A note on the Selmer group of the elliptic curve $y^{2}=x^{3}+D x$

By Takeshi Goto
Graduate School of Mathematics, Kyushu University 33, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581
(Communicated by Heisuke Hironaka, m. J. A., Sept. 12, 2001)

Abstract

We present an explicit formula for the Selmer rank of the elliptic curve $y^{2}=$ $x^{3}+D x$. Using this formula, we give some results analogous to Iskra's theorem.

Key words: Selmer group; elliptic curve; congruent number.

1. Introduction. In this note, we study the Q-rank of the elliptic curve defined by

$$
E_{D}: y^{2}=x^{3}+D x \quad(D \in \mathbf{Q})
$$

We can suppose without loss of generality that D is a fourth-power free integer and not divided by 4 (if necessary, we must consider the dual curve $E_{-4 D}$, whose Q-rank is equal to that of E_{D}). Bremner and Cassels [4] studied the rank of E_{D} when D is a prime, and Yoshida [9] did when D is a product of two distinct primes. In both cases, one can obtain the upper bound for the rank by the 2 -descent method via 2 isogeny. In this note, we call this upper bound the Selmer rank. It is believed that the parity of the Selmer rank is equal to that of the actual rank of the curve. Birch and Stephens [3] give the formula for the parity of the Selmer rank of E_{D}. The purpose of this note is to give a formula for the Selmer rank of E_{D} for general D.

Since $E_{-n^{2}}$ is the elliptic curve connected with the congruent number problem, many mathematicians have studied this curve. For example, Iskra [5] proved the following theorem.

Theorem 1 (Iskra). Let primes p_{1}, \ldots, p_{r} satisfy the following two conditions:

- $p_{i} \equiv 3(\bmod 8)$ for $\forall i$.
- $\left(p_{i} / p_{j}\right)=1$ for $i<j$, where (/) is the Legendre symbol.
And let $D=-p_{1}^{2} \cdots p_{r}^{2}$. Then the rank of the curve E_{D} is 0 .

The complete 2-descent method gives the better upper bound than the Selmer rank. Aoki [1] and Monsky (appendix in Heath-Brown [7]) give each formula for this upper bound of the curve $E_{-n^{2}}$. Iskra's theorem can be proven by Monsky's formula.

[^0]The main result of this note is an explicit formula for the Selmer rank of the curve E_{D} (see (2) and Theorems 4 and 5). Applying the main result, we have the following facts analogous to Iskra's theorem.

Theorem 2. When D has one of the following forms, the rank of the curve E_{D} is 0 .
(a) $D=2 p_{1} \cdots p_{r}$, where
$p_{i} \equiv 5(\bmod 8),\left(p_{j} / p_{i}\right)=1$ for $i \neq j$.
(b) $D=2 p_{1} \cdots p_{r}$, where r is even and
$p_{i} \equiv 5(\bmod 8),\left(p_{j} / p_{i}\right)=-1$ for $i \neq j$.
(c) $D=p_{1}^{2} \cdots p_{r}^{2}$, where
$p_{i} \equiv 5(\bmod 8),\left(p_{j} / p_{i}\right)=1$ for $i \neq j$.
(d) $D=p_{1}^{2} \cdots p_{r}^{2}$, where r is even and
$p_{i} \equiv 5(\bmod 8),\left(p_{j} / p_{i}\right)=-1$ for $i \neq j$.
(e) $D=2 p_{1}^{2} \cdots p_{r}^{2}$, where $p_{i} \equiv 5(\bmod 8)$.
(f) $D=2 p_{1}^{3} \cdots p_{r}^{3}$, where
$p_{i} \equiv 5(\bmod 8),\left(p_{j} / p_{i}\right)=1$ for $i \neq j$.
(g) $D=2 p_{1}^{3} \cdots p_{r}^{3}$, where r is even and
$p_{i} \equiv 5(\bmod 8),\left(p_{j} / p_{i}\right)=-1$ for $i \neq j$.
We have three remarks. Firstly, (c) and (d) are the cases of the congruent number problem with $n=$ $2 p_{1} \cdots p_{r}$. Secondly, calculating the Selmer rank is sufficient to deduce Theorem 2, but not sufficient to give Theorem 1. Iskra's theorem can be proven by the complete 2-descent method. Thirdly, applying the main result, we can also give the sequence of E_{D} whose Selmer rank can be arbitrary large. For example, if r is odd, $p_{i} \equiv 5(\bmod 8),\left(p_{j} / p_{i}\right)=-1$ for $i \neq j$, and $D=2 p_{1} \cdots p_{r}$, then the Selmer rank of E_{D} is $2 r-2$.
2. Notations and some basic facts. In this section, we recall some basic facts on the Selmer group of elliptic curve with at least one rational 2torsion. For details, we refer [8, Chapter X]. Assume that E / \mathbf{Q} has a rational 2-torsion and E^{\prime} is the dual curve of E. Let $\varphi: E \rightarrow E^{\prime}$ be the isogeny of degree

