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Support theorem for jump process of canonical type
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Abstract: In this paper we consider the support property and the short time aymptotic
behavior of the transition density for (possibly degenerate) processes of jump type whose Lévy
measure is singular.
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1. Introduction. Let an Rd-valued jump
type process Yt(x), called a canonical process, is
given by the SDE

(0) dYt(x) =
m∑
j=1

Xj(Yt−(x)) ◦ dZj(t), Y0(x) = x.

Here z(t) = (z1(t), . . . , zm(t)) denotes an Rm-valued
Lévy process (martingale), and X1(x), . . . , Xm(x)
are smooth Rd-valued functions on Rd (viewed as
the vector fields), and ◦ dzj(t) means the canonical
(or “Stratonovich”) integral. We denote by P or P (x)

the law of Y.(x).
This type of jump processes was introduced by

[9], and has been studied by [1], [4], [5], [6], and [8].
For this type of processes we can show, using the fi-
nite difference operator D on L2([0, T ]×Rm, Ñ), the
existence of the transition density even if the Lévy
measure of the driving processes are very singular
with respect to the Lebesgue measure. That is, de-
noting by pt(x, dy) the transition function of Yt(x),
we have pt(x, dy) = pt(x, y)dy where dy denotes the
d-dimensional Lebesgue measure cf. [6] and [11]. Fur-
ther we can show for a particular Lévy process z(t)
that for all t > 0 supp pt(x, .) = Rd if Xj ’s are not
essentially degenerate cf. [5], [3].

We are interested in the description of the sup-
port of P in the Skorohod path space D. As for
the characterization of the support of the law of a
jump process x.(x), which we call support theorems,
several results which are analogues to those in the
diffusion case ([15]) have been obtained, see e.g., [5],
[13].

H. Kunita [5] has given a support theorem for
the canonical process (0). However, in [5], the case
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that the driving process consists of asymmetric sta-
ble processes (without diffusion part) having the in-
dex > 1 can not be included, since “Conditions 1,2”
in [5] are not satisfied for such a case. In this note,
we use a different approach, which is mainly due to
[14] to cover the above case. We show, under supple-
mentary conditions (A.1), (A.2) below, the support
theorem for the canonical processes. In fact the con-
dition (A.1) implies the “small deviations” property,
which replaces Kunita’s more restrictive condition.

The basic ideas of the method used here are
classical estimates for the solutions of (stochastics)
differential equations, and, constructions of classical
trajectories which has a positive probability as a set
in the path space D.

2. Processes, description of Skeltons.
We will fix the time interval [0, T ], T > 0. Let
Z(t) = (Z1(t), . . . , Zm(t)), 0 ≤ t ≤ T , be a Lévy
processes defined on (D,B,Π) with values in Rm

and Z(0) = 0, where D = D([0, T ],Rm) is the Sko-
rohod space. That is, Zj(t) =

∫ t
0

∫
R
zÑj(dsdz),

j = 1, . . . ,m, where Nj(dsdz) denotes a Poisson
random measure on [0, T ] × R and Ñj(dsdz) =
Nj(dsdz)− E[Nj(dsdz)]. It is decomposed as

Zj(t) =
∫ t

0

∫
|z|<1

zÑj(dsdz)

+
(∫ t

0

∫
|z|≥1

zNj(dsdz)

−
∫ t

0

∫
|z|≥1

zE[Nj(dsdz)]
)

(a semimartingale). We assume (Zj) are mutually
independent.

We denote by dν the Lévy measure of Z(t).
The measure dν satisfies ν({0}) = 0 and

∫
(|z|2 ∧
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1)ν(dz) <∞. We assume further

supp ν ⊂ {|z| ≤ 1},

but we do not assume that ν has a density with re-
spect to the Lebesgue measure. Hence we can sup-
pose, e.g.,

ν(dz) =
∑
n∈N

knδan
,

where kn > 0, (an;n ∈ N) is a sequence in Rm such
that |an| → 0 as n→∞.

