The first, the second and the fourth Painlevé transcendents are of finite order

By Shun Shimomura

Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Yokohama, Kanagawa 223-8522
(Communicated by Shigefumi Mori, m. J. A., March 12, 2001)

Abstract

We show that every solution of the first Painlevé equation has the finite growth order. The second and the fourth Painlevé equations have the same property.

Key words: Painlevé equations; growth order.

1. Introduction. Consider the first Painlevé equation

$$
\begin{equation*}
w^{\prime \prime}=6 w^{2}+z \tag{I}
\end{equation*}
$$

$\left(^{\prime}=d / d z\right)$. Every solution of (I) is meromorphic in \mathbf{C} ([2], [3], for [3] see [6]). In this paper, we prove the following:

Theorem 1.1. Let $w(z)$ be an arbitrary meromorphic solution of (I). Then, $T(r, w)=O\left(r^{C}\right)$, where C is some positive number independent of $w(z)$.

For the notation in the value distribution theory such as $m(r, f), N(r, f), T(r, f), S(r, f)$, the reader may consult [4]. In the proof, Lemma 2.1 and the auxiliary function given by (2.5) play essential roles. The second and the fourth Painlevé transcendents have the same property (Theorem 4.1). We remark that the constant C in Theorem 1.1 can be replaced by $5 / 2$, which is proved by another method ([5]).
2. Lemmas. In what follows, $w(z)$ denotes an arbitrary meromorphic solution of (I), and

$$
\theta=2^{-4}, \quad D_{0}=\{z| | z \mid \geq 5\}
$$

We begin with the following lemma, whose proof is a modification of M. Hukuhara's argument ([3], [6]).

Lemma 2.1. Suppose that, for $a \in D_{0},|w(a)|$ $\leq \theta^{2}|a|^{1 / 2} / 6$. Then,
(i) $w(z)$ is analytic and bounded for $|z-a|<\delta_{a}$,
(ii) $|w(z)| \geq \theta^{2}|a|^{1 / 2} / 5$ for $(5 / 6) \delta_{a} \leq|z-a| \leq \delta_{a}$, where δ_{a} is a positive number such that
(2.1)

$$
\theta|a|^{-1 / 4} \min \left\{1, \frac{\theta|a|^{3 / 4}}{\left|w^{\prime}(a)\right|}\right\}<\delta_{a} \leq 3 \theta|a|^{-1 / 4}
$$

Proof. In (I), put $z-a=\rho t, \rho=a^{-1 / 4}, w(z)=$
2000 Mathematics Subject Classification. Primary 34M55; Secondary 30D35.

$$
\begin{aligned}
w(a+\rho t) & =\theta a^{1 / 2} W(t) \text {. Then, } \\
\ddot{W}(t) & =6 \theta W(t)^{2}+\theta^{-1}\left(1+\rho^{5} t\right) \quad\left(\cdot=\frac{d}{d t}\right)
\end{aligned}
$$

Integrating both sides twice, we have
(2.2) $W(t)=W(0)+\dot{W}(0) t+\frac{\theta^{-1} t^{2}}{2}+g(t)$,
where

$$
\begin{aligned}
& W(0)=\theta^{-1} a^{-1 / 2} w(a), \quad \dot{W}(0)=\theta^{-1} a^{-3 / 4} w^{\prime}(a) \\
& g(t)=\frac{\theta^{-1} \rho^{5} t^{3}}{6}+6 \theta \int_{0}^{t} \int_{0}^{\tau} W(s)^{2} d s d \tau
\end{aligned}
$$

(1) Case $|\dot{W}(0)| \leq 1$. We put

$$
\eta_{0}=\sup \{\eta \mid M(\eta) \leq 8 \theta\}
$$

where $M(\eta)=\max \{|W(t)|| | t \mid \leq \eta\}$. Then, $\eta_{0}>0$, because $|W(0)|=\theta^{-1}|a|^{-1 / 2}|w(a)| \leq \theta / 6$. Suppose that $\eta_{0}<3 \theta$. Observing that, for $|t| \leq \eta_{0}$ and for $|a| \geq 5$,
(2.3) $|g(t)|$

