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Abstract:

It is conjectured that the lifted Futaki invariant of an n-dimensional compact
complex manifold vanishes if it admits an Einstein-K&hler metric.

If the conjecture holds for

n = 1, the lifted Futaki invariants for Riemann surfaces must vanish because Riemann surfaces

always admit Einstein-Kahler metrics.

In this paper, we prove the vanishing of the lifted Futaki invariants for Riemann surfaces
under a certain assumption. Our main result is Theorem 1.3.
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1. Introduction and main theorem. Let
M be a compact complex manifold, A(M) the com-
plex Lie group consisting of the biholomorphic auto-
morphisms of M and V(M) its Lie algebra consist-
ing of the holomorphic vector fields on M. Then,
in [1] (See also [2]), Futaki defined a Lie algebra ho-
momorphism f : V(M) — C, which is called the
“Futaki invariant”, and showed that f(X) = 0 for
any X € V(M) if M admits an Einstein-K&hler met-
ric. In [2], using the Simons character of a certain
foliation, Futaki-Morita defined a Lie group homo-
morphism F : A(M) — C/Z (where C/Z is the
additive group), which is called the “lifted Futaki in-
variant” (see also [4]). The lifted Futaki invariant F'
satisfies the condition that F(exp X) = f(X) mod Z
for any X € V(M). As was shown in [3], F' may be
non-zero even when V(M) = {0}.

Now let M be a compact connected Riemann
surface of genus o with any complex structure, g €
A(M) a periodic automorphism of order p and Q(k)
the fixed point set of g* (1 < k < p —1). Then
the next theorem is the immediate consequence of
Theorem 2.10 in [4].

Theorem 1.1. Assume that ¢ acts on the
tangent space TyM for ¢ € Q(k) via multiplication
by &' # 1 where &, = e2™V=1/P qnd mq € Z. Then
we have

C/Z>F(yg

k+mq ‘-1
=18 5 gl

k=1 qeQ(k)
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Now suppose that p = pi'p5?---ple where
P1,P2,---,Pe are mutually distinct prime numbers
and N1, M2, ., N are natural numbers. Set g; =
gp/p for 1 <i < e. Then the order of g; is equal to
Pi .

Assumption 1.2. When o > 2, we assume
that there exists a natural number m; which is prime
to p; such that gi: acts on the tangent space Ty M
of the fized point q of gilT via multiplication by
exp(2my/—1mueq ., /pli ") for any 1 < r < m; — 1
and any q where €4, 15 equal to 1 or —1.

Our main theorem is the next theorem.

Theorem 1.3. Under the assumption above,
the lifted Futaki invariant F'(g) vanishes.

2. Proof of the main theorem. Wheno =
0, A(M) = A(CP') = PGL(2;C) is connected and
hence there exists X € V(M) such that g = exp X.
Therefore F(g) = f(X) = 0 because M admits an
Einstein-K&hler metric. So we assume that o > 1
hereafter. First assume that ¢ > 2. Since m; is
prime to p1, there exists a natural number ¢ such that
mil =1 (mod pi'*). Set g. := g}. Then g; = g™,
the order of g. is p]'' and the fixed point set of g
coincides with that of ¢g] for any r. Let Q.(k) be
the fixed point set of g* (1 < k < p* —1). Then
it follows from Assumption 1.2 that gf; acts on the
tangent space T,M of ¢ € Q. (p}) via multiplication
by aPi€er = 3ar where o = exp (27r\/—71/p1“) and
8 =aPl =exp (27r\/7/p"1 T).

Since Q. (p ') € Qu(p), we can define the set
S, consisting of fixed points by
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Sp = 0.(1),
Sr = (p) \ Qu(pi )

Then the following lemmas hold.
Lemma 2.1. (1)

OfSO, Sl, ey ST.

(2)  Qu(tp]) = Qu.(p}) if t is not a multiple of p;.

(3) Assume that Sy # ¢. Then we have

Sy NQ(k) # ¢ <= S, CQU(k) = k=1tp]

for1 <t <pi*™"—1.

(4) The set S, is invariant under the action of g*
for any k.

(5) There exist points {q;}jvz(f) such that Sy is the
disjoint sum of the points gi - q; for

(1§T§n1—1).