We denote by [Z,Z] ≡ ([Zj , Zk]) the quadratic
variation process of Z (of matrix form). We denote
by [Z] the scalar quadratic variation, that is, [Z] =∑m
j=1[Z

j , Zj ].
Let X1, . . . , Xm be smooth vector fields on Rd

whose derivatives of all orders (including 0-th order)
are uniformly bounded in x. We consider the canon-
ical (“Stratonovich” type, or, Marcus equation) SDE

dYt =
m∑
j=1

Xj(Yt) ◦ dZj(t), Y0 = x,

which defines the canonical process Y.. The meaning
of the equation is as follows:

dYt =
m∑
j=1

Xj(Yt−)dZj(t)

+

{
Exp

(
m∑
j=1

∆Zj(t)Xj

)
(Yt−)

−Yt− −
m∑
j=1

∆Zj(t)Xj(Yt−)

}
where φ(t, x) ≡ Exp(tv)(x) is the solution flow of the
differential equation

dφ(t, x)
dt

= v(φ(t, x)), φ(0, x) = x.

Or equivalently (cf. [8], Lemma 2.1), we can write

Yt = x+
m∑
j=1

Xj(Ys)dZj(s) +
∫ t

0

h(s, ., Ys−)d[Z]s,

where we put

h(s, ω, x) =
1

|∆Z(s)|2

{
Exp

(
m∑
j=1

∆Zj(s)Xj

)
(x)

−x−

(
m∑
j=1

∆Zj(s)Xj

)
(x)

}
,

which is a Lipschitz process with bounded Lips-
chitz constant. We denote by P (x) the law of Y.
on D′ = D([0, T ],Rd). We should be careful that
s 7→ h(s, ω, x) is not predictable.

Equation above is a coordinate free formulation
of SDE with jumps for semimartingales. We shall
call it a canonical SDE driven by a vector field valued
semimartingale Y (t) =

∑m
j=1 Z

j(t)Xj according to
[4], [5], [6].

Next we construct “Skeltons”. Let u(t) =
(u1(t), . . . , um(t)), 0 ≤ t ≤ T be an Rm-valued,
piecewise smooth, cádlàg functions having finite
jumps. It is decomposed as u(t) = uc(t) + ud(t),
where uc(t) is a continuous function and ud(t) is a
purely discontinuous (i.e., piecewise constant except
for isolated finite jumps) function.

For η > 0 we put

Uη =
{
u ∈ D;u(t) = uc,η(t) + ud,η(t),

∆u(s) ∈ supp ν,

ud,η(t) =
∑
s≤t

∆u(s) · 1{η<|z|≤1}(∆u(s)),

uc,η(t) = −lη · t
}
.

Here we put lη =
∫
{η<|z|≤1} zν(dz). Put U ≡

∪η>0 Uη, and call it the space of skeltons.
Given u = uη ∈ Uη, we put a trajectory ϕηt ∈ D′

by

dϕηt =
m∑
j=1

Xj(ϕ
η
t ) ◦ duj(t), ϕη0 = x.

The solution starting from x at t = s is a (piecewise
cádlàg) smooth function ϕηt , t ≥ 0, satisfying

ϕηt = x+
m∑
j=0

∫ t

0

Xj(ϕηr)(−l(j)η )dr

+
∑

0≤r≤t

{
Exp

(
m∑
j=1

∆udj (r)Xj

)
(ϕηr−)− ϕηr−

}
.

Here the integral in the second term in R.H.S. is
interpreted as Stieljes integral. The function ϕηt can
be viewed as the image of a skelton u. We put

Sxη = {ϕηt ;ϕ
η
t is as above, u = uη ∈ Uη}

and Sx = ∪η∈(0,1)Sxη .
For u, v ∈ U , Skorohod metrics s on D =

D([0, T ], Rm) and S on D′ = D([0, T ],Rd) are de-
fined as usual. The support of the Lévy process Z is
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defined by

suppZ = {u ∈ D ; for all δ > 0

P ({ω; s(Z, u) < δ}) > 0}.

The support of Y is similarly defined. By S̄x we
denote the closure of Sx in (D′,S).

