The lifted Futaki invariants for Riemann surfaces

By Kenji Tsuboi
Tokyo University of Fisheries, 4-5-7, Kounan, Minato-ku, Tokyo 108-8477
(Communicated by Heisuke Hironaka, m. J. a., June 12, 2001)

Abstract

It is conjectured that the lifted Futaki invariant of an n-dimensional compact complex manifold vanishes if it admits an Einstein-Kähler metric. If the conjecture holds for $n=1$, the lifted Futaki invariants for Riemann surfaces must vanish because Riemann surfaces always admit Einstein-Kähler metrics.

In this paper, we prove the vanishing of the lifted Futaki invariants for Riemann surfaces under a certain assumption. Our main result is Theorem 1.3.

Key words: The lifted Futaki invariant; complex manifold; Einstein-Kähler metric; Riemann surface.

1. Introduction and main theorem. Let M be a compact complex manifold, $A(M)$ the complex Lie group consisting of the biholomorphic automorphisms of M and $V(M)$ its Lie algebra consisting of the holomorphic vector fields on M. Then, in [1] (See also [2]), Futaki defined a Lie algebra homomorphism $f: V(M) \longrightarrow \mathbf{C}$, which is called the "Futaki invariant", and showed that $f(X)=0$ for any $X \in V(M)$ if M admits an Einstein-Kähler metric. In [2], using the Simons character of a certain foliation, Futaki-Morita defined a Lie group homomorphism $F: A(M) \longrightarrow \mathbf{C} / \mathbf{Z}$ (where \mathbf{C} / \mathbf{Z} is the additive group), which is called the "lifted Futaki invariant" (see also [4]). The lifted Futaki invariant F satisfies the condition that $F(\exp X)=f(X) \bmod \mathbf{Z}$ for any $X \in V(M)$. As was shown in [3], F may be non-zero even when $V(M)=\{0\}$.

Now let M be a compact connected Riemann surface of genus σ with any complex structure, $g \in$ $A(M)$ a periodic automorphism of order p and $\Omega(k)$ the fixed point set of $g^{k}(1 \leq k \leq p-1)$. Then the next theorem is the immediate consequence of Theorem 2.10 in [4].

Theorem 1.1. Assume that g^{k} acts on the tangent space $T_{q} M$ for $q \in \Omega(k)$ via multiplication by $\xi_{p}^{m_{q}} \neq 1$ where $\xi_{p}=e^{2 \pi \sqrt{-1} / p}$ and $m_{q} \in \mathbf{Z}$. Then we have

$$
\mathbf{C} / \mathbf{Z} \ni F(g)=\frac{1}{p} \sum_{k=1}^{p-1} \sum_{q \in \Omega(k)} \xi_{p}^{k+m_{q}} \frac{\xi_{p}^{m_{q}}-1}{\xi_{p}^{k}-1}
$$

[^0]Now suppose that $p=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{e}^{n_{e}}$ where $p_{1}, p_{2}, \ldots, p_{e}$ are mutually distinct prime numbers and $n_{1}, n_{2}, \ldots, n_{e}$ are natural numbers. Set $g_{i}=$ $g^{p / p_{i}^{n_{i}}}$ for $1 \leq i \leq e$. Then the order of g_{i} is equal to $p_{i}^{n_{i}}$.

Assumption 1.2. When $\sigma \geq 2$, we assume that there exists a natural number m_{i} which is prime to p_{i} such that $g_{i}^{p_{i}^{r}}$ acts on the tangent space $T_{q} M$ of the fixed point q of $g_{i}^{p_{i}^{r}}$ via multiplication by $\exp \left(2 \pi \sqrt{-1} m_{i} \varepsilon_{q, r} / p_{i}^{n_{i}-r}\right)$ for any $1 \leq r \leq n_{i}-1$ and any q where $\varepsilon_{q, r}$ is equal to 1 or -1 .