2 , and φ^{\prime} the dual isogeny of φ. In this note, we use the following notation:

- $S^{(\varphi)}(E / \mathbf{Q}), S^{\left(\varphi^{\prime}\right)}\left(E^{\prime} / \mathbf{Q}\right)$ are the Selmer groups associated to $\varphi, \varphi^{\prime}$.
- $\delta_{k}: E^{\prime}(k) / \varphi(E(k)) \rightarrow k^{\times} / k^{\times 2}$ is the connecting homomorphism. When $k=\mathbf{Q}_{p}$, we simply write δ_{p} for δ_{k} (we suppose $\mathbf{Q}_{\infty}=\mathbf{R}$). Similarly, we denote by δ_{k}^{\prime} the connecting homomorphism: $E(k) / \varphi^{\prime}\left(E^{\prime}(k)\right) \rightarrow k^{\times} / k^{\times 2}$.
Then we have the formula

$$
\begin{aligned}
\operatorname{rank} E(\mathbf{Q}) \leq & \operatorname{dim}_{\mathbf{F}_{2}} S^{(\varphi)}(E / \mathbf{Q}) \\
& +\operatorname{dim}_{\mathbf{F}_{2}} S^{\left(\varphi^{\prime}\right)}\left(E^{\prime} / \mathbf{Q}\right)-2
\end{aligned}
$$

In this note, we call the value of the right hand side the Selmer rank.

We now explain the method of calculating the Selmer group. From the definition of the Selmer group, we have the equivalent definition

$$
\left\{\begin{array}{l}
S^{(\varphi)}(E / \mathbf{Q})=\bigcap_{p \in M_{\mathbf{Q}}} \operatorname{Im}\left(\delta_{p}\right) \tag{1}\\
S^{\left(\varphi^{\prime}\right)}\left(E^{\prime} / \mathbf{Q}\right)=\bigcap_{p \in M_{\mathbf{Q}}} \operatorname{Im}\left(\delta_{p}^{\prime}\right)
\end{array}\right.
$$

where $M_{\mathbf{Q}}=\{$ primes $\} \cup\{\infty\}$ and the groups $\operatorname{Im}\left(\delta_{p}\right)$, $\operatorname{Im}\left(\delta_{p}^{\prime}\right)$ are regarded as the subgroups of the group $\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$.

In view of the following theorem, if one of the groups $\operatorname{Im}\left(\delta_{p}^{\prime}\right)$ and $\operatorname{Im}\left(\delta_{p}\right)$ is given, the other group is automatically determined (see for example Aoki [2]).

Theorem 3. Let $p \in M_{\mathbf{Q}}$ and $(,)_{p}$ be the Hilbert symbol. For a subgroup $V \subset \mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$, we define $V^{\perp}=\left\{x \in \mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2} \mid(x, y)_{p}=1\right.$ for all $y \in$ $V\}$. Then it holds that $\operatorname{Im}\left(\delta_{p}\right)=\operatorname{Im}\left(\delta_{p}^{\prime}\right)^{\perp}$.
3. Main result and some examples. The Selmer group is defined as the intersection of all images of connecting homomorphisms (see (1)). In the case that $p=\infty$, it clearly holds that

$$
\left\{\begin{array}{l}
D>0 \Rightarrow \operatorname{Im}\left(\delta_{\infty}^{\prime}\right)=\{1\}, \operatorname{Im}\left(\delta_{\infty}\right)=\{ \pm 1\} \\
D<0 \Rightarrow \operatorname{Im}\left(\delta_{\infty}^{\prime}\right)=\{ \pm 1\}, \operatorname{Im}\left(\delta_{\infty}\right)=\{1\}
\end{array}\right.
$$

The following theorems give the images of the connecting homomorphisms δ_{p}^{\prime} and δ_{p} for the bad primes of E_{D}. In this note, we denote by $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ the subgroup of $\mathbf{Q}^{\times} / \mathbf{Q}^{\times 2}$ or $\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$ for some $p \in M_{\mathbf{Q}}$ generated by $c_{1}, \ldots, c_{n} \in \mathbf{Q}$, and u represents a nonsquare element modulo p.

