The lifted Futaki invariants for Riemann surfaces

By Kenji Tsuboi

Tokyo University of Fisheries, 4-5-7, Kounan, Minato-ku, Tokyo 108-8477 (Communicated by Heisuke HIRONAKA, M. J. A., June 12, 2001)

Abstract: It is conjectured that the lifted Futaki invariant of an n-dimensional compact complex manifold vanishes if it admits an Einstein-Kähler metric. If the conjecture holds for n=1, the lifted Futaki invariants for Riemann surfaces must vanish because Riemann surfaces always admit Einstein-Kähler metrics.

In this paper, we prove the vanishing of the lifted Futaki invariants for Riemann surfaces under a certain assumption. Our main result is Theorem 1.3.

Key words: The lifted Futaki invariant; complex manifold; Einstein-Kähler metric; Riemann surface.

1. Introduction and main theorem. Let M be a compact complex manifold, A(M) the complex Lie group consisting of the biholomorphic automorphisms of M and V(M) its Lie algebra consisting of the holomorphic vector fields on M. Then, in [1] (See also [2]), Futaki defined a Lie algebra homomorphism $f:V(M)\longrightarrow \mathbb{C}$, which is called the "Futaki invariant", and showed that f(X) = 0 for any $X \in V(M)$ if M admits an Einstein-Kähler metric. In [2], using the Simons character of a certain foliation, Futaki-Morita defined a Lie group homomorphism $F: A(M) \longrightarrow \mathbf{C}/\mathbf{Z}$ (where \mathbf{C}/\mathbf{Z} is the additive group), which is called the "lifted Futaki invariant" (see also [4]). The lifted Futaki invariant Fsatisfies the condition that $F(\exp X) = f(X) \mod \mathbf{Z}$ for any $X \in V(M)$. As was shown in [3], F may be non-zero even when $V(M) = \{0\}.$

Now let M be a compact connected Riemann surface of genus σ with any complex structure, $g \in A(M)$ a periodic automorphism of order p and $\Omega(k)$ the fixed point set of g^k $(1 \le k \le p-1)$. Then the next theorem is the immediate consequence of Theorem 2.10 in [4].

Theorem 1.1. Assume that g^k acts on the tangent space T_qM for $q \in \Omega(k)$ via multiplication by $\xi_p^{m_q} \neq 1$ where $\xi_p = e^{2\pi\sqrt{-1}/p}$ and $m_q \in \mathbf{Z}$. Then we have

$$\mathbf{C}/\mathbf{Z} \ni F(g) = \frac{1}{p} \sum_{k=1}^{p-1} \sum_{q \in \Omega(k)} \xi_p^{k+m_q} \frac{\xi_p^{m_q} - 1}{\xi_p^k - 1}.$$

2000 Mathematics Subject Classification. Primary 32Q20, Secondary 30F99, 58J20.

Now suppose that $p = p_1^{n_1} p_2^{n_2} \cdots p_e^{n_e}$ where p_1, p_2, \dots, p_e are mutually distinct prime numbers and n_1, n_2, \dots, n_e are natural numbers. Set $g_i = g^{p/p_i^{n_i}}$ for $1 \le i \le e$. Then the order of g_i is equal to $p_i^{n_i}$.

Assumption 1.2. When $\sigma \geq 2$, we assume that there exists a natural number m_i which is prime to p_i such that $g_i^{p_i^r}$ acts on the tangent space T_qM of the fixed point q of $g_i^{p_i^r}$ via multiplication by $\exp(2\pi\sqrt{-1}\,m_i\varepsilon_{q,r}/p_i^{n_i-r})$ for any $1 \leq r \leq n_i-1$ and any q where $\varepsilon_{q,r}$ is equal to 1 or -1.

Our main theorem is the next theorem.

Theorem 1.3. Under the assumption above, the lifted Futaki invariant F(g) vanishes.