Our main theorem is the next theorem.
Theorem 1.3. Under the assumption above, the lifted Futaki invariant $F(g)$ vanishes.
2. Proof of the main theorem. When $\sigma=$ $0, A(M)=A\left(\mathbf{C P}^{1}\right)=P G L(2 ; \mathbf{C})$ is connected and hence there exists $X \in V(M)$ such that $g=\exp X$. Therefore $F(g)=f(X)=0$ because M admits an Einstein-Kähler metric. So we assume that $\sigma \geq 1$ hereafter. First assume that $\sigma \geq 2$. Since m_{1} is prime to p_{1}, there exists a natural number ℓ such that $m_{1} \ell \equiv 1\left(\bmod p_{1}^{n_{1}}\right)$. Set $g_{*}:=g_{1}^{\ell}$. Then $g_{1}=g_{*}^{m_{1}}$, the order of g_{*} is $p_{1}^{n_{1}}$ and the fixed point set of g_{*}^{r} coincides with that of g_{1}^{r} for any r. Let $\Omega_{*}(k)$ be the fixed point set of $g_{*}^{k}\left(1 \leq k \leq p_{1}^{n_{1}}-1\right)$. Then it follows from Assumption 1.2 that $g_{*}^{p_{1}^{r}}$ acts on the tangent space $T_{q} M$ of $q \in \Omega_{*}\left(p_{1}^{r}\right)$ via multiplication by $\alpha^{p_{1}^{r} \varepsilon_{q, r}}=\beta^{\varepsilon_{q, r}}$ where $\alpha=\exp \left(2 \pi \sqrt{-1} / p_{1}^{n_{1}}\right)$ and $\beta=\alpha^{p_{1}^{r}}=\exp \left(2 \pi \sqrt{-1} / p_{1}^{n_{1}-r}\right)$.

Since $\Omega_{*}\left(p_{1}^{r-1}\right) \subset \Omega_{*}\left(p_{1}^{r}\right)$, we can define the set S_{r} consisting of fixed points by

$$
\begin{aligned}
& S_{0}=\Omega_{*}(1), \\
& S_{r}=\Omega_{*}\left(p_{1}^{r}\right) \backslash \Omega_{*}\left(p_{1}^{r-1}\right) \quad\left(1 \leq r \leq n_{1}-1\right) .
\end{aligned}
$$

Then the following lemmas hold.
Lemma 2.1. (1) $\Omega_{*}\left(p_{1}^{r}\right)$ is the disjoint union of $S_{0}, S_{1}, \ldots, S_{r}$.
(2) $\Omega_{*}\left(t p_{1}^{r}\right)=\Omega_{*}\left(p_{1}^{r}\right)$ if t is not a multiple of p_{1}.
(3) Assume that $S_{r} \neq \phi$. Then we have

$$
S_{r} \cap \Omega_{*}(k) \neq \phi \Longleftrightarrow S_{r} \subset \Omega_{*}(k) \Longleftrightarrow k=t p_{1}^{r}
$$

for $1 \leq t \leq p_{1}^{n_{1}-r}-1$.
(4) The set S_{r} is invariant under the action of g_{*}^{k} for any k.
(5) There exist points $\left\{q_{j}^{r}\right\}_{j=1}^{N(r)}$ such that S_{r} is the disjoint sum of the points $g_{*}^{i} \cdot q_{j}^{r}$ for

$$
i=0,1, \ldots, p_{1}^{r}-1, j=1,2, \ldots, N(r) \quad \text { if } S_{r} \neq \phi
$$

Proof. (1) This follows immediately from the definition of S_{r}.
(2) Assume that $k=t p_{1}^{r}$ where $0 \leq r \leq n_{1}-1$ and t is not a multiple of p_{1}. Since $t p_{1}^{r}$ is a multiple of p_{1}^{r}, it is clear that $\Omega_{*}\left(t p_{1}^{r}\right) \supset \Omega_{*}\left(p_{1}^{r}\right)$. On the other hand, since the greatest common divisor of $t, p_{1}^{n_{1}-r}$ is equal to 1 , there exists a natural number λ such that $t \lambda=1+\mu p_{1}^{n_{1}-r}$ for some natural number μ and hence we have

$$
\left(g_{*}^{t p_{1}^{r}}\right)^{\lambda}=g_{*}^{t p_{1}^{r} \lambda}=g_{*}^{p_{1}^{r}+\mu p_{1}^{n_{1}}}=g_{*}^{p_{1}^{r}} .
$$

