A note on Ono's numbers associated to imaginary quadratic fields

By Fumio Sairaiji and Kenichi Shimizu
Kenmei Junior and Senior Girls' High School, 68, Honmachi, Himeji, Hyogo 670-0012
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 13, 2001)

Abstract

T. Ono raised some problems on relations between Ono's numbers p_{D} and the class numbers h_{D} of imaginary quadratic fields. In this paper we give an upper bound for p_{D}. The upper bound contributes to one of the problems.

Key words: Ono's number; class number.

1. Introduction. Let k_{D} be an imaginary quadratic field with discriminant $-D$. We denote by h_{D} the class number of k_{D}. We put $\omega_{D}:=\sqrt{-D / 4}$ or $\omega_{D}:=(1+\sqrt{-D}) / 2$ according as $D \equiv 0 \bmod 4$ or $D \equiv 3 \bmod 4$. We put $f_{D}(x):=\mathbf{N}\left(x+\omega_{D}\right)$, where \mathbf{N} is the norm mapping. We define the natural number p_{D} by

$$
p_{D}:=\max \left\{\nu\left(f_{D}(x)\right) \left\lvert\, x \in \mathbf{Z} \cap\left[0, \frac{D}{4}-1\right]\right.\right\}
$$

if $D \neq 3,4$, and $p_{D}=1$ if $D=3,4$, where $\nu(n)$ is the number of (not necessarily distinct) prime factors of n (cf. [2], [3]). We call the number p_{D} Ono's number. By using p_{D}, we can formulate the FrobeniusRabinowitsch Theorem as follows:

$$
p_{D}=1 \text { if and only if } h_{D}=1
$$

T. Ono conjectured:
(i) $p_{D}=2$ if and only if $h_{D}=2$;
(ii) $p_{D} \leq h_{D}$,
both of which were proved by R. Sasaki [5]. Furthermore, T. Ono raised the problem to examine whether $h_{D} \leq 2^{p_{D}}$ holds. H. Wada verified the inequality for D whose square-free part is less than or equal to 8173, by computer (cf. [3]; p. 57).

In this paper, we give an upper bound for p_{D}. By using the upper bound, we show that there exist infinitely many D such that $h_{D} \leq 2^{p_{D}}$ does not hold. More generally, we prove:

Theorem 1. Let c be a positive number which is greater than one. Then there exist infinitely many D such that $h_{D}>c^{p_{D}}$.
2. An upper bound for $\boldsymbol{p}_{\boldsymbol{D}}$. We denote by t_{D} the number of distinct prime divisors of D. We

[^0]denote by q_{D} the smallest prime number which splits completely in k_{D}.

Lemma 2. The inequality $\nu\left(\operatorname{gcd}\left(D, f_{D}(x)\right)\right) \leq$ t_{D} holds for each integer x such that $0 \leq x \leq D / 4-$ 1. The equality holds if and only if $D \equiv 0 \bmod 4$, $D / 4 \equiv 2 \bmod 4$ and $x=0$.

Proof. We first consider the case of $D \equiv 0 \mathrm{mod}$ 4. Since $D / 4 \equiv 1,2 \bmod 4,2^{2}$ does not divide $x^{2}+D / 4$ for each x. Since $D / 4$ is square-free, we have $\nu\left(\operatorname{gcd}\left(D, f_{D}(x)\right)\right) \leq t_{D}$. Suppose that the equality $\nu\left(\operatorname{gcd}\left(D, f_{D}(x)\right)\right)=t_{D}$ holds. Then $D / 4$ divides $f_{D}(x)$. Since $D / 4$ is square-free, we see that $D / 4$ divides x. Together with the condition $0 \leq x \leq$ $D / 4-1$, we see $x=0$. It follows from $t_{D}=$ $\nu\left(\operatorname{gcd}\left(D, f_{D}(0)\right)\right)=\nu(D / 4)$ that $D / 4 \equiv 2 \bmod 4$. Conversely it is clear that the equality holds for $D / 4 \equiv 2 \bmod 4$ and $x=0$.

