A note on the Selmer group of the elliptic curve $y^2 = x^3 + Dx$

By Takeshi Gото

Graduate School of Mathematics, Kyushu University 33, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581 (Communicated by Heisuke HIRONAKA, M. J. A., Sept. 12, 2001)

Abstract: We present an explicit formula for the Selmer rank of the elliptic curve $y^2 = x^3 + Dx$. Using this formula, we give some results analogous to Iskra's theorem.

Key words: Selmer group; elliptic curve; congruent number.

1. Introduction. In this note, we study the **Q**-rank of the elliptic curve defined by

$$E_D: y^2 = x^3 + Dx \quad (D \in \mathbf{Q})$$

We can suppose without loss of generality that D is a fourth-power free integer and not divided by 4 (if necessary, we must consider the dual curve E_{-4D} , whose **Q**-rank is equal to that of E_D). Bremner and Cassels [4] studied the rank of E_D when D is a prime, and Yoshida [9] did when D is a product of two distinct primes. In both cases, one can obtain the upper bound for the rank by the 2-descent method via 2isogeny. In this note, we call this upper bound the *Selmer rank*. It is believed that the parity of the Selmer rank is equal to that of the actual rank of the curve. Birch and Stephens [3] give the formula for the parity of the Selmer rank of E_D . The purpose of this note is to give a formula for the Selmer rank of E_D for general D.

Since E_{-n^2} is the elliptic curve connected with the congruent number problem, many mathematicians have studied this curve. For example, Iskra [5] proved the following theorem.

Theorem 1 (Iskra). Let primes p_1, \ldots, p_r satisfy the following two conditions:

- $p_i \equiv 3 \pmod{8}$ for $\forall i$.
- $(p_i/p_j) = 1$ for i < j, where (/) is the Legendre symbol.

And let $D = -p_1^2 \cdots p_r^2$. Then the rank of the curve E_D is 0.

The complete 2-descent method gives the better upper bound than the Selmer rank. Aoki [1] and Monsky (appendix in Heath-Brown [7]) give each formula for this upper bound of the curve E_{-n^2} . Iskra's theorem can be proven by Monsky's formula. The main result of this note is an explicit formula for the Selmer rank of the curve E_D (see (2) and Theorems 4 and 5). Applying the main result, we have the following facts analogous to Iskra's theorem.

Theorem 2. When D has one of the following forms, the rank of the curve E_D is 0.

- (a) $D = 2p_1 \cdots p_r$, where $p_i \equiv 5 \pmod{8}$, $(p_j/p_i) = 1$ for $i \neq j$.
- (b) $D = 2p_1 \cdots p_r$, where r is even and $p_i \equiv 5 \pmod{8}$, $(p_j/p_i) = -1$ for $i \neq j$.

(c) $D = p_1^2 \cdots p_r^2$, where $p_i \equiv 5 \pmod{8}, \ (p_j/p_i) = 1 \text{ for } i \neq j.$

(d) $D = p_1^2 \cdots p_r^2$, where r is even and $p_i \equiv 5 \pmod{8}, \ (p_j/p_i) = -1 \text{ for } i \neq j.$

(e)
$$D = 2p_1^2 \cdots p_r^2$$
, where $p_i \equiv 5 \pmod{8}$.

- (f) $D = 2p_1^3 \cdots p_r^3$, where $p_i \equiv 5 \pmod{8}, \ (p_j/p_i) = 1 \text{ for } i \neq j.$ (g) $D = 2p_1^3 \cdots p_r^3$, where r is even and
- (g) $D \equiv 2p_1^* \cdots p_r^*$, where r is even and $p_i \equiv 5 \pmod{8}, \ (p_j/p_i) = -1 \text{ for } i \neq j.$

We have three remarks. Firstly, (c) and (d) are the cases of the congruent number problem with $n = 2p_1 \cdots p_r$. Secondly, calculating the Selmer rank is sufficient to deduce Theorem 2, but not sufficient to give Theorem 1. Iskra's theorem can be proven by the complete 2-descent method. Thirdly, applying the main result, we can also give the sequence of E_D whose Selmer rank can be arbitrary large. For example, if r is odd, $p_i \equiv 5 \pmod{8}$, $(p_j/p_i) = -1$ for $i \neq j$, and $D = 2p_1 \cdots p_r$, then the Selmer rank of E_D is 2r - 2.