We define the approximating processes Zη(t),
Y ηt for each η > 0 as follows. Let Zη(t) =∫ t
0

∫
η<|z|≤1

zÑ(dsdz), and Y ηt is given by dY ηt =∑m
j=1Xj(Y

η
t ) ◦ dZη,j(t), Y η0 = x. We further

put the complementary process the Zη: Z̃η(t) =∫ t
0

∫
0<|z|≤η zÑ(dsdz) and Ỹ ηt is given by dỸ ηt =∑m

j=1Xj(Yt) ◦ dZ̃η,j(t), Ỹ η0 = x. Note that dZ(s) =
dZη(s)+dZ̃η(s), and d[Z]s = d[Zη]s+d[Z̃η]s. Hence
we have a decomposition

Yt − Y ηt =
m∑
j=1

∫ t

0

{Xj(Ys−)−Xj(Y
η
s−)}dZηj (s)

+
∫ t

0

{h(s, Ys−)− hη(s, Y ηs−)}d[Zη]s + Ỹ ηt .

We now state our basic assumptions concerning
“small deviations”.

Setting, for every 0 < ρ < η,

uηρ =
∫
ρ≤|z|≤η

zν(dz),

we say that Z is quasi-symmetric if for every η > 0,
there exists a sequence {ηk} decreasing to 0 such that

|uηηk
| −→ 0(1)

as k → +∞. This means that for every η the com-
pensation involved in the martingale part of Ỹ η is
somehow negligible, and of course this is true when
Z is really symmetric.

To include the case where ν is not quasi-
symmetric, we put the following assumption due to
[14].

(A.1) (Small deviations condition) For every
η > 0 such that (1) does not hold, there exists γ =
γ(η) > 1 and a sequence {ηk} decreasing to 0 such
that as k →∞

αηηk
= o (1/|uηηk

|),

where αηρ is the smallest angle between the direction
of uηρ and supp ν on {|z| = γη}, when it can be de-
fined.

Notice first that it always holds in dimension
1 (with αηηk

= 0). Besides, it is verified in higher

dimensions whenever supp ν contains a sequence of
spheres whose radius tend to 0 (in particular, a whole
neighbourhood of 0).

For technical reasons, we also suppose that ν
satisfies the following asymptotic scaling condition
due to [10]:

(A.2) There exists β ∈ [1, 2) and positive con-
stants C1, C2 such that for any ρ ≤ 1

C1ρ
2−βI ≤

∫
|z|≤ρ

zz∗ν(dz) ≤ C2ρ
2−βI.

Besides, if β = 1, then

lim sup
η→0

∣∣∣∣∣
∫
η≤|z|≤1

zν(dz)

∣∣∣∣∣ <∞.

The inequalities above stand for symmetric
positive-definite matrixes. This means (A.2) de-
mands both the non-degeneracy of the distribution
of (point) masses around the origin, and, the way of
concentration of masses along the radius. We notice
that, if 〈v, .〉 stands for the usual scalar product with
v, they are equivalent to∫

|z|≤ρ
|〈v, z〉|2ν(dz) � ρ2−β

uniformly for unit vectors v ∈ Sm−1. (Here �
means the quotient of the two sides is bounded away
from zero and above as ρ → 0.) In particular,
β = inf{α;

∫
|z|≤1

|z|αν(dz) < ∞} (the Blumental-
Getoor index of Z), and the infimum is not reached.
Notice finally that the measure ν may be very sin-
gular and have a countable support.

Theorem. Under (A.1), (A.2), suppY.(x) =
S̄x. Here ¯ means the closure in S-topology.

Remark. In case 0 < β < 1, the driving pro-
cess Z(t) is of finite variations. In this case, the
correction term of Y. deriving from the exponential
map vanishes. As a result, the support theorem of
above form follows directly from [14], which treats
the non-canonical case, without assumptions (A.1),
(A.2).

3. Sketch of the proof of Theorem. The
proof of the inclusion left to right is easy (cf. [14]).
Hence we prove the inclusion right to left.

We prove S̄x ⊂ suppP (x). Since Sx = ∪η>0Sxη ,
it is sufficient to show for each η > 0, Sxη ⊂ suppP (x).
Let η > 0.

