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On some isotropic submanifolds in spheres
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Abstract: We give examples of isotropic submanifolds in spheres, which are counter-
examples to the result of [S].
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1. Introduction. Let f : Mn → M̃n+p be
an isometric immersion of an n-dimensional Rieman-
nian manifold Mn into an (n + p)-dimensional Rie-
mannian manifold M̃n+p. We recall the notion of
isotropic immersions ([O]): Let σ be the second fun-
damental form of Mn in M̃n+p. Then the immersion
f is said to be isotropic at x ∈M if ‖σ(X,X)‖/‖X‖2
does not depend on the choice of X(6= 0) ∈ TxM .
If the immersion is isotropic at every point, then
there exists a function λ on M defined by x 7→
‖σ(X,X)‖/‖X‖2 and the immersion f is said to be
λ-isotropic or, simply, isotropic. If the function λ is
constant on Mn, we call (Mn, f) a constant isotropic
submanifold.

Note that a totally umbilic immersion is
isotropic, but not vice versa. There are many exam-
ples of isotropic submanifolds which are not totally
umbilic in standard spheres.

The purpose of this paper is to construct exam-
ples of isotropic immersions of spheres into spheres
satisfying the following theorem:

Theorem. There exist many compact con-
nected isotropic submanifolds Mn’s of an (n + p)-
dimensional sphere Sn+p(c̃) of curvature c̃ satisfying
the following three conditions:
(i) Mn has constant mean curvature H(:= ‖h‖),

where ‖h‖ is the length of the mean curvature
vector h of Mn in Sn+p(c̃).

(ii) The sectional curvatures K of Mn are greater
than or equal to (H2 + c̃)/2.

(iii) Mn is not totally umbilic in Sn+p(c̃).
This provides us with many counter-examples

to the result of Y. B. Shen ([S]). He showed that if a
compact connected isotropic submanifold Mn of an
(n+p)-dimensional sphere Sn+p(c̃) of curvature c̃ sat-
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isfies the conditions (i) and (ii) in our Theorem, then
the submanifold Mn is totally umbilic in Sn+p(c̃).
However unfortunately by virtue of our Theorem the
author claims that his proof in [S] has an error.

2. A construction of isotropic immer-
sions. We denote by SN (c) an N -dimensional
sphere of curvature c. Let Mn be an n-dimensional
compact isotropy-irreducible Riemannian homoge-
neous space. We choose two minimal isotropic im-
mersions of Mn into spheres, say χ1 and χ2. We set
χ1 : Mn → SN1(c1) and χ2 : Mn → SN2(c2). Here,
χ1 (resp. χ2) is a minimal λ1-(resp. λ2-) isotropic im-
mersion with respect to some eigenvalue µ1 (resp. µ2)
of the Laplacian of Mn. Suppose that µ1 6= µ2. It
is well-known that c1 = µ1/n and c2 = µ2/n (for de-
tails, see [T]). By using these two minimal isotropic
immersions χ1 and χ2, we construct the following ex-
amples of isotropic immersions of Mn into spheres.

Example. For each t ∈ (0, π/2) the isometric
immersion ft : Mn → SN (c̃) is given by

ft : Mn (χ1,χ2)−→ SN1

( c1
cos2 t

)
× SN2

( c2

sin2 t

)
(2.1)

−→ SN (c̃),

where N = N1 +N2 + 1 and cos2 t/c1 + sin2 t/c2 =
1/c̃. Here the differential map (χ1, χ2)∗ of (χ1, χ2)
is defined by

(χ1, χ2)∗X := (cos t · (χ1)∗X, sin t · (χ2)∗X)(2.2)

for each X ∈ TMn.

Needless to say, the SN1(c1/ cos2 t)× SN2(c2/ sin2 t)
is imbedded into SN (c̃) as a Clifford hypersurface.

Our aim here is to clarify geometric properties
of the immersion ft given by (2.1).

Proposition. For each t ∈ (0, π/2) the iso-
metric immersion ft : Mn → SN (c̃) given by (2.1)
has the following geometric properties:
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(1) ft has nonzero constant mean curvature.
(2) ft is isotropic.
(3) ft is pseudo umbilic but not totally umbilic.
(4) The mean curvature vector ht of ft is not paral-

lel.
Proof. We shall compute the second funda-

mental form σt of ft. First we consider the
second fundamental form of (χ1, χ2) : Mn →
SN1(c1/ cos2 t) × SN2(c2/ sin2 t). We denote by σ1