$$
\begin{aligned}
& \leq \frac{\theta^{-1}|\rho|^{5}|t|^{3}}{6}+6 \theta \int_{0}^{t} \int_{0}^{\tau}|W(s)|^{2}|d s||d \tau| \\
& \leq \frac{\theta^{-1}|\rho|^{5}(3 \theta)^{3}}{6}+\frac{6 \theta(8 \theta)^{2}(3 \theta)^{2}}{2}<\frac{\theta}{4}
\end{aligned}
$$

we obtain from (2.2) that

$$
\begin{equation*}
|W(t)| \leq|W(0)|+|t|+\frac{\theta^{-1}|t|^{2}}{2}+\frac{\theta}{4}<7.92 \theta \tag{2.4}
\end{equation*}
$$

for $|t| \leq \eta_{0}$, which contradicts the supposition. Hence $\eta_{0} \geq 3 \theta$, and (2.3) is valid for $|t| \leq 3 \theta$. Furthermore, for $2.5 \theta \leq|t| \leq 3 \theta$,

$$
\begin{aligned}
|W(t)| & \geq \frac{\theta^{-1}|t|^{2}}{2}-|W(0)|-|t|-|g(t)| \\
& \geq\left(\frac{2.5^{2}}{2}-\frac{1}{6}-2.5-\frac{1}{4}\right) \theta>\frac{\theta}{5}
\end{aligned}
$$

Going back to the original variables, we obtain (i) and (ii) with $\delta_{a}=3 \theta|a|^{-1 / 4}$.
(2) Case $|\dot{W}(0)|=\kappa>1$. Putting

$$
\eta_{1}=\sup \{\eta \mid M(\eta) \leq 5 \theta\}
$$

and supposing $\eta_{1}<(2 / \kappa) \theta$, we obtain $|g(t)|<\theta / 24$ and $|W(t)| \leq|W(0)|+\kappa|t|+\theta^{-1}|t|^{2} / 2+\theta / 24<4.3 \theta$ for $|t| \leq \eta_{1}$, instead of (2.3) and (2.4). This implies $\eta_{1} \geq(2 / \kappa) \theta$, and hence $|g(t)|<\theta / 24$ for $|t| \leq(2 / \kappa) \theta$. Furthermore, for $(0.8 / \kappa) \theta \leq|t| \leq(1.2 / \kappa) \theta$,

$$
\begin{aligned}
|W(t)| & \geq \kappa|t|-\frac{\theta^{-1}|t|^{2}}{2}-|W(0)|-|g(t)| \\
& \geq\left(0.8-\frac{0.8^{2}}{2}-\frac{1}{6}-\frac{1}{24}\right) \theta>\frac{\theta}{5}
\end{aligned}
$$

Thus we obtain (i) and (ii) with

$$
\delta_{a}=\frac{1.2 \theta|a|^{-1 / 4}}{\kappa}=\frac{1.2 \theta|a|^{-1 / 4} \cdot \theta|a|^{3 / 4}}{\left|w^{\prime}(a)\right|}
$$

which completes the proof.
Remark. In Lemma 2.1, since $|a| \geq 5$, the property (ii) can be replaced by
(ii') $|w(z)| \geq \theta^{2}|z|^{1 / 2} / 5.5$ for $(5 / 6) \delta_{a} \leq|z-a| \leq \delta_{a}$.
Lemma 2.2. There exists a curve $\Gamma_{0}: z=$ $\phi(x), 0 \leq x<+\infty$ such that
(1) x is the length of Γ_{0} from $\phi(0)$ to $\phi(x)$;
(2) $|\phi(x)|$ is monotone increasing and $|\phi(x)| \rightarrow+\infty$ as $x \rightarrow+\infty$;
(3) $|d z| \leq(6 / \sqrt{11}) d|z|$ along Γ_{0};
(4) $|w(z)| \geq 2^{-11}|z|^{1 / 2}$ along Γ_{0}.