Theorem 4. Let p be an odd prime dividing D, and $\operatorname{ord}_{p}(D)=a, D=p^{a} D^{\prime}$. Then the images $\operatorname{Im}\left(\delta_{p}^{\prime}\right)$ and $\operatorname{Im}\left(\delta_{p}\right)$ are determined as follows:
(a) If $a=1$ or 3 , then $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=\langle D\rangle$ and $\operatorname{Im}\left(\delta_{p}\right)=$ $\langle-D\rangle$.
(b) Let $a=2$ and $p \equiv 1(\bmod 4)$.
(i) If D is a p-adic square, then

- $\left(-D^{\prime}\right)^{(p-1) / 4} \equiv 1(\bmod p)$ $\Rightarrow \operatorname{Im}\left(\delta_{p}^{\prime}\right)=\langle p\rangle, \operatorname{Im}\left(\delta_{p}\right)=\langle p\rangle$.
- $\left(-D^{\prime}\right)^{(p-1) / 4} \equiv-1(\bmod p)$ $\Rightarrow \operatorname{Im}\left(\delta_{p}^{\prime}\right)=\langle p u\rangle, \operatorname{Im}\left(\delta_{p}\right)=\langle p u\rangle$.
(ii) If D is a p-adic non-square, then $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=$ $\mathbf{Z}_{p}^{\times} \mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$ and $\operatorname{Im}\left(\delta_{p}\right)=\mathbf{Z}_{p}^{\times} \mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$.
(c) Let $a=2$ and $p \equiv 3(\bmod 4)$.
(i) If D is a p-adic square, then $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=\{1\}$ and $\operatorname{Im}\left(\delta_{p}\right)=\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$.
(ii) If D is a p-adic non-square, then $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=$ $\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$ and $\operatorname{Im}\left(\delta_{p}\right)=\{1\}$.
Note that $\left(-D^{\prime}\right)^{(p-1) / 4} \equiv 1(\bmod p)$ if and only if $-D^{\prime}$ is a quartic residue modulo p.

Theorem 5. The images $\operatorname{Im}\left(\delta_{2}^{\prime}\right)$ and $\operatorname{Im}\left(\delta_{2}\right)$ are determined as follows:
(a) If $D \equiv 1(\bmod 8)$, then $\operatorname{Im}\left(\delta_{2}^{\prime}\right)=\{1\}$ and $\operatorname{Im}\left(\delta_{2}\right)=\mathbf{Q}_{2}^{\times} / \mathbf{Q}_{2}^{\times 2}$
(b) If $D \equiv 5(\bmod 8)$, then $\operatorname{Im}\left(\delta_{2}^{\prime}\right)=\langle 5\rangle$ and $\operatorname{Im}\left(\delta_{2}\right)=\langle-1,5\rangle$.
(c) If $D \equiv 3(\bmod 16)$, then $\operatorname{Im}\left(\delta_{2}^{\prime}\right)=\langle-5\rangle$ and $\operatorname{Im}\left(\delta_{2}\right)=\langle-2,5\rangle$.
(d) If $D \equiv 7,11(\bmod 16)$, then $\operatorname{Im}\left(\delta_{2}^{\prime}\right)=\langle-1,5\rangle$ and $\operatorname{Im}\left(\delta_{2}\right)=\langle 5\rangle$.
(e) If $D \equiv 15(\bmod 16)$, then $\operatorname{Im}\left(\delta_{2}^{\prime}\right)=\langle-1\rangle$ and $\operatorname{Im}\left(\delta_{2}\right)=\langle 2,5\rangle$.
(f) If D is even, then $\operatorname{Im}\left(\delta_{2}\right)=\langle-D\rangle$ and $\operatorname{Im}\left(\delta_{2}^{\prime}\right)$ is determined by Theorem 3.
Example 1. Let $D=775=5^{2} \cdot 31$. Note that 31 is a quartic residue modulo 5 . By Theorems 4 and 5 , the images of the connecting homomorphisms are determined as follows:

p	$\operatorname{Im}\left(\delta_{p}^{\prime}\right)$	$\operatorname{Im}\left(\delta_{p}\right)$
∞	$\{1\}$	$\{ \pm 1\}$
2	$\langle-1,5\rangle$	$\langle 5\rangle$
5	$\langle 10\rangle$	$\langle 10\rangle$
31	$\langle 31\rangle$	$\langle-31\rangle$