(resp. σ2) the second fundamental form of χ1 (resp.
χ2). Then it follows from (2.2) that the second fun-
damental form of (χ1, χ2) is given by (cos2 t·σ1, sin2 t·
σ2), so that (χ1, χ2) : Mn → SN1(c1/ cos2 t) ×
SN2(c2/ sin2 t) is a minimal isotropic immersion.
Next, we study the second fundamental form of the
Clifford hypersurface given by (2.1). For simplicity
we put c̃1 = c1/ cos2 t and c̃2 = c2/ sin2 t. We choose
a unit normal vector field ξ of SN1(c̃1) × SN2(c̃2)
in SN (c̃). Let A be the shape operator of this hy-
persurface in SN (c̃) with respect to ξ. Then it is
well-known that A is expressed as follows:

A =
( c̃1√

c̃1 + c̃2
IN1

)
⊕

( −c̃2√
c̃1 + c̃2

IN2

)
,(2.3)

where Ik is an identity matrix of degree k. We need
to calculate A|TMn which is the restriction of the
shape operator A on the tangent bundle TMn. By
easy computation from (2.2) and (2.3) we know that

A|TMn =
cos2 t · c̃1 − sin2 t · c̃2√

c̃1 + c̃2
In.

Therefore the second fundamental form σt is ex-
pressed as follows:

σt(X,Y ) = (cos2 t · σ1(X,Y ), sin2 t · σ2(X,Y ))

+
cos2 t · c̃1 − sin2 t · c̃2√

c̃1 + c̃2
〈X,Y 〉ξ

(2.4)

for any vector fields X,Y on Mn, where c̃1 =
c1/ cos2 t and c̃2 = c2/ sin2 t. Hence the mean curva-
ture vector ht := (1/n) traceσt is given by

ht =
cos2 t · c̃1 − sin2 t · c̃2√

c̃1 + c̃2
ξ.(2.5)

Then the mean curvature Ht is

(2.6) Ht := ‖ht‖ =
| cos2 t · c̃1 − sin2 t · c̃2|√

c̃1 + c̃2
.

We are now in a position to prove geometric proper-
ties of ft.

(1) Equation (2.6) guarantees the constancy of
Ht. Here note that Ht 6= 0 for each t ∈ (0, π/2).

In fact, suppose that Ht0 = 0 for some t0. Then by
the well-known result of Takahashi [T] the immersion
fto : Mn → SN (c̃) is represented by eigenfunctions
of some eigenvalue µ of the Laplacian on Mn, which
is a contradiction (see the definitions of χ1 and χ2).

(2) It follows from (2.4) that the immersion ft

is (λt-)isotropic. λt is given by

λt =√
cos4 t · λ2

1 + sin4 t · λ2
2 +

(cos2 t · c̃1 − sin2 t · c̃2)2
c̃1 + c̃2

.

(3) From (2.4) and (2.5) we can see that
〈σt(X,Y ), ht〉 = 〈X,Y 〉‖ht‖2 for each X,Y ∈ TMn,
so that ft is pseudo umbilic, but of course it is not
totally umbilic.

(4) We denote by D the normal connection of
Mn in SN (c̃). We choose a local field of orthonormal
frames e1, . . . , en on Mn. Then by direct computa-
tion we find that for each i ∈ {1, . . . , n} the normal
vector Dei

h contains some nonzero scalar multiple of
the vector (sin t · (χ1)∗ei,− cos t · (χ2)∗ei) which is
normal to Mn.

3. Proof of Theorem. In Example (2.1)
first of all we set Mn = Sn(n/(2(n + 1))), and put
χ1 and χ2 as follows: Let χ1 : Sn(n/(2(n + 1))) →
Sn+(n(n+1)/2)−1(1) be the second standard minimal
immersion and

χ2 : Sn
( n

2(n+ 1)

)
→ Sn

( n

2(n+ 1)

)
be the identity mapping. Then we see that λ1 =√

(n− 1)/(n+ 1) and λ2 = 0. We particularly put
cos t = 1/

√
n+ 1, sin t =

√
n/(n+ 1). Hence we

obtain the following constant isotropic submanifold
Sn(n/(2(n+ 1))) with constant mean curvature, say
H in Sn+n(n+3)/2((n+ 1)/(2n+ 3)).

Sn
( n

2(n+ 1)

)
minimal−→ Sn+(n(n+1)/2)−1(n+ 1)× Sn

(1
2

)
−→ Sn+n(n+3)/2

( n+ 1
2n+ 3

)
.

Then from (2.6) we can find that

H =
n+ 2

(n+ 1)
√

2(2n+ 3)
.

This, together with K = n/2(n + 1) and c̃ = (n +
1)/(2n+ 3), yields that
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K − 1
2
(H2 + c̃) =

n2 − 2
4(n+ 1)2

> 0.

Thus we get the conclusion.
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