Proof. Consider the ray $R_{0}(\subset \mathbf{R}): z \geq 5$. Start from $z=5$, and proceed along R_{0}. Suppose that a point $a \in R_{0}, a \geq 5$ satisfies $|w(a)| \leq$ $\theta^{2}|a|^{1 / 2} / 6$ and $|w(z)|>\theta^{2}|z|^{1 / 2} / 6$ for $5 \leq z<a$. Draw the semi-circle $C_{a}:|z-a|=\delta_{a}, \operatorname{Re} z \geq 0$ (cf. Lemma 2.1) which crosses \mathbf{R} at a_{-}and a_{+} $\left(a_{-}<a_{+}\right)$. Take points $a_{-}^{*}, a_{+}^{*}\left(\operatorname{Re} a_{-}^{*}<\operatorname{Re} a_{+}^{*}\right)$ on the semi-circle $C_{a}^{*}:|z-a|=(5 / 6) \delta_{a}$, $\operatorname{Re} z \geq 0$ in such a way that the segments $\left[a_{-}, a_{-}^{*}\right]$ and $\left[a_{+}^{*}, a_{+}\right]$ come in contact with C_{a}^{*}. Let $\gamma(a)$ be a curve which consists of the segments $\left[a_{-}, a_{-}^{*}\right],\left[a_{+}^{*}, a_{+}\right]$and the $\operatorname{arc}\left(a_{-}^{*} a_{+}^{*}\right)^{\sim} \subset C_{a}^{*}$. Replacing the segment $\left[a_{-}, a_{+}\right]$ by $\gamma(a)$, we get the curve $\Gamma_{1}=\left(R_{0} \backslash\left[a_{-}, a_{+}\right]\right) \cup \gamma(a)$. By Lemma 2.1 and Remark, and by a geometric consideration, we have, on $\Gamma_{1},|w(z)| \geq \theta^{2}|z|^{1 / 2} / 6>$ $2^{-11}|z|^{1 / 2}$ and $|d z| \leq(6 / \sqrt{11}) d|z|$ if $\operatorname{Re} z \leq a_{+}$. Start again from $z=a_{+}$. Suppose that we first meet a point $b \in \Gamma_{1}, b>a_{+}$such that $|w(b)|=\theta^{2}|b|^{1 / 2} / 6$. By the same argument as above, we obtain the curve $\gamma(b)$. Then it crosses Γ_{1} at $b_{-}^{\prime}, b_{+}\left(\operatorname{Im} b_{-}^{\prime} \geq 0\right.$,
$b_{+} \in \mathbf{R}, \operatorname{Re} b_{-}^{\prime}<b_{+}$). Replacing the part of Γ_{1} from b_{-}^{\prime} to b_{+}by that of $\gamma(b)$ from b_{-}^{\prime} to b_{+}, we get the path Γ_{2}. On it, the inequalities in (3) and (4) are valid, if Re $z \leq b_{+}$. Repeat this procedure. For every $l \geq 5$, the modification of the part such that $l \leq \operatorname{Re} z \leq l+1$ can be done by repeating this procedure finitely many times. The reason is stated as follows. If not so, there exists a sequence $\{a(\nu)\}_{\nu=0}^{\infty} \subset[l, l+1] \subset \mathbf{R}$ satisfying $\sum_{\nu=0}^{\infty} \delta_{a(\nu)} \leq 1$ and $|w(a(\nu))| \leq \theta^{2}(l+1)^{1 / 2} / 6$. Hence, by (2.1), we may choose a subsequence $\left\{a\left(\nu_{j}\right)\right\}_{j=0}^{\infty}$ satisfying $a\left(\nu_{j}\right) \rightarrow a_{*} \in[l, l+1], w\left(a\left(\nu_{j}\right)\right) \rightarrow w_{*} \neq \infty$, $w^{\prime}\left(a\left(\nu_{j}\right)\right) \rightarrow \infty$, as $j \rightarrow \infty$. Then $w\left(a_{*}\right)=w_{*} \neq \infty$, $w^{\prime}\left(a_{*}\right)=\infty$, which is a contradiction. Therefore we get the curve Γ_{0} with the desired properties.

Modifying a circle in a similar way, we obtain
Lemma 2.3. For an arbitrary pole $z=\sigma$ of $w(z)$ such that $|\sigma|>10$, there exists a closed Jordan curve J_{σ} with the properties:
(1) $\sigma \in J_{\sigma}$;
(2) $J_{\sigma} \subset\{z| | \sigma|\leq|z| \leq|\sigma|+1\}$;
(3) $|d z| \leq(6 / \sqrt{11}) d(|\sigma| \arg z)$ along J_{σ};
(4) $|w(z)| \geq 2^{-11}|z|^{1 / 2}$ along J_{σ}.

