensions of algebraic number fields. Bull. Amer. Math. Soc., 65, 183-226 (1959).
[8] Taya, H.: On p-adic zeta functions and $\mathbf{Z}_{p^{-}}$ extensions of certain totally real number fields. Tohoku Math. J., 51, 21-33 (1999).

[^0]: 1991 Mathematics Subject Classification. Primary 11R20; Secondary 11R23.