2. Notations and some basic facts. In this section, we recall some basic facts on the Selmer group of elliptic curve with at least one rational 2-torsion. For details, we refer [8, Chapter X]. Assume that E/\mathbf{Q} has a rational 2-torsion and E' is the dual curve of E. Let $\varphi: E \to E'$ be the isogeny of degree

¹⁹⁹¹ Mathematics Subject Classification. Primary 11G05; Secondary 14H52.

2, and φ' the dual isogeny of φ . In this note, we use the following notation:

- S^(φ)(E/Q), S^(φ')(E'/Q) are the Selmer groups associated to φ, φ'.
- $\delta_k : E'(k)/\varphi(E(k)) \to k^{\times}/k^{\times 2}$ is the connecting homomorphism. When $k = \mathbf{Q}_p$, we simply write δ_p for δ_k (we suppose $\mathbf{Q}_{\infty} = \mathbf{R}$). Similarly, we denote by δ'_k the connecting homomorphism: $E(k)/\varphi'(E'(k)) \to k^{\times}/k^{\times 2}$.

Then we have the formula

$$\operatorname{rank} E(\mathbf{Q}) \le \dim_{\mathbf{F}_2} S^{(\varphi)}(E/\mathbf{Q}) + \dim_{\mathbf{F}_2} S^{(\varphi')}(E'/\mathbf{Q}) - 2.$$

In this note, we call the value of the right hand side the *Selmer rank*.

We now explain the method of calculating the Selmer group. From the definition of the Selmer group, we have the equivalent definition

(1)
$$\begin{cases} S^{(\varphi)}(E/\mathbf{Q}) = \bigcap_{p \in M_{\mathbf{Q}}} \operatorname{Im}(\delta_p), \\ S^{(\varphi')}(E'/\mathbf{Q}) = \bigcap_{p \in M_{\mathbf{Q}}} \operatorname{Im}(\delta'_p), \end{cases}$$

where $M_{\mathbf{Q}} = \{\text{primes}\} \cup \{\infty\}$ and the groups $\text{Im}(\delta_p)$, $\text{Im}(\delta'_p)$ are regarded as the subgroups of the group $\mathbf{Q}_p^{\times}/\mathbf{Q}_p^{\times 2}$.

In view of the following theorem, if one of the groups $\text{Im}(\delta'_p)$ and $\text{Im}(\delta_p)$ is given, the other group is automatically determined (see for example Aoki [2]).

Theorem 3. Let $p \in M_{\mathbf{Q}}$ and $(,)_p$ be the Hilbert symbol. For a subgroup $V \subset \mathbf{Q}_p^{\times}/\mathbf{Q}_p^{\times 2}$, we define $V^{\perp} = \{x \in \mathbf{Q}_p^{\times}/\mathbf{Q}_p^{\times 2} \mid (x,y)_p = 1 \text{ for all } y \in V\}$. Then it holds that $\operatorname{Im}(\delta_p) = \operatorname{Im}(\delta'_p)^{\perp}$.

3. Main result and some examples. The Selmer group is defined as the intersection of all images of connecting homomorphisms (see (1)). In the case that $p = \infty$, it clearly holds that

$$\begin{cases} D > 0 \Rightarrow \operatorname{Im}(\delta'_{\infty}) = \{1\}, \ \operatorname{Im}(\delta_{\infty}) = \{\pm 1\}, \\ D < 0 \Rightarrow \operatorname{Im}(\delta'_{\infty}) = \{\pm 1\}, \ \operatorname{Im}(\delta_{\infty}) = \{1\}. \end{cases}$$

The following theorems give the images of the connecting homomorphisms δ'_p and δ_p for the bad primes of E_D . In this note, we denote by $\langle c_1, \ldots, c_n \rangle$ the subgroup of $\mathbf{Q}^{\times}/\mathbf{Q}^{\times 2}$ or $\mathbf{Q}_p^{\times}/\mathbf{Q}_p^{\times 2}$ for some $p \in M_{\mathbf{Q}}$ generated by $c_1, \ldots, c_n \in \mathbf{Q}$, and u represents a nonsquare element modulo p.

Theorem 4. Let p be an odd prime dividing D, and $\operatorname{ord}_p(D) = a$, $D = p^a D'$. Then the images $\operatorname{Im}(\delta'_p)$ and $\operatorname{Im}(\delta_p)$ are determined as follows:

(a) If a = 1 or 3, then $\operatorname{Im}(\delta'_p) = \langle D \rangle$ and $\operatorname{Im}(\delta_p) = \langle -D \rangle$.

(b) Let a = 2 and $p \equiv 1 \pmod{4}$.