Therefore, it follows that $\Omega_{*}\left(t p_{1}^{r}\right) \subset \Omega_{*}\left(p_{1}^{r}\right)$ and hence that $\Omega_{*}\left(t p_{1}^{r}\right)=\Omega_{*}\left(p_{1}^{r}\right)$.
(3) If $k=t p_{1}^{r}$ for $1 \leq t \leq p_{1}^{n_{1}-r}-1$, it follows that $\Omega_{*}(k) \supset \Omega_{*}\left(p_{1}^{r}\right)$ and hence that $\Omega_{*}(k) \supset S_{r}$. If $\Omega_{*}(k) \supset S_{r}$, it is clear that $\Omega_{*}(k) \cap S_{r} \neq \phi$. If k is not a multiple of p_{1}^{r}, there exist non-negative integer j and a natural number t such that $0 \leq j<r, t$ is prime to p_{1} and that $k=t p_{1}^{j}$. Therefore it follows from (1) and (2) that $\Omega_{*}(k)$ is the disjoint union of $S_{0}, S_{1}, \ldots, S_{j}$ and hence that $S_{r} \cap \Omega_{*}(k)=\phi$.
(4) We have

$$
\begin{aligned}
& g_{*}^{p_{1}^{r}} \cdot g_{*}^{k} \cdot q=g_{*}^{k} \cdot g_{*}^{p_{1}^{r}} \cdot q=g_{*}^{k} \cdot q \\
& g_{*}^{p_{1}^{t}} \cdot g_{*}^{k} \cdot q=g_{*}^{k} \cdot g_{*}^{p_{1}^{t}} \cdot q \neq g_{*}^{k} \cdot q \quad \text { if } t<r
\end{aligned}
$$

for any k which implies that $g_{*}^{k} \cdot S_{r}=S_{r}$ for any r. (5) Since $\mathbf{Z} / p_{1}^{r} \mathbf{Z}=\left\langle g_{*}\right\rangle /\left\langle g_{*}^{p_{1}^{r}}\right\rangle$ acts freely on S_{r} where $\left\langle g_{*}\right\rangle$ denotes the cyclic group generated by g_{*}, there exist points $\left\{q_{j}^{r}\right\}_{j=1}^{N(r)}$ in M which represent $S_{r} /\left(\mathbf{Z} / p_{1}^{r} \mathbf{Z}\right)$. Then S_{r} is the disjoint sum of the points $g_{*}^{i} \cdot q_{j}^{r}$ for $i=0,1, \ldots, p_{1}^{r}-1, j=1,2, \ldots, N(r)$.

Note that $g_{*}^{p_{1}^{r}}$ acts on the tangent space $T_{g_{*}^{i} \cdot q_{j}^{r}} M$ via multiplication by $\beta^{\varepsilon_{r, j}}$ for any r, i, j where $\varepsilon_{r, j}$ is equal to 1 or -1 because g_{*}^{i} acts isometrically on M.

Lemma 2.2.

$$
\sum_{r=0}^{n_{1}-1} \sum_{j=1}^{N(r)} p_{1}^{r} \varepsilon_{r, j} \equiv 0 \quad\left(\bmod p_{1}^{n_{1}}\right)
$$

Proof. Let \tilde{M} denote the punctured surface defined by $M \backslash\left(\cup_{r=0}^{n_{1}-1} S_{r}\right)$. Then $\left\langle g_{*}\right\rangle=\mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z}$ and $\left\langle g_{*}^{p_{1}^{r}}\right\rangle=\mathbf{Z} / p_{1}^{n_{1}-r} \mathbf{Z}$ acts freely on \tilde{M} and hence we can define $\mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z}$-covering

$$
P: \tilde{M} \longrightarrow \bar{M}=\tilde{M} /\left(\mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z}\right)
$$

and $\mathbf{Z} / p_{1}^{n_{1}-r} \mathbf{Z}$-covering

$$
\hat{P}: \tilde{M} \longrightarrow \hat{M}=\tilde{M} /\left(\mathbf{Z} / p_{1}^{n_{1}-r} \mathbf{Z}\right)
$$

Moreover $\left\langle g_{*}\right\rangle /\left\langle g_{*}^{p_{1}^{r}}\right\rangle=\mathbf{Z} / p_{1}^{r} \mathbf{Z}$ acts freely on \hat{M} and hence we can define $\mathbf{Z} / p_{1}^{r} \mathbf{Z}$-covering

$$
\bar{P}: \hat{M} \longrightarrow \hat{M} /\left(\mathbf{Z} / p_{1}^{r} \mathbf{Z}\right)=\bar{M}
$$