We define some notations:

$$
\begin{aligned}
S & =\left\{p \mid \operatorname{Im}\left(\delta_{p}^{\prime}\right)-\mathbf{Z}_{p}^{\times} \mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2} \neq \phi\right\} \cup S_{\infty}, \\
T & =\left\{p \mid \operatorname{Im}\left(\delta_{p}\right)-\mathbf{Z}_{p}^{\times} \mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2} \neq \phi\right\} \cup T_{\infty},
\end{aligned}
$$

where S_{∞}, T_{∞} are the sets defined by

$$
\left\{\begin{array}{l}
D>0 \Rightarrow S_{\infty}=\phi, T_{\infty}=\{-1\} \\
D<0 \Rightarrow S_{\infty}=\{-1\}, T_{\infty}=\phi
\end{array}\right.
$$

For the set X, we denote by V_{X} the subgroup of $\mathbf{Q}^{\times} / \mathbf{Q}^{\times 2}$ generated by all elements of X. In the
case that $D=775$,

$$
\begin{aligned}
& S=\{5,31\} \\
& T=\{-1,5,31\} \\
& V_{S}=\langle 5,31\rangle \\
& V_{T}=\langle-1,5,31\rangle
\end{aligned}
$$

It is clear that $V_{S} \subset S^{\left(\varphi^{\prime}\right)}\left(E_{D} / \mathbf{Q}\right)$ and $V_{T} \subset$ $S^{(\varphi)}\left(E_{D} / \mathbf{Q}\right)$. Using the representation of [6], we obtain the matrices

$$
\begin{aligned}
& \Lambda^{\prime}=\begin{array}{r}
5 \\
31
\end{array}\left(\begin{array}{cc}
5 & 31 \\
1 & 0 \\
0 & 0
\end{array}\right), \\
& \Lambda=\begin{array}{r}
-1 \\
5 \\
31
\end{array}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),
\end{aligned}
$$

where the numbers outside the matrices represent the meanings of these matrices. For example, that $(1,1)$-entry of Λ^{\prime} is 1 means $5 \notin \operatorname{Im}\left(\delta_{5}^{\prime}\right)$, and that (1,2)-entry is 0 means $5 \in \operatorname{Im}\left(\delta_{31}^{\prime}\right)$. Then that the entries in the second row are all 0 means $31 \in$ $S^{\left(\varphi^{\prime}\right)}\left(E_{D} / \mathbf{Q}\right)$. From the matrix Λ, it is clear that $-1,5,31 \notin S^{(\varphi)}\left(E_{D} / \mathbf{Q}\right)$. And it follows that $-31 \in$ $S^{(\varphi)}\left(E_{D} / \mathbf{Q}\right)$ since the first row and the third row are the same. Note that $V_{T} /\left(\operatorname{Im}\left(\delta_{p}\right) \cap V_{T}\right)$ are groups of order 2 for $p=2,5,31$, where the group V_{T} is regarded as the subgroup of $\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$. But this order may be 4 for $p=2$, and hence the definitions of Λ^{\prime} and Λ are rather complicated (see [6] Table 4.) Consequently, $S^{\left(\varphi^{\prime}\right)}\left(E_{D} / \mathbf{Q}\right)=\langle 31\rangle, S^{(\varphi)}\left(E_{D} / \mathbf{Q}\right)=$ $\langle-31\rangle$, and the Selmer rank of E_{775} is 0 . In general, we have an useful formula
(2) \quad Selmer rank $=|S|+|T|$

$$
-\operatorname{rank} \Lambda^{\prime}-\operatorname{rank} \Lambda-2
$$

Example 2. Let $D=1975=5^{2} \cdot 79$. Note that the types of 1975 and 775 are almost the same, but 79 is a quartic non-residue modulo 5 . In the case that $D=1975$, the Selmer rank is 2 by (2), and the rank is also 2.