Consider the auxiliary function

$$
\begin{equation*}
\Phi(z)=w^{\prime}(z)^{2}+\frac{w^{\prime}(z)}{w(z)}-4 w(z)^{3}-2 z w(z) \tag{2.5}
\end{equation*}
$$

A straight-forward computation yields

$$
\Phi^{\prime}(z)+\frac{\Phi(z)}{w(z)^{2}}=-\frac{z}{w(z)}+\frac{w^{\prime}(z)}{w(z)^{3}}
$$

Solving this we have
Lemma 2.4. Let $\gamma\left(z_{0}, z\right)$ be a path starting from z_{0} and ending at z, and $\gamma\left(z_{0}, t\right)$ the part of $\gamma\left(z_{0}, z\right)$ from z_{0} to $t\left(\in \gamma\left(z_{0}, z\right)\right)$. If $w(t) \neq 0$ on $\gamma\left(z_{0}, z\right)$, then

$$
\begin{aligned}
& \Phi(z)=E\left(z_{0}, z\right)^{-1}\left[\Phi\left(z_{0}\right)-\frac{E\left(z_{0}, z\right)}{2 w(z)^{2}}\right. \\
& \left.+\frac{1}{2 w\left(z_{0}\right)^{2}}-\int_{\gamma\left(z_{0}, z\right)} \frac{E\left(z_{0}, t\right)}{2 w(t)^{4}}\left(2 t w(t)^{3}-1\right) d t\right]
\end{aligned}
$$

where $E\left(z_{0}, t\right)=\exp \left(\int_{\gamma\left(z_{0}, t\right)} w(\tau)^{-2} d \tau\right)$.
For an arbitrary pole $z=\sigma,|\sigma|>10$, consider the disk $U(\sigma)=\{z| | z-\sigma \mid<\eta(\sigma)\}$ with $\eta(\sigma)=$ $\sup \left\{\left.\eta||w(z)|>2| z\right|^{1 / 2}\right.$ in $\left.|z-\sigma|<\eta(\leq 1)\right\}$. Then

Lemma 2.5. In $U(\sigma),|\Phi(z)| \leq K_{0}|z|^{\Delta}$. Here K_{0} is independent of σ, and $\Delta(\geq 3 / 2)$ is independent of $w(z)$ and σ.

Proof. For $z \in \Gamma_{0}$, denote by $\Gamma_{0}(z)$ the part of Γ_{0} from the starting point c_{0} to z. By Lemma 2.2,

$$
\begin{aligned}
\left|E\left(c_{0}, z\right)^{ \pm 1}\right| & \leq \exp \left(\int_{\Gamma_{0}(z)} \frac{|d t|}{|w(t)|^{2}}\right) \\
& \leq \exp \left(\frac{6 \cdot 2^{22}}{\sqrt{11}} \int_{\left|c_{0}\right|}^{|z|} \frac{d|t|}{|t|}\right)=O\left(z^{\Delta^{\prime}}\right)
\end{aligned}
$$

$\Delta^{\prime}=3 \cdot 2^{23} / \sqrt{11}$. Hence, by Lemmas 2.2 and 2.4, for $z_{\sigma} \in \Gamma_{0} \cap J_{\sigma}$, we have $\Phi\left(z_{\sigma}\right)=O\left(z_{\sigma}^{2 \Delta^{\prime}+3 / 2}\right)$. Since $|\sigma| \leq\left|z_{\sigma}\right| \leq|\sigma|+1$, by Lemma 2.3, $E\left(z_{\sigma}, z\right)=$ $O(1)$ along the curve $J_{\sigma}\left(\ni z_{\sigma}, z\right)$. Observing that $\Phi\left(z_{\sigma}\right)=O\left(z_{\sigma}^{2 \Delta^{\prime}+3 / 2}\right)$ and using Lemmas 2.3 and 2.4, we have $\Phi(\sigma)=O\left(\sigma^{2 \Delta^{\prime}+3 / 2}\right)$. Applying Lemma 2.4 with $\gamma\left(z_{0}, z\right)=[\sigma, z], z \in U(\sigma)$, we derive the conclusion.
3. Proof of Theorem 1.1. For an arbitrary pole $z=\sigma$ of $w(z)$, by Lemma 2.5, we have $|\Phi(z)| \leq$ $K_{0}|z|^{\Delta}$ for $z \in U(\sigma)$. Put $w(z)=u(z)^{-2}, z=\sigma+$ $\sigma^{-\Delta / 6} s$ in (2.5). Then $v(s)=u\left(\sigma+\sigma^{-\Delta / 6} s\right)$ satisfies