2. Proof of the main theorem. When $\sigma=0$, $A(M)=A(\mathbf{CP^1})=PGL(2;\mathbf{C})$ is connected and hence there exists $X\in V(M)$ such that $g=\exp X$. Therefore F(g)=f(X)=0 because M admits an Einstein-Kähler metric. So we assume that $\sigma\geq 1$ hereafter. First assume that $\sigma\geq 2$. Since m_1 is prime to p_1 , there exists a natural number ℓ such that $m_1\ell\equiv 1\pmod{p_1^{n_1}}$. Set $g_*:=g_1^\ell$. Then $g_1=g_*^{m_1}$, the order of g_* is $p_1^{n_1}$ and the fixed point set of g_*^r coincides with that of g_*^r for any r. Let $\Omega_*(k)$ be the fixed point set of g_*^k $(1\leq k\leq p_1^{n_1}-1)$. Then it follows from Assumption 1.2 that $g_*^{p_1^r}$ acts on the tangent space T_qM of $q\in\Omega_*(p_1^r)$ via multiplication by $\alpha^{p_1^r\varepsilon_{q,r}}=\beta^{\varepsilon_{q,r}}$ where $\alpha=\exp\left(2\pi\sqrt{-1}/p_1^{n_1}\right)$ and $\beta=\alpha^{p_1^r}=\exp\left(2\pi\sqrt{-1}/p_1^{n_1-r}\right)$.

Since $\Omega_*(p_1^{r-1}) \subset \Omega_*(p_1^r)$, we can define the set S_r consisting of fixed points by

$$S_0 = \Omega_*(1),$$

$$S_r = \Omega_*(p_1^r) \setminus \Omega_*(p_1^{r-1}) \quad (1 \le r \le n_1 - 1).$$

Then the following lemmas hold.

Lemma 2.1. (1) $\Omega_*(p_1^r)$ is the disjoint union of S_0, S_1, \ldots, S_r .

- (2) $\Omega_*(tp_1^r) = \Omega_*(p_1^r)$ if t is not a multiple of p_1 .
- (3) Assume that $S_r \neq \phi$. Then we have

$$S_r \cap \Omega_*(k) \neq \phi \iff S_r \subset \Omega_*(k) \iff k = tp_1^r$$

for $1 \le t \le p_1^{n_1 - r} - 1$.

- (4) The set S_r is invariant under the action of g_*^k for any k.
- (5) There exist points $\{q_j^r\}_{j=1}^{N(r)}$ such that S_r is the disjoint sum of the points $g_*^i \cdot q_i^r$ for

$$i = 0, 1, \dots, p_1^r - 1, \ j = 1, 2, \dots, N(r) \quad \text{if } S_r \neq \phi.$$

Proof. (1) This follows immediately from the definition of S_r .

(2) Assume that $k=tp_1^r$ where $0 \le r \le n_1-1$ and t is not a multiple of p_1 . Since tp_1^r is a multiple of p_1^r , it is clear that $\Omega_*(tp_1^r) \supset \Omega_*(p_1^r)$. On the other hand, since the greatest common divisor of t, $p_1^{n_1-r}$ is equal to 1, there exists a natural number λ such that $t\lambda = 1 + \mu p_1^{n_1-r}$ for some natural number μ and hence we have

$$(g_*^{tp_1^r})^{\lambda} = g_*^{tp_1^r\lambda} = g_*^{p_1^r + \mu p_1^{n_1}} = g_*^{p_1^r}.$$

Therefore, it follows that $\Omega_*(tp_1^r) \subset \Omega_*(p_1^r)$ and hence that $\Omega_*(tp_1^r) = \Omega_*(p_1^r)$.

(3) If $k = tp_1^r$ for $1 \le t \le p_1^{n_1-r} - 1$, it follows that $\Omega_*(k) \supset \Omega_*(p_1^r)$ and hence that $\Omega_*(k) \supset S_r$. If $\Omega_*(k) \supset S_r$, it is clear that $\Omega_*(k) \cap S_r \ne \phi$. If k is not a multiple of p_1^r , there exist non-negative integer j and a natural number t such that $0 \le j < r$, t is prime to p_1 and that $k = tp_1^j$. Therefore it follows from (1) and (2) that $\Omega_*(k)$ is the disjoint union of S_0, S_1, \ldots, S_j and hence that $S_r \cap \Omega_*(k) = \phi$.