(i) If D is a p-adic square, then
•
$$(-D')^{(p-1)/4} \equiv 1 \pmod{p}$$

 $\Rightarrow \operatorname{Im}(\delta'_p) = \langle p \rangle, \operatorname{Im}(\delta_p) = \langle p \rangle.$
• $(-D')^{(p-1)/4} \equiv -1 \pmod{p}$
 $\Rightarrow \operatorname{Im}(\delta'_p) = \langle pu \rangle, \operatorname{Im}(\delta_p) = \langle pu \rangle$

- (ii) If D is a p-adic non-square, then $\operatorname{Im}(\delta'_p) = \mathbf{Z}_p^{\times} \mathbf{Q}_p^{\times} / \mathbf{Q}_p^{\times 2}$ and $\operatorname{Im}(\delta_p) = \mathbf{Z}_p^{\times} \mathbf{Q}_p^{\times} / \mathbf{Q}_p^{\times 2}$.
- (c) Let a = 2 and $p \equiv 3 \pmod{4}$.
 - (i) If D is a p-adic square, then $\operatorname{Im}(\delta'_p) = \{1\}$ and $\operatorname{Im}(\delta_p) = \mathbf{Q}_p^{\times} / \mathbf{Q}_p^{\times 2}$.
 - (ii) If D is a p-adic non-square, then $\operatorname{Im}(\delta'_p) = \mathbf{Q}_p^{\times}/\mathbf{Q}_p^{\times 2}$ and $\operatorname{Im}(\delta_p) = \{1\}.$

Note that $(-D')^{(p-1)/4} \equiv 1 \pmod{p}$ if and only if -D' is a quartic residue modulo p.

Theorem 5. The images $Im(\delta'_2)$ and $Im(\delta_2)$ are determined as follows:

- (a) If $D \equiv 1 \pmod{8}$, then $\operatorname{Im}(\delta'_2) = \{1\}$ and $\operatorname{Im}(\delta_2) = \mathbf{Q}_2^{\times}/\mathbf{Q}_2^{\times 2}$.
- (b) If $D \equiv 5 \pmod{8}$, then $\operatorname{Im}(\delta'_2) = \langle 5 \rangle$ and $\operatorname{Im}(\delta_2) = \langle -1, 5 \rangle$.
- (c) If $D \equiv 3 \pmod{16}$, then $\operatorname{Im}(\delta_2) = \langle -5 \rangle$ and $\operatorname{Im}(\delta_2) = \langle -2, 5 \rangle$.
- (d) If $D \equiv 7,11 \pmod{16}$, then $\operatorname{Im}(\delta'_2) = \langle -1,5 \rangle$ and $\operatorname{Im}(\delta_2) = \langle 5 \rangle$.
- (e) If $D \equiv 15 \pmod{16}$, then $\operatorname{Im}(\delta_2) = \langle -1 \rangle$ and $\operatorname{Im}(\delta_2) = \langle 2, 5 \rangle$.
- (f) If D is even, then $\text{Im}(\delta_2) = \langle -D \rangle$ and $\text{Im}(\delta'_2)$ is determined by Theorem 3.

Example 1. Let $D = 775 = 5^2 \cdot 31$. Note that 31 is a quartic residue modulo 5. By Theorems 4 and 5, the images of the connecting homomorphisms are determined as follows:

p	$\operatorname{Im}(\delta'_p)$	$\operatorname{Im}(\delta_p)$
∞	{1}	$\{\pm 1\}$
2	$\langle -1, 5 \rangle$	$\langle 5 \rangle$
5	$\langle 10 \rangle$	$\langle 10 \rangle$
31	$\langle 31 \rangle$	$\langle -31 \rangle$

We define some notations:

$$S = \{p \mid \operatorname{Im}(\delta'_p) - \mathbf{Z}_p^{\times} \mathbf{Q}_p^{\times} / \mathbf{Q}_p^{\times 2} \neq \phi\} \cup S_{\infty},$$

$$T = \{p \mid \operatorname{Im}(\delta_p) - \mathbf{Z}_p^{\times} \mathbf{Q}_p^{\times} / \mathbf{Q}_p^{\times 2} \neq \phi\} \cup T_{\infty},$$

where S_{∞} , T_{∞} are the sets defined by

$$\begin{cases} D > 0 \Rightarrow S_{\infty} = \phi, \ T_{\infty} = \{-1\}, \\ D < 0 \Rightarrow S_{\infty} = \{-1\}, \ T_{\infty} = \phi. \end{cases}$$

For the set X, we denote by V_X the subgroup of $\mathbf{Q}^{\times}/\mathbf{Q}^{\times 2}$ generated by all elements of X. In the