$$
\begin{align*}
\frac{d v}{d s}(s)= & \sigma^{-\Delta / 6}(1+h(s, v(s))) \tag{3.1}\\
& |h(s, v(s))|<\frac{1}{2}, \quad v(0)=0
\end{align*}
$$

as long as

$$
\begin{equation*}
\left|\left(\sigma+\sigma^{-\Delta / 6} s\right)^{\Delta / 6}\right||v(s)|<\varepsilon_{0} \tag{3.2}
\end{equation*}
$$

where the branch of $u(z)$ is taken so that $u^{\prime}(\sigma)=$ $\sigma^{\Delta / 6}(d v / d s)(0)=1$, and $\varepsilon_{0}=\varepsilon_{0}\left(K_{0}\right)$ is a sufficiently small positive constant independent of σ. Note that (3.2) implies $z=\sigma+\sigma^{-\Delta / 6} s \in U(\sigma)$. Put $\eta_{*}=$ $\sup \{\eta \mid$ (3.2) is valid for $|s|<\eta\}$, and suppose that $\eta_{*}<\varepsilon_{0} / 4$. Then, integrating (3.1), we derive

$$
\begin{equation*}
\frac{|s|}{2} \leq\left|\sigma^{\Delta / 6}\right||v(s)| \leq \frac{3|s|}{2} \leq \frac{3 \varepsilon_{0}}{8} \tag{3.3}
\end{equation*}
$$

for $|s| \leq \eta_{*}\left(<\varepsilon_{0} / 4\right)$, which implies

$$
\begin{aligned}
& \left|\left(\sigma+\sigma^{-\Delta / 6} s\right)^{\Delta / 6}\right||v(s)| \\
& \quad \leq\left|\sigma^{\Delta / 6}\right||v(s)|\left(1+\frac{1}{M_{0}}\right)^{\Delta / 6} \leq \frac{\varepsilon_{0}}{2}
\end{aligned}
$$

for $|s| \leq \eta_{*}$ and for $|\sigma| \geq M_{0}$, where M_{0} is sufficiently large. In case $|\sigma| \geq M_{0}$, this contradicts the definition of η_{*}, and hence $\eta_{*} \geq \varepsilon_{0} / 4$. Therefore, if $|\sigma| \geq M_{0}$, then (3.3) is valid for $|s|<\varepsilon_{0} / 4$, and $w(z)$ is analytic for $0<|z-\sigma|<\left(\varepsilon_{0} / 4\right)|\sigma|^{-\Delta / 6}$. By a wellknown argument $[1, \S 4.6]$, the number of the poles of $w(z)$ in the disk $|z|<r$ does not exceed $O\left(r^{2+\Delta / 3}\right)$. Combining this fact with $m(r, w)=S(r, w)$ (cf. [4, Lemma 2.4.2] and [4, Lemma 1.1.1]), we get $T(r, w)=m(r, w)+N(r, w)=O\left(r^{2+\Delta / 3}\right)$, which completes the proof.

4. The second and the fourth Painlevé

 equations. The method above is also applicable to the second and the fourth Painlevé equations$$
\begin{align*}
w^{\prime \prime}= & 2 w^{3}+z w+\alpha \tag{II}\\
w w^{\prime \prime}= & \frac{\left(w^{\prime}\right)^{2}}{2}+\frac{3 w^{4}}{2} \tag{IV}\\
& +4 z w^{3}+2\left(z^{2}-\alpha\right) w^{2}+\beta
\end{align*}
$$

$\alpha, \beta \in \mathbf{C}$. For (II), instead of (2.5), we consider the auxiliary function

$$
\begin{aligned}
\Phi_{\mathrm{II}}(z)= & w^{\prime}(z)^{2}+\frac{w^{\prime}(z)}{w(z)-\theta_{1} z^{1 / 2}} \\
& -w(z)^{4}-z w(z)^{2}-2 \alpha w(z)
\end{aligned}
$$