Secondly we consider the case of $D \equiv 3 \bmod 4$. Since D is square-free, we have $\nu\left(\operatorname{gcd}\left(D, f_{D}(x)\right)\right)$ $\leq t_{D}$. Suppose that the equality $\nu\left(\operatorname{gcd}\left(D, f_{D}(x)\right)\right)=$ t_{D} holds. Then D divides $f_{D}(x)$. Consequently we see that D divides $2 x+1$, which contradicts the condition $0 \leq x \leq D / 4-1$. Thus the equality does not hold in this case.

Lemma 3. The inequality $\max \left\{f_{D}(x) \mid x \in\right.$ $\boldsymbol{Z} \cap[0, D / 4-1]\}<(D / 4)^{2}$ holds for $D \geq 7$.

Proof. If $D \equiv 0 \bmod 4$ and $D \geq 8$, then

$$
f_{D}(x) \leq\left(\frac{D}{4}-1\right)^{2}+\frac{D}{4}<\left(\frac{D}{4}\right)^{2}
$$

for each integer x in $[0, D / 4-1]$. If $D \equiv 3 \bmod 4$ and $D \geq 7$, then
$f_{D}(x) \leq\left(\frac{D-7}{4}\right)^{2}+\left(\frac{D-7}{4}\right)+\frac{D+1}{4}<\left(\frac{D}{4}\right)^{2}$
for each integer x in $[0, D / 4-1]$. Thus Lemma 3 follows.

Now we have the following upper bound for p_{D}.
Proposition 4 (cf. [2]; p. 112). The inequality $p_{D}<t_{D}-1+\log _{q_{D}}(D / 4)^{2}$ holds for $D \geq 7$.

Proof. Since for each integer x the principal ideal $\left(x+\omega_{D}\right)$ is primitive, $f_{D}(x)$ is not divided by any prime number which remains prime in k_{D}. By the same reason, $f_{D}(x)$ is not divided by the second power of any prime number which ramifies in k_{D}. By definition, $p_{D}=\nu\left(f_{D}\left(x_{0}\right)\right)$ for some x_{0}. We can put

$$
f_{D}\left(x_{0}\right)=a p_{1} \cdots p_{r}
$$

where $a:=\operatorname{gcd}\left(D, f_{D}\left(x_{0}\right)\right)$ and p_{i} is a prime number which splits completely in k_{D}.

By Lemma 3, we have

$$
q_{D}^{r} \leq p_{1} \cdots p_{r} \leq f_{D}\left(x_{0}\right)<\left(\frac{D}{4}\right)^{2}
$$

and consequently, we have

$$
r<\log _{q_{D}}\left(\frac{D}{4}\right)^{2}
$$

On the other hand, it follows from Lemma 2 that $\nu(a) \leq t_{D}-1$ except for the case where $D \equiv$ $0 \bmod 4, D / 4 \equiv 2 \bmod 4$ and $x_{0}=0$. Since $p_{D}=$ $\nu(a)+r$, Proposition 4 follows except for this case. The exceptional case reduces to the case of $x_{0} \neq 0$ as follows. In the exceptional case, the inequalities

$$
\begin{aligned}
p_{D} & \geq \nu\left(f_{D}\left(\frac{D}{4 p}\right)\right)=\nu\left(\frac{D}{4 p}\right)+\nu\left(\frac{D}{4 p}+p\right) \\
& \geq \nu\left(f_{D}(0)\right)=p_{D}
\end{aligned}
$$

hold for a prime divisor p of $D / 4$. Thus we can take $D / 4 p$ instead of 0 as x_{0}.

As a corollary of Proposition 4, we give another upper bound for p_{D} in terms of the exponent e_{D} of the ideal class group of k_{D}.

Corollary 5. The inequality $p_{D}<2 e_{D}+t_{D}-1$ holds for $D \geq 7$.

