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Note on the ring of integers of a Kummer extension of prime degree. II
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Abstract: Let p be a prime number, and a (∈ Q×) a rational number. Then, F. Kawamoto
proved that the cyclic extension Q(ζp, a1/p)/Q(ζp) has a normal integral basis if it is at most
tamely ramified. We give some generalized version of this result replacing the base field Q with
some real abelian fields of prime power conductor.
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1. Introduction. Let L/K be a finite Galois
extension of a number field K with Galois group G.
It has a normal integral basis (NIB for short) when
OL is free of rank one over the group ring OK [G].
Here, OL (resp. OK) is the ring of integers of L

(resp. K). We say that L/K is tame when it is at
most tamely ramified at all finite prime divisors. It
is well known by Noether that L/K is tame if it
has a NIB. It is also well known that the converse
holds when K = Q and L/K is abelian by Hilbert
and Speiser and that it does not hold in general.
(For these and other related topics, confer Fröhlich
[1].) On the other hand, Kawamoto [5, 6] proved the
following result, for which see also Gómez Ayala [2,
Section 4]. We denote by ζn a primitive n–th root of
unity in the algebraic closure Q.

Proposition 1 (Kawamoto). For a prime
number p and a rational number a (∈ Q×), the
cyclic extension Q(ζp, a1/p)/Q(ζp) has a NIB if it
is tame.

The purpose of this note is to give some gen-
eralized version of this result. In all what follows,
we fix an odd prime number p. Let Kn = Q(ζpn+1)
be the pn+1-st cyclotomic field, K+

n its maximal real
subfield, and kn (⊆ K+

n ) the real cyclic extension of
degree pn contained in Kn. For a number field K,
we denote by h(K) the class number of K. We put
h−p = h(K0)/h(K+

0 ), which is known to be an inte-
ger. For an integer a of a number field K, we say
that it is square free (at K) when the principal ideal
aOK is square free in the group of ideals of K.

Proposition 2. (I) For a square free integer
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a (6= 0) of kn, the cyclic extension Kn(a1/p)/Kn

has a NIB if it is tame. (II) Assume that p - h−p .
Then, for any square free integer (a 6= 0) of K+

n ,
Kn(a1/p)/Kn has a NIB if it is tame.

Proposition 3. (I) Assume that h(kn) = 1.
Then, for any element a of k×n , Kn(a1/p)/Kn has
a NIB if it is tame. (II) Assume that p - h−p and
h(K+

n ) = 1. Then, for any element a of (K+
n )×,

Kn(a1/p)/Kn has a NIB if it is tame.

Remark 1. (A) When n = 0, Proposition 3
(I) is nothing but that of Kawamoto. (B) The con-
ditions that p - h−p and h(K+

n ) = 1 are satisfied when
ϕ(pn) < 66 except for p = 37, 59 by van der Linden
[8], where ϕ denotes the Euler function. For more
data on h−p and h(K+

n ), see some tables in Wash-
ington [11]. For n ≥ 1, the condition h(kn) = 1 is
satisfied when (p, n) = (3, 1), (3, 2), (3, 3), (5, 1), or
(7, 1) by Masley [9, Table 2].

2. A theorem of Gómez Ayala. In this
section, we recall a theorem of Gómez Ayala [2, The-
orem 2.1] on normal integral bases of Kummer exten-
sions of prime degree. (A similar result is also ob-
tained in the unpublished paper of Kawamoto [7].)

Let K be a number field, and A a p-th power
free integral ideal of K. Then, A is decomposed as

A =
p−1∏
i=1

A i
i

for some square free integral ideals Ai of K relatively
prime to each other. The associated ideals Bj ’s of A

are defined by

Bj =
p−1∏
i=1

A
[ij/p]
i (0 ≤ j ≤ p− 1).
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Here, [x] denotes the largest integer with [x] ≤ x.
Theorem (Gómez Ayala). Let K be a number

field with ζp ∈ K×, and L/K a tame cyclic extension
of degree p. Then, L/K has a NIB if and only if
L = K(a1/p) for some integer a ∈ OK such that the
principal ideal aOK is p-th power free, for which the
ideals Bj’s associated to aOK in the above sense are
principal and the congruence

A =
p−1∑
j=0

(a1/p)j

xj
≡ 0 mod p

holds for some generator xj of Bj.
From this, we can obtain the following corollary,

for which see also the author [3]. We put π = ζp− 1.
Corollary. Let K be as in the Theorem. For

a square free integer a of K relatively prime to p, the
cyclic extension K(a1/p)/K has a NIB if and only if
a ≡ εp mod πp for some unit ε of K.