123

No. 7]

case that D = 775,

$$\begin{split} S &= \{5, 31\}, \\ T &= \{-1, 5, 31\}, \\ V_S &= \langle 5, 31 \rangle, \\ V_T &= \langle -1, 5, 31 \rangle. \end{split}$$

It is clear that $V_S \subset S^{(\varphi')}(E_D/\mathbf{Q})$ and $V_T \subset S^{(\varphi)}(E_D/\mathbf{Q})$. Using the representation of [6], we obtain the matrices

$$\Lambda' = \begin{array}{c} 5 & 31 \\ 5 & 1 & 0 \\ 31 & \left(\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array}\right), \\ 2 & 5 & 31 \\ \Lambda = \begin{array}{c} -1 \\ 5 \\ 31 \end{array} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array} \end{pmatrix},$$

where the numbers outside the matrices represent the meanings of these matrices. For example, that (1,1)-entry of Λ' is 1 means $5 \notin \text{Im}(\delta'_5)$, and that (1,2)-entry is 0 means $5 \in \text{Im}(\delta'_{31})$. Then that the entries in the second row are all 0 means $31 \in$ $S^{(\varphi')}(E_D/\mathbf{Q})$. From the matrix Λ , it is clear that $-1, 5, 31 \notin S^{(\varphi)}(E_D/\mathbf{Q})$. And it follows that $-31 \in$ $S^{(\varphi)}(E_D/\mathbf{Q})$ since the first row and the third row are the same. Note that $V_T/(\operatorname{Im}(\delta_p) \cap V_T)$ are groups of order 2 for p = 2, 5, 31, where the group V_T is regarded as the subgroup of $\mathbf{Q}_p^{\times}/\mathbf{Q}_p^{\times 2}$. But this order may be 4 for p = 2, and hence the definitions of Λ' and Λ are rather complicated (see [6] Table 4.) Consequently, $S^{(\varphi')}(E_D/\mathbf{Q}) = \langle 31 \rangle, S^{(\varphi)}(E_D/\mathbf{Q}) =$ $\langle -31 \rangle$, and the Selmer rank of E_{775} is 0. In general, we have an useful formula

(2) Selmer rank =
$$|S| + |T|$$

- rank Λ' - rank $\Lambda - 2$.

Example 2. Let $D = 1975 = 5^2 \cdot 79$. Note that the *types* of 1975 and 775 are almost the same, but 79 is a quartic non-residue modulo 5. In the case that D = 1975, the Selmer rank is 2 by (2), and the rank is also 2.

Theorem 2 can be also proven by (2). We give only the short proof of (a).

Proof of Theorem 2 (a). In the case that r is even,

	l		$\operatorname{Im}(\delta'_l)$		$\operatorname{Im}(\delta_l)$		
	∞		{1}		$\{\pm 1\}$		
2		(2, -	$-5\rangle$	($\langle -2 \rangle$		
p_1		$\langle 2p$	$\langle p_1 \rangle$	<	$\langle 2p_1 \rangle$		
	:				:		
					•		
-	p_r		$\langle n_r \rangle$		$\langle 2p_r \rangle$		
		2	n.		n		
	- /	-	p_1		p_r	`	
$\Lambda' = \frac{p}{\vdots}$	2	0	1	•••	1		
$\Lambda' - p$	1	1					
		÷		I_r		,	
p_{i}	1	1)	
		2	2'	<i>n</i> .		'n	
				p_1		p_r	、 、
-	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$	0	1	0	• • •	0	
	2	0	1	1	• • •	1	
$\Lambda =$	p_1	1	0				,
	:	÷	:		т		Ĺ
	·		•		I_r		
	p_r \	1	0				/

where I_r is the identity matrix of degree r. Since $\operatorname{Im}(\delta_2) = \langle -2 \rangle$, the group $V_T/(\operatorname{Im}(\delta_2) \cap V_T)$ is Klein's four group. Therefore the definition of the matrix Λ is rather complicated. For example, that (1, 1)-entry of Λ is 0 means $-1 \in \{\pm 1, \pm 2\} (\subset \mathbf{Q}_2^{\times}/\mathbf{Q}_2^{\times 2})$, and that (1, 2)-entry is 1 means $-1 \notin \{1, 5, -2, -10\}$. Such a definition validates the formula (2). Hence we have

Selmer rank =
$$(r + 1) + (r + 2)$$

-r - $(r + 1) - 2$
= 0,

and rank $E_D(\mathbf{Q}) = 0$. We can similarly prove the case that r is odd. But since $\text{Im}(\delta_2) = \langle -10 \rangle$ in the case, we must reconsider the definition of the matrix Λ .

