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A note on the Zp × Zq-extension over Q
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Abstract: Let S be a non-empty set of prime numbers; 1 ≤ |S| ≤ ∞. Let QS denote the
abelian extension of the rational field Q whose Galois group over Q is topologically isomorphic to
the direct product of the additive groups of l-adic integers for all l ∈ S. In this note, we shall give
simple examples of S such that, for some l ∈ S, the Hilbert l-class field over QS is a nontrivial
extension of QS . Our results imply that, if S contains 2, 3, 31, and 73, then there exists an
unramified cyclic extension of degree 2263 = 31 · 73 over QS .
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We shall suppose that all algebraic extensions
over the rational field Q are contained in the complex
field. For each prime number l, let Zl denote the ring
of l-adic integers. As in the above abstract, let S be a
non-empty set of prime numbers and let QS denote
the unique abelian extension over Q such that the
Galois group Gal(QS/Q) is topologically isomorphic
to the additive group of the direct product

∏
l∈S Zl.

Clearly, for any finite algebraic number field k in QS ,
there exists a tower

k = k1 ⊂ · · · ⊂ kn ⊂ kn+1 ⊂ · · · ⊂ QS

of intermediate fields of QS/k with finite degrees
such that

∞⋃
n=1

kn = QS

and that, for each positive integer n, some prime
ideal of kn is fully ramified in kn+1. We thus obtain:

Lemma 1. Let k be a finite algebraic number
field in QS, and k′ a finite unramified Galois ex-
tension over k. Then not only the composite QSk′

is an unramified Galois extension over QS but the
restriction map Gal(QSk′/QS) → Gal(k′/k) is an
isomorphism.

Now let p be any prime number in S: p∈S. For
each algebraic number field K and for each prime
number l, let Hl(K) denote the Hilbert l-class field
over K, namely, the maximal unramified abelian l-
extension over K. Then, in particular,
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Hp(QS) =
⋃
k

Hp(k),

with k ranging over the finite algebraic number fields
in QS (cf. [7]). Therefore, both [5] and [6] show us
that

Hp(QS) = QS when |S| = 1, i.e., S = {p}.

We assume henceforth that S contains a prime
number q other than p:

{p, q} ⊆ S, q 6= p.

The Zp × Zq-extension over Q is nothing but QS

for the case S = {p, q}. Let Lq denote the unique
subfield of QS of degree q. Then Lq is contained in
Q(cos(π/q2)), the maximal real subfield of the 2q2-
th cyclotomic field. Let Eq denote the unit group
of Lq, Rp,q the p-adic regulator of Lq, and Qp the
field of p-adic numbers. We understand that Rp,q
is an element of a fixed algebraic closure Ωp of Qp,
considering Lq to be a subfield of Ωp by means of a
fixed embedding Lq → Ωp. Furthermore, Rp,q 6= 0
as [1] implies. Let Cq denote the group of circular
units of Lq: namely, in the case q = 2, let Cq be the
subgroup of Eq generated by −1 and 1 +

√
2; in the

case q > 2, let Cq be the subgroup of Eq generated
by −1 and by all conjugates, over Q, of the norm of

sin(rπ/q2)
sin(π/q2)

=
erπi/q

2 − e−rπi/q
2

eπi/q2 − e−πi/q2

for the extension Q(cos(π/q2))/Lq, where r is a
primitive root modulo q2 (obviously, Cq does not de-
pend on the choice of r). Then, in Ωp, the p-adic
regulator for Cq is defined in the usual way. We de-
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note it by R∗p,q. On the other hand, the group index
of Cq in Eq equals the class number of Lq (cf. [3]).
Hence

|R∗p,q|p[Hp(Lq) : Lq] = |Rp,q|p 6= 0,

where | · |p denotes the normalized absolute value on
Ωp; |p|p = p−1. Put

aq(p) = p1−q|R∗p,q|−1
p = p1−q[Hp(Lq) : Lq]|Rp,q|−1

p .