Remark 2. Gómez Ayala also proved that
(in the setting of the Theorem) A/p is a generator of
NIB when A ≡ 0 mod p.

3. Proof of propositions. First, we pre-
pare some lemmas. Let Un be the group of local
units of the completion Kn,p of Kn at the unique
prime over p, and let U+

n , Uk
n be the correspond-

ing objects for K+
n , kn, respectively. Denote by Un

(⊆ Un) the group of principal units of Kn,p. Let En

be the group of global units of Kn, and En the closure
of En ∩ Un in Un. Put ∆ = Gal(K0/Q), which we
naturally identify with Gal(Kn/kn). For a Zp[∆]–
module M (such as Un, En) and a Qp–valued char-
acter χ of ∆, we denote by M(χ) the χ–eigenspace
of M . Namely, M(χ) = Meχ where eχ is the idem-
potent corresponding to χ:

eχ =
1

p− 1

∑
σ∈∆

χ(σ)σ−1 (∈ Zp[∆]).

We denote by χ0 the trivial character of ∆.
Lemma 1. For any n (≥ 0), we have Un =

E0Un.
Proof. It is well known that each class in

(OK0/(π))× is represented by a cyclotomic unit of
K0. The assertion follows from this since Kn/K0 is
totally ramified at p.

Lemma 2. (I) For any n (≥ 0), we have
Un(χ0) = U0(χ0)En(χ0). (II) Assume that p - h−p .
Then, for any n (≥ 0) and any nontrivial even char-
acter χ of ∆, we have Un(χ) = En(χ).

Proof. Though this assertion is known to spe-
cialists, we give a proof for the sake of completeness.
Let K∞ = ∪nKn be the cyclotomic Zp-extension of
K0. Let M/K∞ be the maximal pro-p abelian ex-
tension unramified outside p, and Mn the maximal
abelian extension of Kn contained in M . Denote
by Hn the Hilbert p-class field of Kn, and by An

the Sylow p-subgroup of the ideal class group of Kn.
The group An and the Galois groups Gal(M/K∞),
Gal(Mn/Hn), etc., are naturally regarded as mod-
ules over Zp[∆]. It is known that the reciprocity law
map induces the following canonical isomorphism
over Zp[∆].

Gal(Mn/Hn) ∼= Un/En.(1)

For this, see [11, Corollary 13.6].
First, we show (I). Let ω be the character of

∆ representing the Galois action on ζp. As a conse-
quence of the Stickelberger theorem, it is known that
An(ω) = {0} for all n ≥ 0 (cf. [11, Proposition 6.16]).
Because of the Kummer duality, this implies that
Gal(M/K∞)(χ0) = {0} (cf. [11, Proposition 13.32]).
Therefore, by (1), we obtain

Gal(K∞/Kn) ∼= (Un/En)(χ0).(2)

On the other hand, we easily see from local class field
theory that the map

U0(χ0) → Gal(K∞,p/Kn,p), u → (u, K∞,p/Kn,p)

is surjective. Here, K∞,p = ∪nKn,p and
(∗,K∞,p/Kn,p) denotes the Artin map. Then, as

Gal(K∞,p/Kn,p) = Gal(K∞/Kn),

we see that Un(χ0) = U0(χ0)En(χ0) from the isomor-
phism (2).

Next, let χ be a nontrivial even character of ∆,
and χ∗ = ωχ−1 the associated odd character. As-
sume that p - h−p . Then, we have An(χ∗) = {0} for
all n (cf. [11, Corollary 10.5]). This implies that
Gal(M/K∞)(χ) = {0} again by [11, Proposition
13.32]. From this and (1), we obtain Un(χ) = En(χ).

Remark 3. The assertion of Lemma 2 also
follows from the theorem of Iwasawa [4] on local units
modulo cyclotomic units and the Iwasawa main con-
jecture proved by Mazur and Wiles [10].

Lemma 3. (I) For any n (≥ 0) and any u ∈
Uk

n , we have u≡ ε mod p for some unit ε ∈ En. (II)
Assume that p - h−p . Then, for any n (≥ 0) and any
u ∈ U+

n , we have u ≡ ε mod p for some ε ∈ En.