(4) We have

$$\begin{split} g_*^{p_1^r} \cdot g_*^k \cdot q &= g_*^k \cdot g_*^{p_1^r} \cdot q = g_*^k \cdot q \\ g_*^{p_1^t} \cdot g_*^k \cdot q &= g_*^k \cdot g_*^{p_1^t} \cdot q \neq g_*^k \cdot q \quad \text{if } t < r \end{split}$$

for any k which implies that $g_*^k \cdot S_r = S_r$ for any r. (5) Since $\mathbf{Z}/p_1^r\mathbf{Z} = \langle g_* \rangle / \langle g_*^{p_1^r} \rangle$ acts freely on S_r where $\langle g_* \rangle$ denotes the cyclic group generated by g_* , there exist points $\{q_j^r\}_{j=1}^{N(r)}$ in M which represent $S_r/(\mathbf{Z}/p_1^r\mathbf{Z})$. Then S_r is the disjoint sum of the points $g_*^i \cdot q_j^r$ for $i = 0, 1, \ldots, p_1^r - 1, j = 1, 2, \ldots, N(r)$.

Note that $g_*^{p_1^r}$ acts on the tangent space $T_{g_*^i \cdot q_j^r} M$ via multiplication by $\beta^{\varepsilon_{r,j}}$ for any r, i, j where $\varepsilon_{r,j}$ is equal to 1 or -1 because g_*^i acts isometrically on M.

Lemma 2.2.

$$\sum_{r=0}^{n_1-1} \sum_{j=1}^{N(r)} p_1^r \varepsilon_{r,j} \equiv 0 \pmod{p_1^{n_1}}.$$

Proof. Let \tilde{M} denote the punctured surface defined by $M \setminus (\bigcup_{r=0}^{n_1-1} S_r)$. Then $\langle g_* \rangle = \mathbf{Z}/p_1^{n_1}\mathbf{Z}$ and $\langle g_*^{p_1^r} \rangle = \mathbf{Z}/p_1^{n_1-r}\mathbf{Z}$ acts freely on \tilde{M} and hence we can define $\mathbf{Z}/p_1^{n_1}\mathbf{Z}$ -covering

$$P: \tilde{M} \longrightarrow \bar{M} = \tilde{M}/(\mathbf{Z}/p_1^{n_1}\mathbf{Z})$$

and $\mathbf{Z}/p_1^{n_1-r}\mathbf{Z}$ -covering

$$\hat{P}: \tilde{M} \longrightarrow \hat{M} = \tilde{M}/(\mathbf{Z}/p_1^{n_1-r}\mathbf{Z}).$$

Moreover $\langle g_* \rangle / \langle g_*^{p_1^r} \rangle = \mathbf{Z}/p_1^r \mathbf{Z}$ acts freely on \hat{M} and hence we can define $\mathbf{Z}/p_1^r \mathbf{Z}$ -covering

$$\bar{P}: \hat{M} \longrightarrow \hat{M}/(\mathbf{Z}/p_1^r \mathbf{Z}) = \bar{M}.$$

Therefore we have an exact sequence

$$\pi_1(\tilde{M}) \longrightarrow \pi_1(\bar{M}) \xrightarrow{\psi} \pi_0(\mathbf{Z}/p_1^{n_1}\mathbf{Z}) = \mathbf{Z}/p_1^{n_1}\mathbf{Z} \longrightarrow 0.$$