Therefore we have an exact sequence
$\pi_{1}(\tilde{M}) \longrightarrow \pi_{1}(\bar{M}) \xrightarrow{\psi} \pi_{0}\left(\mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z}\right)=\mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z} \longrightarrow 0$.
Fix a base point $\tilde{O} \in \tilde{M}$. Let \hat{O} be the point in \hat{M} defined by $\hat{O}=\hat{P}(\tilde{O})$ and O the point in \bar{M} defined by $O=P(\tilde{O})$. Let $g_{*}^{i} \cdot q_{j}^{r}$ be any point in S_{r}. Let P_{o} denote the projection from M to $M_{o}:=M /\left\langle g_{*}\right\rangle$ and $\gamma_{j}^{i, r}$ a counterclockwise loop in M_{o} with respect to the orientation of M_{o} around $P_{o}\left(g_{*}^{i} \cdot q_{j}^{r}\right)=P_{o}\left(q_{j}^{r}\right)$ which starts at O. Since $\gamma_{j}^{i, r}$ lifts to a loop $\hat{\gamma}_{j}^{i, r}$ in \hat{M} which starts at \hat{O} and the loop $\hat{\gamma}_{j}^{i, r}$ lifts to a curve connecting a point $\tilde{O} \in \tilde{M}$ to $g_{*}^{p_{1}^{r} \varepsilon_{r, j}} \cdot \tilde{O} \in \tilde{M}$ because the automorphism g_{*}^{i} commutes with $g_{*}^{p_{1}^{r}}$ and $g_{*}^{p_{1}^{r}}$ acts on the tangent space $T_{g_{*}^{i} \cdot q_{j}^{r}} M$ via multiplication by $\beta^{\varepsilon_{r, j}}$ for any r, i, j. Since $\bar{P} \circ \hat{P}=P$, it follows that $\psi\left(\gamma_{j}^{i, r}\right)=p_{1}^{r} \varepsilon_{r, j} \in \mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z}$ for any r, i, j. Since $\mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z}$ is Abelian, ψ factors through a homomorphism $H_{1}(\bar{M}) \longrightarrow \mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z}$. On the other hand, \bar{M} is homeomorphic to the punctured surface obtained by removing the points $\left\{P_{o}\left(q_{j}^{r}\right)\right\}$ in M_{o}. Let σ_{o} denote the genus of the punctured surface \bar{M}, namely the genus of M_{o}. If $\sigma_{o} \geq 1, \pi_{1}\left(M_{o}\right)$ is the free group generated by 1-cells $\left\{a_{i}, b_{i}\right\}_{i=1}^{\sigma_{o}}$ with fundamental relation $\prod_{i=1}^{\sigma_{o}} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}=1$. We can assume that the loops representing $\left\{a_{i}, b_{i}\right\}$ are contained in \bar{M}. Thus, by cutting open \bar{M} along these loops, \bar{M} is shown to be homeomorphic to the
$4 \sigma_{o}$-gon $\triangle_{4 \sigma_{o}}$ punctured at the points corresponding to $\cup_{r=0}^{n_{1}-1} \cup_{j=1}^{N(r)} P_{o}\left(q_{j}^{r}\right)$ which are contained in the interior of $\triangle_{4 \sigma_{o}}$. Then $\sum_{r=0}^{n_{1}-1} \sum_{j=1}^{N(r)} \gamma_{j}^{i, r}$ represent a 0 -homologous element in $H_{1}(\bar{M})$ because $\sum_{r=0}^{n_{1}-1} \sum_{j=1}^{N(r)} \gamma_{j}^{i, r}$ is homologous to the boundary of $\triangle_{4 \sigma_{o}}$ which represent a 0 -homologous element in $H_{1}(\bar{M})$. Thus we have
$\mathbf{Z} / p_{1}^{n_{1}} \mathbf{Z} \ni 0=\psi\left(\sum_{r=0}^{n_{1}-1} \sum_{j=1}^{N(r)} \gamma_{j}^{i, r}\right)=\sum_{r=0}^{n_{1}-1} \sum_{j=1}^{N(r)} p_{1}^{r} \varepsilon_{r, j}$.

Lemma 2.3. $\quad \mathbf{C} / \mathbf{Z} \ni F\left(g_{*}\right)=0$.