Putting $z-a=a^{-1 / 2} t, w(z)=\theta_{1} a^{1 / 2} W(t)$, we show a lemma corresponding to Lemma 2.1, and we choose paths analogous to Γ_{0} and J_{σ} on which $\left|w(z)-\theta_{1} z^{1 / 2}\right| \geq c_{1}|z|^{1 / 2}$. For (IV), we take

$$
\begin{aligned}
\Phi_{\mathrm{IV}}(z)= & \frac{w^{\prime}(z)^{2}}{w(z)}+\frac{4 w^{\prime}(z)}{w(z)-\theta_{2} z}-w(z)^{3} \\
& -4 z w(z)^{2}-4\left(z^{2}-\alpha\right) w(z)+\frac{2 \beta}{w(z)}
\end{aligned}
$$

Using the change of variables $z-a=a^{-1} t, w(z)=$ $\theta_{2} a W(t)$, we also choose paths corresponding to Γ_{0} and J_{σ} on which $\left|w(z)-\theta_{2} z\right| \geq c_{2}|z|$. Here θ_{j} and c_{j} $(j=1,2)$ are suitably chosen small positive numbers. These auxiliary functions satisfy

$$
\begin{aligned}
& \Phi_{\mathrm{II}}^{\prime}(z)+\frac{\Phi_{\mathrm{II}}(z)}{\left(w(z)-\theta_{1} z^{1 / 2}\right)^{2}} \\
= & \frac{w^{\prime}(z)}{\left(w(z)-\theta_{1} z^{1 / 2}\right)^{3}}\left(1-\frac{\theta_{1}^{2}}{2}+\frac{\theta_{1}}{2} z^{-1 / 2} w(z)\right) \\
& -\frac{1}{\left(w(z)-\theta_{1} z^{1 / 2}\right)^{2}}\left(\theta_{1}^{2} z w(z)^{2}+\theta_{1} z^{3 / 2} w(z)\right. \\
& \left.+\alpha w(z)+\theta_{1} \alpha z^{1 / 2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{\mathrm{IV}}^{\prime}(z)+\frac{2\left(w(z)+\theta_{2} z\right)}{\left(w(z)-\theta_{2} z\right)^{2}} \Phi_{\mathrm{IV}}(z) \\
= & \frac{4 w^{\prime}(z)}{\left(w(z)-\theta_{2} z\right)^{3}}\left(\left(2+\theta_{2}\right) w(z)+\left(2-\theta_{2}\right) \theta_{2} z\right) \\
& -\frac{4}{\left(w(z)-\theta_{2} z\right)^{2}}\left(\theta_{2}^{2} z^{2} w(z)^{2}+2 \theta_{2} z^{2} w(z)\right. \\
& \left.\times\left(w(z)+\theta_{2} z\right)+4 \theta_{2}\left(z^{2}-\alpha\right) z w(z)-2 \beta\right),
\end{aligned}
$$

respectively. By an argument analogous to that in Section 3, we have

Theorem 4.1. Let $w(z)$ be an arbitrary meromorphic solution of (II) (resp. (IV)). Then $T(r, w)=$ $O\left(r^{C^{\prime}}\right)\left(\right.$ resp. $O\left(r^{C^{\prime \prime}}\right)$), where $C^{\prime}\left(\right.$ resp. $\left.C^{\prime \prime}\right)$ is some positive number independent of $w(z)$.

References

[1] Hille, E.: Ordinary Differential Equations in the Complex Domain. John Wiley, New York (1976).
[2] Hinkkanen, A., and Laine, I.: Solutions of the first and second Painlevé equations are meromorphic. J. Anal. Math., 79, 345-377 (1999).
[3] Hukuhara, M.: Meromorfeco de la solvo de (F) $y^{\prime \prime}=6 y^{2}+x$ (unpublished lecture notes).
[4] Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin-New York (1992).
[5] Shimomura, S.: Growth of the first, the second and the fourth Painlevé transcendents (2000) (preprint).
[6] Takano, K.: Defining manifolds for Painlevé equations. Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (eds. Howls, C. J., Kawai, T., and Takei, Y.). Kyoto Univ. Press, Kyoto, pp. 261-269 (2000).