Fix a base point $\tilde{O} \in \tilde{M}$. Let \hat{O} be the point in \hat{M} defined by $\hat{O} = \hat{P}(\tilde{O})$ and O the point in \bar{M} defined by $O = P(\tilde{O})$. Let $g_*^i \cdot q_i^r$ be any point in S_r . Let P_o denote the projection from M to $M_o := M/\langle g_* \rangle$ and $\gamma_i^{i,r}$ a counterclockwise loop in M_o with respect to the orientation of M_o around $P_o(g_*^i \cdot q_i^r) = P_o(q_i^r)$ which starts at O. Since $\gamma_j^{i,r}$ lifts to a loop $\hat{\gamma}_j^{i,r}$ in \hat{M} which starts at \hat{O} and the loop $\hat{\gamma}^{i,r}_{j}$ lifts to a curve connecting a point $\tilde{O} \in \tilde{M}$ to $g_*^{p_1^r \varepsilon_{r,j}} \cdot \tilde{O} \in \tilde{M}$ because the automorphism g_*^i commutes with $g_*^{p_i}$ and $g_*^{p_1^r}$ acts on the tangent space $T_{g_*^i \cdot q_i^r} M$ via multiplication by $\beta^{\varepsilon_{r,j}}$ for any r, i, j. Since $\bar{P} \circ \hat{P} = P$, it follows that $\psi(\gamma_j^{i,r}) = p_1^r \varepsilon_{r,j} \in \mathbf{Z}/p_1^{n_1}\mathbf{Z}$ for any r, i, j. Since $\mathbf{Z}/p_1^{n_1}\mathbf{Z}$ is Abelian, ψ factors through a homomorphism $H_1(\bar{M}) \longrightarrow \mathbf{Z}/p_1^{n_1}\mathbf{Z}$. On the other hand, M is homeomorphic to the punctured surface obtained by removing the points $\{P_o(q_i^r)\}$ in M_o . Let σ_o denote the genus of the punctured surface M, namely the genus of M_o . If $\sigma_o \geq 1$, $\pi_1(M_o)$ is the free group generated by 1-cells $\{a_i, b_i\}_{i=1}^{\sigma_o}$ with fundamental relation $\prod_{i=1}^{\sigma_o} a_i b_i a_i^{-1} b_i^{-1} = 1$. We can assume that the loops representing $\{a_i, b_i\}$ are contained in \bar{M} . Thus, by cutting open \bar{M} along these loops, \bar{M} is shown to be homeomorphic to the

 $4\sigma_o$ -gon $\triangle_{4\sigma_o}$ punctured at the points corresponding to $\bigcup_{r=0}^{n_1-1} \bigcup_{j=1}^{N(r)} P_o(q_j^r)$ which are contained in the interior of $\triangle_{4\sigma_o}$. Then $\sum_{r=0}^{n_1-1} \sum_{j=1}^{N(r)} \gamma_j^{i,r}$ represent a 0-homologous element in $H_1(\bar{M})$ because $\sum_{r=0}^{n_1-1} \sum_{j=1}^{N(r)} \gamma_j^{i,r}$ is homologous to the boundary of $\triangle_{4\sigma_o}$ which represent a 0-homologous element in $H_1(\bar{M})$. Thus we have

$$\mathbf{Z}/p_1^{n_1}\mathbf{Z}\ni 0=\psi\left(\sum_{r=0}^{n_1-1}\sum_{j=1}^{N(r)}\gamma_j^{i,r}\right)=\sum_{r=0}^{n_1-1}\sum_{j=1}^{N(r)}p_1^r\varepsilon_{r,j}.$$

Lemma 2.3. $C/Z \ni F(g_*) = 0.$

Proof. Since $g_*^{tp_1^r}=(g_*^{p_1^r})^t$ acts on $T_{q_j^r}M$ via multiplication by $\beta^{\varepsilon_{r,j}}$, it follows from Theorem 1.1, Lemma 2.1 and Lemma 2.2 that

Since ℓ is prime to p_1 , $\ell F(g_1) = 0$ implies that $F(g_1) = 0$.

Now let $\operatorname{ord}(F(g))$ denote the order of $F(g) \in {\bf C}/{\bf Z}$ defined by

$$\operatorname{ord}(F(g)) = \min\{n \in \mathbf{N} \mid nF(g) = F(g^n) = 0 \in \mathbf{C}/\mathbf{Z}\},\$$

which is a divisor of $p = p_1^{n_1} p_2^{n_2} \cdots p_e^{n_e}$. Since $F(g_1) = 0 \in \mathbf{C}/\mathbf{Z}$, $\operatorname{ord}(F(g))$ is a divisor of $p_2^{n_2} \cdots p_e^{n_e}$ and

therefore is prime to p_1 . The same argument deduces that $\operatorname{ord}(F(g))$ is prime to p_i for $1 \leq i \leq e$ and that $\operatorname{ord}(F(g)) = 1$. This implies that F(g) = 0.