Theorem 2 can be also proven by (2). We give only the short proof of (a).

Proof of Theorem 2 (a). In the case that r is even,

$$
\begin{aligned}
& \Lambda^{\prime}=\begin{array}{c}
2 \\
p_{1} \\
\vdots \\
p_{r}
\end{array}\left(\begin{array}{cccc}
2 & p_{1} & \cdots & p_{r} \\
0 & 1 & \cdots & 1 \\
1 & & & \\
\vdots & & I_{r} & \\
1 & & &
\end{array}\right), \\
& \Lambda=\begin{array}{c}
\\
-1 \\
2 \\
p_{1} \\
\vdots \\
p_{r}
\end{array}\left(\begin{array}{ccccc}
2 & 2^{\prime} & p_{1} & \cdots & p_{r} \\
0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & & & \\
\vdots & \vdots & & I_{r} & \\
1 & 0 & & &
\end{array}\right),
\end{aligned}
$$

where I_{r} is the identity matrix of degree r. Since $\operatorname{Im}\left(\delta_{2}\right)=\langle-2\rangle$, the group $V_{T} /\left(\operatorname{Im}\left(\delta_{2}\right) \cap V_{T}\right)$ is Klein's four group. Therefore the definition of the matrix Λ is rather complicated. For example, that $(1,1)$-entry of Λ is 0 means $-1 \in\{ \pm 1, \pm 2\}\left(\subset \mathbf{Q}_{2}^{\times} / \mathbf{Q}_{2}^{\times 2}\right)$, and that $(1,2)$-entry is 1 means $-1 \notin\{1,5,-2,-10\}$. Such a definition validates the formula (2). Hence we have

$$
\begin{aligned}
\text { Selmer rank }= & (r+1)+(r+2) \\
& -r-(r+1)-2 \\
= & 0
\end{aligned}
$$

and $\operatorname{rank} E_{D}(\mathbf{Q})=0$. We can similarly prove the case that r is odd. But since $\operatorname{Im}\left(\delta_{2}\right)=\langle-10\rangle$ in the case, we must reconsider the definition of the matrix Λ.
4. Proof of Theorem 4. In this section, we give the proof of Theorem 4. From the definition of the connecting homomorphism, it follows that $\delta_{k}(P)=x(P)$ unless the order of P divides 2. Therefore in order to determine $\operatorname{Im}\left(\delta_{k}\right)$, we must check what numbers (modulo square) appear in the x-coordinates of the k-rational points on the elliptic curve E^{\prime}. Similarly, we must check the x-coordinates of the k-rational points of the elliptic curve E to determine the image of the connecting homomorphism δ_{k}^{\prime}. But, in view of Theorem 3, it is sufficient that we calculate one of the images $\operatorname{Im}\left(\delta_{p}^{\prime}\right)$ and $\operatorname{Im}\left(\delta_{p}\right)$.

Proof of Theorem 4. Let p be an odd prime di-
viding D, and $\operatorname{ord}_{p}(D)=a, D=p^{a} D^{\prime}$. For $(x, y) \in$ $E\left(\mathbf{Q}_{p}\right)$, we let $\operatorname{ord}_{p}(x)=e, x=p^{e} w\left(w \in \mathbf{Z}_{p}^{\times}\right)$, then

$$
\begin{align*}
y^{2} & =p^{3 e} w^{3}+p^{e+a} D^{\prime} w \\
& =p^{3 e} w^{3}\left(1+p^{-2 e+a} w^{-2} D^{\prime}\right) \tag{3}\\
& =p^{e+a} w\left(p^{2 e-a} w^{2}+D^{\prime}\right) \tag{4}
\end{align*}
$$

from the equation of E_{D}. If $e \leq(a-1) / 2$, then e must be even and $w \equiv 1\left(\bmod \mathbf{Q}_{p}^{\times 2}\right)$ by (3), hence $x \equiv 1\left(\bmod \mathbf{Q}_{p}^{\times 2}\right)$. Similarly, if $e \geq(a+1) / 2$, then $x \equiv D\left(\bmod \mathbf{Q}_{p}^{\times 2}\right)$ by (4).

In the case that $a=1$ or 3 , the points with ($a-$ 1) $/ 2<e<(a+1) / 2$ do not exist, hence we have proved (a).