Q. (p}) is the disjoint union

i=0,1,....p, =1, j=1,2,....,N(r) ifS, #¢.

Proof. (1) This follows immediately from the
definition of S,..

(2) Assume that k = ¢tp] where 0 <7 <n; —1 and
t is not a multiple of p;. Since ¢p] is a multiple of
ph, it is clear that Q. (tph) D Q. (p}). On the other
hand, since the greatest common divisor of ¢, pj* ™"
is equal to 1, there exists a natural number A\ such
that tA = 14 up]* ™" for some natural number p and
hence we have

ipI)A _ gipIA _ ngup}” _ gpI

* .

(g

Therefore, it follows that Q.(tp]) C Q.(p}) and
hence that Q. (tp7) = Q. (p]).

(3) If k =tpffor 1 < ¢ < pi™" —1, it follows
that Q,(k) D Q.(p]) and hence that Q. (k) D S,. If
Q.(k) D S,, it is clear that Q.(k) NS, # ¢. If k is
not a multiple of pj, there exist non-negative integer
7 and a natural number ¢ such that 0 < j < r, t is
prime to p; and that k = tp{. Therefore it follows
from (1) and (2) that Q. (k) is the disjoint union of
So0,51, .. .,S; and hence that S, N Q. (k) = ¢.

(4) We have

gl a=gt gl ca=4lq
t

gl q=gl gl aF gl g it <

for any k which implies that ¢¥ - S, = S, for any r.
(5) Since Z/piZ = {(g.)/(g}") acts freely on S,
where (g.) denotes the cyclic group generated by
g+, there exist points {qj};v:(f) in M which repre-
sent S,./(Z/piZ). Then S, is the disjoint sum of the

points g%-qj fori =0,1,...,pf—1,7=1,2,...,N(r).
O
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Note that gf; acts on the tangent space Tgi,q;M
via multiplication by °~ for any r, ¢, j where €, ;
is equal to 1 or —1 because ¢¢ acts isometrically on
M.

Lemma 2.2.

ny—1N(r)

>N pien; =0 (mod pit).

r=0 j=1

Proof. Let M denote the punctured surface de-
fined by M \ (U",'S,). Then (g.) = Z/p}"Z and
<gfI) = Z/p"""Z acts freely on M and hence we
can define Z/p''* Z-covering

P:M — M=M/(Z/p"Z)
and Z/py* ™" Z-covering
P:M— M=M/(Z/p?*"Z).

Moreover (g,)/{g"") = Z/piZ acts freely on M and
hence we can define Z/p}Z-covering

P:M — M/(Z/p}Z) = M.
Therefore we have an exact sequence
T (M) — w1 (M) -2 7o(Z/p™ Z) = Z/p™ Z — 0.

Fix a base point O € M. Let O be the point in M
defined by O = P(O) and O the point in M defined
by O = P(O). Let gt -} be any point in S,. Let
P, denote the projection from M to M, := M/{g.)
and *y;’r a counterclockwise loop in M, with respect
to the orientation of M, around P, (g; - q}) = Po(qj)
which starts at O. Since 'y;’r lifts to a loop ’y;’r in M
which starts at O and the loop &;’T lifts to a curve
connecting a point O € M to gfier’j -0 € M be-
cause the automorphism g’ commutes with g% " and
gf{ acts on the tangent space T ‘q;_M via multipli-
cation by 3 for any r, i, j. Since P o P=r
it follows that 1/)(7;”) = piey; € Z/p{'Z for any r,
i, j. Since Z/p{'Z is Abelian, ¢ factors through a
homomorphism H; (M) — Z/p{*Z. On the other
hand, M is homeomorphic to the punctured surface
obtained by removing the points {F,(g})} in M,.
Let o0, denote the genus of the punctured surface
M, namely the genus of M,. If o, > 1, m (M,) is
the free group generated by 1-cells {a;,b;}7°, with
fundamental relation Hf;l aba; 1b;1 = 1. We
can assume that the loops representing {a;,b;} are
contained in M. Thus, by cutting open M along
these loops, M is shown to be homeomorphic to the
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40,-gon A4, punctured at the points correspond-
ing to U'",? U;-V:(;) P,(q}) which are contained in
the interior of Ay, . Then Y ! E;V(I) 7"
resent a 0O- homologous element in Hy(M) because
1N