Let u ∈ Uη and ϕ = ϕη be as in Section 2. We
need to show for all T > 0, for all ε > 0, P (S(Y, ϕ) <
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ε) > 0.
Fix ε > 0. Introduce 0 = t0 < t1 < · · · <

tNT
≤ T the jumping times of ϕ. Set T0 = 0, and

T1 < T2 < · · · be the jumping times of Z such that
|∆ZTi | > η. We write Zi = ∆ZTi .

For ρ > 0, δ > 0, we put

ΩA =
NT⋂
i=1

{
{|Ti − ti| < ρ} ∩ {|Zi − zi| < δ}

}
⋂
{TNT +1 > T}

and

ΩB =
NT⋂
i=1

{
{|(Ti − Ti−1)− (ti − ti−1)| < ρ/NT }

∩ {|Zi − zi| < δ}
}
.

Then ΩA ⊃ ΩB and ΩB has positive P (x)-
probability, since Ti − Ti−1 follows an exponential
law and zi are in supp ν. Hence ΩA has positive
P (x)-probability.

Proposition 3.1. For each ε > 0 there exist
δ > 0, ρ > 0 such that

S(Y η, ϕ) < ε on ΩA.

Proof. The proof of this proposition is long.
We show we can construct concretely the trajec-
tory Y η which satisfies the above property. See [14]
Proposition 1 for details.

Proposition 3.2. The right to left inclusion is
shown if for all ε > 0, there exists c = cε > 0 such
that

P
(

sup
t≤T

|Ỹ ηt | < ε; ΩB
)
> c.(2)

Proof. By the expression in Section 2, on
{supt≤T |Ỹ

η
t | < ε} ∩ ΩB ,

|Yt − Y ηt | ≤ ε+K

∫ t

0

|Ys − Y ηs |d[Zη]s

+K
∑
Ti≤t

|YT−i − Y η
T−i
|.

By Gronwall’s lemma on [0, T1) we have

sup
0≤t<T1

|Yt − Y ηt | ≤
∫ T1

0

εeK(T1−s)d[Zη]s

< εeKT1 [Zη]T1 .

Let M > 0 and C denotes the event {[Zη]T1 ≤ M}.

By Chebyshev’s inequality

P (Cc) = P ({[Zη]T1 > M}) ≤ 1
M2

E[|[Zη]T1 |2]

≤ 1
M2

∫ T1

0

∫
η≤|z|≤1

ds|z|2ν(dz) ≤ K ′

M2

where K ′ > 0 is an absolute constant. We choose
M > 0 so that K ′/M2 ≤ c/2.

Then P (C) = 1 − P (Cc) ≥ 1 − c/2, hence by
the assumption (2) the event ({supt≤T |Ỹ

η
t | < ε} ∩

ΩB) ∩ C has positive probability:

P
[({

sup
t≤T

|Ỹ ηt | < ε
}
∩ ΩB

)
∩ C

]
≥ c+

(
1− c

2

)
− 1 =

c

2
> 0.

We have on this event∑
0≤t≤T1

|Yt − Y ηt | < εeKT1M.

Repeating the same argument NT times on each
[Ti, Ti+1), we get

sup
0≤t≤T

|Yt − Y ηt | < Kε.

Hence, by Proposition 3.1, on the event of pos-
itive probability ({supt≤T |Ỹ

η
t | < ε} ∩ ΩB) ∩ C, we

have

S(Y, ϕ) < ε

as desired.
Proposition 3.3. The condition of Proposi-

tion 3.2 holds if for any x ∈ Rd, any ε > 0 and
any t > 0,

P (x)
(

sup
s≤t

|Ỹ ηs | < ε
)
> 0.(3)

The proofs of this proposition and that of the asser-
tion (3) are lengthy, and we omit the details (see [3]).
The condition (3) is originally called as small devi-
ations condition in [12]. Assumptions (A.1), (A.2)
assure the condition (3). The condition (A.1), in
particular, guarantees that the effect of the infinites-
imal drift

∫
|z|≤ρ zν(dz) can be compensated by the

(relatively big) jump part. In case of stable pro-
cess, the condition (3) together with (A.2) implies
the positivity of the density on the whole space (see
[16], Theorem 1). This proves the assertion.
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