No. 2] The ring of integers of a Kummer extension of prime degree 27

Proof. First, we show the assertion (I). Let u

be an element of Uk
n . By Lemma 1, we can write

u = εv for some ε ∈ En and v ∈ Un. As Un is a
Zp[∆]-module, the idempotent eχ can act on v. We
see from Lemma 2 that veχ0 ≡ ε′ mod p for some
ε′ ∈ En because

U0(χ0) = 1 + pZp.(3)

Let χ be a nontrivial character of ∆. Then, we can
choose an element eχ ∈ Z[∆] for which the sum
of coefficients is zero and veχ ≡ veχ mod p. Then,
since u ∈ Uk

n , we have 1 = ueχ = εeχ · veχ . Hence,
veχ ≡ ε−eχ mod p. Thus, v ≡ η mod p for some
unit η ∈ En. Then, as u = εv, we obtain the asser-
tion (I).

Next, let u = εv be an element of U+
n with ε ∈

En and v ∈ Un. Let ρ be the complex conjugation in
∆, and let

e+ =
1 + ρ

2
, e− =

1− ρ

2
(∈ Zp[∆]).

By Lemma 2 and (3), we see that ve+ ≡ ε′ mod p

for some ε′ ∈ En. Choose an element e− = a − aρ

with a ∈ Z for which ve− ≡ ve− mod p. Then, since
u ∈ U+

n , we see from u = εv that ve− ≡ ε−e− mod
p by an argument similar to the above. Therefore,
v ≡ η mod p for some η ∈ En, and we obtain the
assertion (II).

The following is well known (cf. [11, Exercises
9.2, 9.3]).

Lemma 4. Let K be a number field with ζp ∈
K×. Then, for an element a ∈ K× relatively prime
to p, the cyclic extension K(a1/p)/K is tame if and
only if a ≡ up mod πp for some u ∈ OK .

Lemma 5. (I) Let a be an element of k×n
relatively prime to p. Then, the cyclic extension
Kn(a1/p)/Kn is tame if and only if a ≡ εp mod πp

for some unit ε ∈ En. (II) Assume that p - h−p .
Let a be an element of (K+

n )× relatively prime to
p. Then, Kn(a1/p)/Kn is tame if and only if a ≡
εp mod πp for some unit ε ∈ En.

Proof. It suffices to show the “only if” part.
First, we show it for (I). Let a be an element of k×n
relatively prime to p such that Kn(a1/p)/Kn is tame.
By Lemma 4, a ≡ up mod πp for some u ∈ Un.
Write u = εv for some ε ∈ En and v ∈ Un. By
Lemma 2 and (3), veχ0 ≡ ε′ mod π for some ε′ ∈ En.
Let χ be a nontrivial character of ∆, and choose
eχ ∈ Z[∆] as in the proof of Lemma 3. Then, since
a ∈ k×n , 1 = aeχ ≡ (εeχ · veχ)p mod πp. From

this, we see that veχ ≡ ε−eχ mod π. Therefore,
v ≡ η mod π for some η ∈ En, and we obtain the
assertion (I). We can show the assertion (II) similarly
by modifying the argument in the proof of Lemma 3
(II).

Proof of Proposition 2. Let a be a square
free integer of kn (resp. K+

n ) such that Kn(a1/p)/Kn

is tame. We easily see that a is relatively prime to p

and that a is square free also at Kn. Therefore, we
obtain the assertions from Lemma 5 and the corol-
lary of the Theorem.

Proof of Proposition 3. First, we show (I).
Assume that h(kn) = 1. Let a be an element of k×n
such that Kn(a1/p)/Kn is tame. As h(kn) = 1, we
may well assume that a is an integer relatively prime
to p and that a is p-th power free. By Lemma 5,
a ≡ εp mod πp for some ε ∈ En. Putting α = a1/p,
we have α/ε ≡ 1 mod π. As h(kn) = 1 and a is p-th
power free, we can decompose as

a =
p−1∏
i=1

a i
i

for some square free integers ai of kn relatively prime
to each other. As in Section 2, we put

bj =
p−1∏
i=1

a
[ij/p]
i (0 ≤ j ≤ p− 1).

By Lemma 3, bj ≡ ηj mod p for some unit ηj ∈ En.
Therefore, we see that

p−1∑
j=0

αj

bjη
−1
j εj

≡
p−1∑
j=0

(α

ε

)j

mod p

=
∏
ζ

′(α

ε
− ζ
)
≡ 0 mod p,

where ζ runs over all primitive p-th roots of unity.
Now, the assertion (I) follows from the Theorem.
The second assertion is shown similarly.
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