Next we consider the case when $\sigma = 1$. Then the universal covering of M is \mathbf{C} and we may assume that $M = \mathbf{C}/(\mathbf{Z} + \tau \mathbf{Z})$ where $\tau \in \mathbf{C}$ satisfies $1 \leq |\tau|$, $0 \leq \text{Re}(\tau) \leq 1/2$ and $0 < \text{Im}(\tau)$. Moreover there exists a splitting exact sequence

$$1 \longrightarrow A_0(M) \longrightarrow A(M) \longrightarrow H \longrightarrow 1$$

where $A_0(M)$ is the identity component of A(M) and H is the cyclic group. Let h be a generator of H. Then for any $g \in A(M)$ $h^k g$ is contained in $A_0(M)$ for some k and hence there exists $X \in V(M)$ such that $h^k g = \exp X$. Therefore, we have

$$F(g) = F(h^{-k} \exp X) = -kF(h) + F(\exp X)$$
$$= -kF(h) + f(X) = -kF(h) \in \mathbf{C}/\mathbf{Z}$$

because M admits an Einstein-Kähler metric. So it suffices to show that $F(h) = 0 \in \mathbb{C}/\mathbb{Z}$.

If $\tau = \exp(2\pi\sqrt{-1}/6)$, H is the cyclic group of order 6 generated by an automorphism h_6 defined by the multiplication by τ . Then we can see that

$$\begin{split} &\Omega_6(1) = \Omega_6(5) = \{0\}, \\ &\Omega_6(2) = \Omega_6(4) = \left\{0, \frac{1+\tau}{3}, \frac{2(1+\tau)}{3}\right\}, \\ &\Omega_6(3) = \left\{0, \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}\right\} \end{split}$$

where $\Omega_6(k)$ denotes the fixed point set of h_6^k . Since h_6 acts on the tangent space of each fixed point via multiplication by τ , it follows from Theorem 1.1 that

$$F(h_6) = \frac{1}{6} \left(\tau^2 \frac{\tau - 1}{\tau - 1} + 3\tau^4 \frac{\tau^2 - 1}{\tau^2 - 1} + 4\tau^6 \frac{\tau^3 - 1}{\tau^3 - 1} + 3\tau^8 \frac{\tau^4 - 1}{\tau^4 - 1} + \tau^{10} \frac{\tau^5 - 1}{\tau^5 - 1} \right)$$
$$= \frac{1}{6} (4\tau^4 + 4\tau^2 + 4) = 0 \in \mathbf{C}/\mathbf{Z}.$$

If $\tau = \exp(2\pi\sqrt{-1}/4)$, H is the cyclic group of order 4 generated by an automorphism h_4 defined by the multiplication by τ . Then we can see that

$$\Omega(1) = \Omega(3) = \left\{0, \frac{1+\tau}{2}\right\},\$$

$$\Omega(2) = \left\{0, \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}\right\}$$

and h_4 acts on the tangent space of each fixed point via multiplication by τ . Therefore it follows from

Theorem 1.1 that

$$F(h_4) = \frac{1}{4} \left(2\tau^2 \frac{\tau - 1}{\tau - 1} + 4\tau^4 \frac{\tau^2 - 1}{\tau^2 - 1} + 2\tau^6 \frac{\tau^3 - 1}{\tau^3 - 1} \right)$$
$$= \frac{1}{4} (4\tau^4 + 4\tau^2) = 0 \in \mathbf{C}/\mathbf{Z}.$$

In other cases, H is the cyclic group of order 2 generated by an automorphism h_2 defined by the multiplication by -1. Then we can see that $\Omega(1) = \{0, (1+\tau)/2\}$ and h_2 acts on the tangent space of the fixed point via multiplication by -1. Therefore it follows from Theorem 1.1 that

$$F(h_2) = \frac{1}{2} \left(2(-1)^2 \frac{(-1) - 1}{(-1) - 1} \right) = 0 \in \mathbf{C}/\mathbf{Z}.$$

This completes the proof of Theorem 1.3.

Acknowledgements. The author would like to thank Prof. Akira Kono and Prof. Kenji Ueno for valuable advice.

References

- [1] Futaki, A.: An obstruction to the existence of Einstein-Kähler metrics. Invent. Math., **73**, 437– 443 (1983).
- [2] Futaki, A., and Morita, S.: Invariant polynomials of the automorphism group of a compact complex manifold. J. Diff. Geom., 21, 135–142 (1985).
- [3] Futaki, A., and Tsuboi, K.: Eta invariants and automorphisms of compact complex manifolds. Adv. Stud. in Pure Math. (ed. Ochiai, T.). vol. 18, no. 1, pp. 251–270 (1990).
- [4] Tsuboi, K.: The lifted Futaki invariants and the Spin^c-Dirac operators. Osaka J. Math., 32, 207– 225 (1995).