Proof. We note that the norm of each primitive principal ideal is greater than or equal to $D / 4$. Since the n-th power of a prime ideal lying above q_{D} in k_{D} is primitive for each natural number n, it follows from Proposition 4 that

$$
e_{D} \geq \log _{q_{D}} \frac{D}{4}>\frac{p_{D}-t_{D}+1}{2}
$$

for $D \geq 7$. Thus we obtain Corollary 5 .
3. Proof of Theorem 1. We first show that $h_{D}>c^{p_{D}}$ for D satisfying the conditions (i)-(iii) as below. Secondly we show that there exist infinitely many such D.

Let ε be a non-zero positive number less than one. Then, by the theorem of Siegel [6], there exists a constant $D_{0}(\varepsilon)$ such that

$$
1-\varepsilon<\frac{\log h_{D}}{\log \sqrt{D}}<1+\varepsilon
$$

holds for $D \geq D_{0}(\varepsilon)$. Thus

$$
\begin{equation*}
D^{(1-\varepsilon) / 2}<h_{D} \tag{1}
\end{equation*}
$$

holds for $D \geq D_{0}(\varepsilon)$.
Let ℓ be an odd prime number such that

$$
\begin{equation*}
\ell>c^{4 /(1-\varepsilon)} \tag{2}
\end{equation*}
$$

We suppose that we can take D_{1}, as D, satisfying the following conditions:
(i) $D_{1} \geq \max \left\{D_{0}(\varepsilon), 7\right\}$;
(ii) $t_{D_{1}}=1$;
(iii) $q_{D_{1}}=\ell$.

Then it follows from Proposition 4 that

$$
\begin{equation*}
p_{D_{1}}<\log _{\ell}\left(\frac{D_{1}}{4}\right)^{2}<\frac{2}{\log _{c} \ell} \times \log _{c} D_{1} \tag{3}
\end{equation*}
$$

Since $2 / \log _{c} \ell<(1-\varepsilon) / 2$ from (2), it follows from (3) that

$$
\begin{equation*}
c^{p_{D_{1}}}<D_{1}^{(1-\varepsilon) / 2} \tag{4}
\end{equation*}
$$

Thus, by (i) and (1), the inequality $c^{p_{D_{1}}}<h_{D_{1}}$ is verified.

Indeed, D_{1} satisfies the condition (ii) if D_{1} is an odd prime number such that $D_{1} \equiv 3 \bmod 4$. Furthermore the condition (iii) is equivalent to the following simultaneous congruences:
(iiia) $\left(-D_{1} / p\right)=0,-1$ for each prime number $p<\ell$; (iiib) $\left(-D_{1} / \ell\right)=1$,
where $\left(-D_{1} / p\right)$ is the Kronecker symbol. Hence, by virtue of Dirichlet's theorem on prime numbers in arithmetic progressions, there exist infinitely many D_{1} satisfying the conditions (i)-(iii).

This completes the proof of Theorem 1.
Remark 6. The smallest value of D for which $h_{D}>2^{p_{D}}$ takes place is $D=37123$. Then we have $h_{37123}=17$ and $p_{37123}=4$.

References

[1] Ishibashi, M.: A sufficient arithmetical condition for the ideal class group of an imaginary quadratic field to be cyclic. Proc. Amer. Math. Soc., 117, 613-618 (1993).
[2] Möller, H.: Verallgemeinerung eines Satzes von Rabinowitsch über imaginär-quadratische Zahl-
körper. J. Reine Angew. Math., 285, 100-113 (1976).
[3] Ono, T.: Arithmetic of Algebraic Groups and its Applications. St. Paul's International Exchange Series Occasional Papers VI, St. Paul's Univ., Tokyo (1986).
[4] Rabinowitsch, G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Math., 142, 153-164 (1913).
[5] Sasaki, R.: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., 62A, 37-39 (1986).
[6] Siegel, C. L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith., 1, 83-86 (1935).
[7] Svirsky, J. B.: On the class numbers of imaginary quadratic fields. Ph. D. thesis, Johns Hopkins Univ. (1985).

[^0]: 1991 Mathematics Subject Classification. Primary 11R11; Secondary 11R29.