Proof. Since $g_{*}^{t p_{1}^{r}}=\left(g_{*}^{p_{1}^{r}}\right)^{t}$ acts on $T_{q_{j}^{r}} M$ via multiplication by $\beta^{\varepsilon_{r, j}}$, it follows from Theorem 1.1, Lemma 2.1 and Lemma 2.2 that

$$
\begin{aligned}
& F\left(g_{*}\right)=\ell F\left(g_{1}\right) \\
& =\frac{1}{p_{1}^{n_{1}}} \sum_{k=1}^{p_{1}^{n_{1}}-1} \sum_{q \in \Omega_{*}(k)} \alpha^{k+m_{q}} \frac{\alpha^{m_{q}}-1}{\alpha^{k}-1} \\
& =\frac{1}{p_{1}^{n_{1}}} \sum_{r=0}^{n_{1}-1} \sum_{t=1}^{p_{1}^{n_{1}-r}-1} \sum_{j=1}^{N(r)} \\
& =\frac{1}{p_{1}^{n_{1}}} \sum_{r=0}^{p_{1}^{r}-1} \sum_{j=1}^{n_{1}-1} \alpha^{p_{1}^{r} t\left(1+\varepsilon_{r, j}\right)} \frac{\alpha^{p_{1}^{r} t \varepsilon_{r, j}}-1}{\alpha^{p_{1}^{r} t}-1} \sum_{t=1}^{p_{1}^{n_{1}-r}-1} \beta^{\left(1+\varepsilon_{r, j}\right) t} \frac{\beta^{t \varepsilon_{r, j}}-1}{\beta^{t}-1} \\
& \left(\operatorname{since} \sum_{t=1}^{p_{1}^{n_{1}-r}-1} \beta^{\left(1+\varepsilon_{r, j}\right) t} \frac{\beta^{t \varepsilon_{r, j}}-1}{\beta^{t}-1} \equiv-\varepsilon_{r, j}\right. \\
& \left.=-\frac{1}{p_{1}^{n_{1}}} \sum_{r=0}^{n_{1}-1} \sum_{j=1}^{N(r)} p_{1}^{r} \varepsilon_{r, j}=0 \quad\left(\bmod p_{1}^{n_{1}-r}\right)\right)
\end{aligned}
$$

Since ℓ is prime to $p_{1}, \ell F\left(g_{1}\right)=0$ implies that $F\left(g_{1}\right)=0$.

Now let $\operatorname{ord}(F(g))$ denote the order of $F(g) \in$ \mathbf{C} / \mathbf{Z} defined by

$$
\begin{aligned}
& \operatorname{ord}(F(g)) \\
& =\min \left\{n \in \mathbf{N} \mid n F(g)=F\left(g^{n}\right)=0 \in \mathbf{C} / \mathbf{Z}\right\}
\end{aligned}
$$

which is a divisor of $p=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{e}^{n_{e}}$. Since $F\left(g_{1}\right)$ $=0 \in \mathbf{C} / \mathbf{Z}$, ord $(F(g))$ is a divisor of $p_{2}^{n_{2}} \cdots p_{e}^{n_{e}}$ and
therefore is prime to p_{1}. The same argument deduces that $\operatorname{ord}(F(g))$ is prime to p_{i} for $1 \leq i \leq e$ and that $\operatorname{ord}(F(g))=1$. This implies that $F(g)=0$.

Next we consider the case when $\sigma=1$. Then the universal covering of M is \mathbf{C} and we may assume that $M=\mathbf{C} /(\mathbf{Z}+\tau \mathbf{Z})$ where $\tau \in \mathbf{C}$ satisfies $1 \leq|\tau|$, $0 \leq \operatorname{Re}(\tau) \leq 1 / 2$ and $0<\operatorname{Im}(\tau)$. Moreover there exists a splitting exact sequence

$$
1 \longrightarrow A_{0}(M) \longrightarrow A(M) \longrightarrow H \longrightarrow 1
$$

where $A_{0}(M)$ is the identity component of $A(M)$ and H is the cyclic group. Let h be a generator of H. Then for any $g \in A(M) h^{k} g$ is contained in $A_{0}(M)$ for some k and hence there exists $X \in V(M)$ such that $h^{k} g=\exp X$. Therefore, we have

$$
\begin{aligned}
F(g) & =F\left(h^{-k} \exp X\right)=-k F(h)+F(\exp X) \\
& =-k F(h)+f(X)=-k F(h) \in \mathbf{C} / \mathbf{Z}
\end{aligned}
$$

because M admits an Einstein-Kähler metric. So it suffices to show that $F(h)=0 \in \mathbf{C} / \mathbf{Z}$.