PDRED ALY
of A4y, which represent a 0-homologous element in
Hy(M). Thus we have

rep-

is homologous to the boundary

n1—1N(r) n1—1N(r)
Z/pPZo0=0 > D> T =D plen
r=0 j=1 r=0 j=1

L]
Lemma 2.3. C/Z > F(g.) =0.
Proof. Since gip; = (gf;)t acts on Tq;M via
multiplication by 84, it follows from Theorem 1.1,
Lemma 2.1 and Lemma 2.2 that

F(g.) = ﬁF(gl)

”1
= g E O/H”mq M1
p"l -1
L k=1 qeq. (k)
ni—1py' =1 N(r)
DYDY
1
Py r=0 t=1 j=1
p;—l t
P1lEr,; __
3 ariti+en) 2 1
aPit —1
1=0

ni—-1N(r) pt7 -1

Y g1
i1

r=0 j=1 t=1

i — 1
since Z ﬁ(lﬁ”)tﬂil = —&p
t=1 p -

(mod pyi*™")
ny— 1N
=~ Z Zplgm_o (mod Z).
r=0 j=1

Since ¢ is prime to p1, ¢F(g1) = 0 implies that
F(g1) = 0. L]

Now let ord(F'(g)) denote the order of F(g) €
C/Z defined by

ord(F(g))

=min{n € N | nF(g) = F(¢") =0 € C/Z},

71,12

which is a divisor of p = pi'p3?---ple. Since F(g1)
=0¢€ C/Z, ord(F(g)) is a divisor of p5?---pZe and
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therefore is prime to p;. The same argument deduces
that ord(F'(g)) is prime to p; for 1 <i < e and that
ord(F(g)) = 1. This implies that F(g) = 0.

Next we consider the case when ¢ = 1. Then
the universal covering of M is C and we may assume
that M = C/(Z + 7Z) where 7 € C satisfies 1 < |7],
0 < Re(r) < 1/2 and 0 < Im(7). Moreover there
exists a splitting exact sequence

1— Ag(M) — A(M

)— H—1

where Ag(M) is the identity component of A(M) and
H is the cyclic group. Let h be a generator of H.
Then for any g € A(M) h¥g is contained in Ag(M)
for some k and hence there exists X € V(M) such
that h*g = exp X. Therefore, we have

F(g) = F(h " exp X) = —kF(h) + F(exp X)
=—kF(h)+ f(X)=—-kF(h) € C/Z
because M admits an Einstein-Kéhler metric. So it
suffices to show that F'(h) =0 € C/Z.
If 7 = exp(2mv/—1/6), H is the cyclic group of
order 6 generated by an automorphism hg defined by
the multiplication by 7. Then we can see that

(1) = 2(3) = {0),
a(2) = ) = {0, 57, 2
- (n1557)

where Qg(k) denotes the fixed point set of hE. Since
hg acts on the tangent space of each fixed point via
multiplication by 7, it follows from Theorem 1.1 that

1 T | |
F(hg) = = (12 374 46
() 6(77—1+ P
5
87'71 107> —1
+37 T4—1+T 75—1>

1
= 6(474 +4r2 +4)=0€ C/Z.

If 7 = exp(2nv/—1/4), H is the cyclic group of order
4 generated by an automorphism h, defined by the
multiplication by 7. Then we can see that

o) = 2 = {0. 5" |

1 7 147
o) = {o.3.7. 1271

and h4 acts on the tangent space of each fixed point
via multiplication by 7. Therefore it follows from




78 K. TsuBo1

Theorem 1.1 that

1 -1 Z_
F(h4) = — <2T2T +4T47—2

1 ™1
9,6
4 T—1 T—1+T >

3 -1

1
= Z(474 +41%) =0€ C/Z.

In other cases, H is the cyclic group of order 2 gene-
rated by an automorphism ho defined by the mul-
tiplication by —1. Then we can see that Q(1) =
{0,(1 + 7)/2} and hsy acts on the tangent space of
the fixed point via multiplication by —1. Therefore
it follows from Theorem 1.1 that

F(hy) = % (2(—1)2§_3_1> =0€C/Z.

This completes the proof of Theorem 1.3. U]
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