From now on, we assume that $\underline{a=2}$, then we must investigate the set

$$
H=\left\{(x, y) \in E_{D}\left(\mathbf{Q}_{p}\right) \mid \operatorname{ord}_{p}(x)=1\right\}
$$

We set $a=2, e=1$, then

$$
\begin{equation*}
y^{2}=p^{3} w\left(w^{2}+D^{\prime}\right) \tag{5}
\end{equation*}
$$

from (4). Therefore when $\left(-D^{\prime} / p\right)=-1, H=\phi$ and hence $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=\langle D\rangle$. Now we have proved (b),(ii) and (c),(i).

Next, we assume that $\left(-D^{\prime} / p\right)=1$. Let $-D=$ $p^{2} c^{2}\left(c \in \mathbf{Z}_{p}^{\times}\right)$, then

$$
y=p^{3} w(w+c)(w-c)
$$

from (5). Hence w must be congruent to c or $-c$ modulo p. For example, if $w-c=p^{2 n-3} z(n \geq$ $2, z \in \mathbf{Z}_{p}^{\times}$, then

$$
y^{2}=p^{2 n} z\left(p^{2 n-3} z+c\right)\left(p^{2 n-3} z+2 c\right) .
$$

From this representation, $y \in \mathbf{Q}_{p}$ exists if and only if $z \equiv 2\left(\bmod \mathbf{Q}_{p}^{\times 2}\right)$. In this case, $x=p w=p\left(p^{2 n-3} z+\right.$ $c) \equiv p c\left(\bmod \mathbf{Q}_{p}^{\times 2}\right)$. While $w+c=p^{2 n-3} z$, then $x \equiv-p c\left(\bmod \mathbf{Q}_{p}^{\times 2}\right)$. Hence we have $\delta_{p}^{\prime}(H)=\{ \pm p c\}$ and $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=\{1, D, p c,-p c\}$. Therefore $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=$
$\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times 2}$ in the case that $p \equiv 3(\bmod 4)$. We have proved (c), (ii). When $p \equiv 1(\bmod 4)$, it follows that $\operatorname{Im}\left(\delta_{p}^{\prime}\right)=\{1, p c\}=\langle\overline{p\rangle \text { or }\langle p u\rangle \text { according as } c \text { is }, ~}$ a quadratic residue modulo p or not, i.e. $-D^{\prime}$ is a quartic residue modulo p or not. We have proved (b),(i) and the proof is complete.

Theorem 5 can be similarly proved. When D is even, it is easier to study $\operatorname{Im}\left(\delta_{2}\right)$ than $\operatorname{Im}\left(\delta_{2}^{\prime}\right)$ because the structure of $E_{-4 D}\left(\mathbf{Q}_{2}\right)$ is simpler than that of $E_{D}\left(\mathbf{Q}_{2}\right)$.

References

[1] Aoki, N.: On the 2-Selmer groups of elliptic curves arising from the congruent number problem. Comment. Math. Univ. St. Paul., 48, 77-101 (1999).
[2] Aoki, N.: Selmer groups and ideal class groups. Comment. Math. Univ. St. Paul., 42, 209-229 (1993).
[3] Birch, B. J., and Stephens, N. M.: The parity of the rank of the Mordell-Weil group. Topology, 5, 295-299 (1966).
[4] Bremner, A., and Cassels, J. W. S.: On the equation $Y^{2}=X\left(X^{2}+p\right)$. Math. Comp., 42, 257-264 (1984).
[5] Iskra, B.: Non-congruent numbers with arbitrarily many prime factors congruent to 3 modulo 8 . Proc. Japan Acad., 72A, 168-169 (1996).
[6] Goto, T.: Calculation of Selmer groups of elliptic curves with rational 2 -torsions and θ-congruent number problem. Comment. Math. Univ. St. Paul (to appear).
[7] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem. II. Invent. Math., 118, 331-370 (1994).
[8] Silverman, J. H.: The Arithmetic of Elliptic Curves. Graduate Texts in Math., vol. 106, Springer, New York (1986).
[9] Yoshida, S.: On the equation $y^{2}=x^{3}+p q x$. Comment. Math. Univ. St. Paul., 49, 23-42 (2000).

[^0]: 1991 Mathematics Subject Classification. Primary 11G05; Secondary 14H52.