If $\tau=\exp (2 \pi \sqrt{-1} / 6), H$ is the cyclic group of order 6 generated by an automorphism h_{6} defined by the multiplication by τ. Then we can see that

$$
\begin{aligned}
& \Omega_{6}(1)=\Omega_{6}(5)=\{0\} \\
& \Omega_{6}(2)=\Omega_{6}(4)=\left\{0, \frac{1+\tau}{3}, \frac{2(1+\tau)}{3}\right\}, \\
& \Omega_{6}(3)=\left\{0, \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}\right\}
\end{aligned}
$$

where $\Omega_{6}(k)$ denotes the fixed point set of h_{6}^{k}. Since h_{6} acts on the tangent space of each fixed point via multiplication by τ, it follows from Theorem 1.1 that

$$
\begin{aligned}
F\left(h_{6}\right)= & \frac{1}{6}\left(\tau^{2} \frac{\tau-1}{\tau-1}+3 \tau^{4} \frac{\tau^{2}-1}{\tau^{2}-1}+4 \tau^{6} \frac{\tau^{3}-1}{\tau^{3}-1}\right. \\
& \left.+3 \tau^{8} \frac{\tau^{4}-1}{\tau^{4}-1}+\tau^{10} \frac{\tau^{5}-1}{\tau^{5}-1}\right) \\
= & \frac{1}{6}\left(4 \tau^{4}+4 \tau^{2}+4\right)=0 \in \mathbf{C} / \mathbf{Z}
\end{aligned}
$$

If $\tau=\exp (2 \pi \sqrt{-1} / 4), H$ is the cyclic group of order 4 generated by an automorphism h_{4} defined by the multiplication by τ. Then we can see that

$$
\begin{aligned}
& \Omega(1)=\Omega(3)=\left\{0, \frac{1+\tau}{2}\right\}, \\
& \Omega(2)=\left\{0, \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}\right\}
\end{aligned}
$$

and h_{4} acts on the tangent space of each fixed point via multiplication by τ. Therefore it follows from

Theorem 1.1 that

$$
\begin{aligned}
F\left(h_{4}\right) & =\frac{1}{4}\left(2 \tau^{2} \frac{\tau-1}{\tau-1}+4 \tau^{4} \frac{\tau^{2}-1}{\tau^{2}-1}+2 \tau^{6} \frac{\tau^{3}-1}{\tau^{3}-1}\right) \\
& =\frac{1}{4}\left(4 \tau^{4}+4 \tau^{2}\right)=0 \in \mathbf{C} / \mathbf{Z}
\end{aligned}
$$

In other cases, H is the cyclic group of order 2 generated by an automorphism h_{2} defined by the multiplication by -1 . Then we can see that $\Omega(1)=$ $\{0,(1+\tau) / 2\}$ and h_{2} acts on the tangent space of the fixed point via multiplication by -1 . Therefore it follows from Theorem 1.1 that

$$
F\left(h_{2}\right)=\frac{1}{2}\left(2(-1)^{2} \frac{(-1)-1}{(-1)-1}\right)=0 \in \mathbf{C} / \mathbf{Z}
$$

This completes the proof of Theorem 1.3.

Acknowledgements. The author would like to thank Prof. Akira Kono and Prof. Kenji Ueno for valuable advice.

References

[1] Futaki, A.: An obstruction to the existence of Einstein-Kähler metrics. Invent. Math., 73, 437443 (1983).
[2] Futaki, A., and Morita, S.: Invariant polynomials of the automorphism group of a compact complex manifold. J. Diff. Geom., 21, 135-142 (1985).
[3] Futaki, A., and Tsuboi, K.: Eta invariants and automorphisms of compact complex manifolds. Adv. Stud. in Pure Math. (ed. Ochiai, T.). vol. 18, no. 1, pp. 251-270 (1990).
[4] Tsuboi, K.: The lifted Futaki invariants and the Spin ${ }^{c}$-Dirac operators. Osaka J. Math., 32, 207225 (1995).

[^0]: 2000 Mathematics Subject Classification. Primary 32Q20, Secondary 30F99, 58J20.