Note that the following three conditions are equival-
lent:
(i) p is completely decomposed in Lq,
(ii) Lq ⊂ Qp,
(iii) pq−1 ≡ 1 (mod q2) or p2 ≡ 1 (mod 16) accord-

ing as q > 2 or q = 2.
We easily see that, if one of the above conditions is
satisfied, then Rp,q belongs to pq−1Zp so that

aq(p) = pu

with some integer u ≥ 0.
Let us first consider the case q = 2.
Lemma 2. Assume that

q = 2, p2 ≡ 1 (mod 16).

Then Hp(QS) contains an extension of degree a2(p)
over QS.

Proof. We have

Q(
√

2) = Lq ⊂ Qp

by the assumption. As readily verified,

a2(p) = p−1|(1 +
√

2)p−1 − 1|−1
p .

Let F be the unique intermediate field of QS/Q(
√

2)
with degree a2(p) over Q(

√
2). Proposition 1 of [2]

then implies that a2(p) divides [Hp(F ) : F ] (cf. also
[8, Theorem 1.1]). This fact, together with Lemma 1,
proves the present lemma.

Proposition 1. If 2 and 31 belong to S, then
H31(QS) is a nontrivial extension of QS.

Proof. As 312 ≡ 1 (mod 16), we let p = 31 in
the assumption of Lemma 2. It is not difficult to see
that

(1 +
√

2)30 − 1 ≡ 312 · 2
√

2 (mod 313)

in the ring of algebraic integers in Q(
√

2). Hence we
have a2(31) = 31 and the proposition is proved by
Lemma 2.

Remark. One knows from [4] that, in the case
q = 2, there exists no example of p 6= 31 satisfying

p2 ≡ 1 (mod 16), p | a2(p), p < 20000.

We next consider the case q > 2.
Lemma 3. Assume that

p > 2, q > 2, pq−1 ≡ 1 (mod q2).

Then Hp(QS) contains an extension of degree aq(p)
over QS.

Proof. In fact, Theorem 1.1 of [8] combined
with [1] implies that there exists an intermediate field
k of QS/Lq with finite degree for which

aq(p) | [Hp(k) : k].

Proposition 2. If 3 and 73 belong to S, then
H73(QS) is a nontrivial extension of QS.

Proof. Since 732 ≡ 1 (mod 9), we let (p, q) =
(73, 3) in the assumption of Lemma 3. Note that
L3 = Q(cos(π/9)), 2 is a primitive root modulo 9,
and

sin(2π/9)
sin(π/9)

= 2 cos
π

9

is a zero of the polynomial x3 − 3x − 1. Let ε1, ε2,
ε3 be the conjugates of 2 cos(π/9) over Q so that

(ε1 − ε2)2(ε2 − ε3)2(ε3 − ε1)2 = 81.

Solving the congruence x3 − 3x − 1 ≡ 0 (mod 733)
and rearranging ε1, ε2, ε3 if necessary, we then obtain

ε1 ≡ 157183 (mod 733),

ε2 ≡ 257651 (mod 733)

in Z73. These yield

144 log ε1 ≡ 2(ε721 − 1)− (ε721 − 1)2

≡ 4511 · 73 (mod 733),

144 log ε2 ≡ 2(ε722 − 1)− (ε722 − 1)2

≡ 2106 · 73 (mod 733),

where log denotes the 73-adic logarithmic function.
On the other hand, ε1 and ε2 represent a basis of the
free abelian group C3/{±1}, and

σ(ε2) = ε3 = ε−1
1 ε−1

2

for the σ ∈ Gal(L3/Q) with σ(ε1) = ε2. Therefore,
in view of

4511(−4511− 2106)− 21062 ≡ 31 · 73 (mod 732),

we know that

|R∗73,3|73 = 73−3, i.e., a3(73) = 73.

Hence the proposition follows from Lemma 3.
With the help of Kida’s UBASIC and a personal

computer, we have checked for the case q = 3 that
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there exists no example of p 6= 73 which satisfies

p2 ≡ 1 (mod 9), p | a3(p), p < 10000.

It would be interesting to continue our discussion
under the assumption q ≥ 5, but here we only add
the following

Remark. In the case |S| < ∞, Hp(QS) is a
finite extension of QS if and only if Greenberg’s con-
jecture for the Zp-extension over k is true for every
finite algebraic number field k in QS .
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