4. Proof of Theorem 4. In this section, we give the proof of Theorem 4. From the definition of the connecting homomorphism, it follows that $\delta_k(P) = x(P)$ unless the order of P divides 2. Therefore in order to determine $\text{Im}(\delta_k)$, we must check what numbers (modulo square) appear in the x-coordinates of the k-rational points on the elliptic curve E'. Similarly, we must check the x-coordinates of the k-rational points of the elliptic curve E to determine the image of the connecting homomorphism δ'_k . But, in view of Theorem 3, it is sufficient that we calculate one of the images $\text{Im}(\delta'_p)$ and $\text{Im}(\delta_p)$.

Proof of Theorem 4. Let p be an odd prime di-

124

viding D, and $\operatorname{ord}_p(D) = a$, $D = p^a D'$. For $(x, y) \in E(\mathbf{Q}_p)$, we let $\operatorname{ord}_p(x) = e$, $x = p^e w(w \in \mathbf{Z}_p^{\times})$, then

$$y^2 = p^{3e}w^3 + p^{e+a}D'w$$

(3)
$$= p^{3e}w^3(1+p^{-2e+a}w^{-2}D')$$

(4)
$$= p^{e+a}w(p^{2e-a}w^2 + D')$$

from the equation of E_D . If $e \leq (a-1)/2$, then emust be even and $w \equiv 1 \pmod{\mathbf{Q}_p^{\times 2}}$ by (3), hence $x \equiv 1 \pmod{\mathbf{Q}_p^{\times 2}}$. Similarly, if $e \geq (a+1)/2$, then $x \equiv D \pmod{\mathbf{Q}_p^{\times 2}}$ by (4).

In the case that $\underline{a = 1 \text{ or } 3}$, the points with (a - 1)/2 < e < (a + 1)/2 do not exist, hence we have proved (a).

From now on, we assume that $\underline{a} = 2$, then we must investigate the set

$$H = \{(x, y) \in E_D(\mathbf{Q}_p) \mid \text{ord}_p(x) = 1\}.$$

We set a = 2, e = 1, then

(5)
$$y^2 = p^3 w (w^2 + D')$$

from (4). Therefore when (-D'/p) = -1, $H = \phi$ and hence $\text{Im}(\delta'_p) = \langle D \rangle$. Now we have proved (b),(ii) and (c),(i).

Next, we assume that (-D'/p) = 1. Let $-D = p^2 c^2$ $(c \in \mathbf{Z}_p^{\times})$, then

$$y = p^3 w(w+c)(w-c)$$

from (5). Hence w must be congruent to c or -cmodulo p. For example, if $w - c = p^{2n-3}z$ $(n \ge 2, z \in \mathbf{Z}_p^{\times})$, then

$$y^{2} = p^{2n}z(p^{2n-3}z+c)(p^{2n-3}z+2c).$$

From this representation, $y \in \mathbf{Q}_p$ exists if and only if $z \equiv 2 \pmod{\mathbf{Q}_p^{\times 2}}$. In this case, $x = pw = p(p^{2n-3}z + c) \equiv pc \pmod{\mathbf{Q}_p^{\times 2}}$. While $w + c = p^{2n-3}z$, then $x \equiv -pc \pmod{\mathbf{Q}_p^{\times 2}}$. Hence we have $\delta'_p(H) = \{\pm pc\}$ and $\operatorname{Im}(\delta'_p) = \{1, D, pc, -pc\}$. Therefore $\operatorname{Im}(\delta'_p) =$

 $\mathbf{Q}_p^{\times}/\mathbf{Q}_p^{\times 2}$ in the case that $\underline{p} \equiv 3 \pmod{4}$. We have proved (c), (ii). When $\underline{p} \equiv \overline{1 \pmod{4}}$, it follows that $\operatorname{Im}(\delta_p') = \{1, pc\} = \langle p \rangle$ or $\langle pu \rangle$ according as c is a quadratic residue modulo p or not, i.e. -D' is a quartic residue modulo p or not. We have proved (b),(i) and the proof is complete.

Theorem 5 can be similarly proved. When D is even, it is easier to study $\text{Im}(\delta_2)$ than $\text{Im}(\delta'_2)$ because the structure of $E_{-4D}(\mathbf{Q}_2)$ is simpler than that of $E_D(\mathbf{Q}_2)$.

References

- Aoki, N.: On the 2-Selmer groups of elliptic curves arising from the congruent number problem. Comment. Math. Univ. St. Paul., 48, 77–101 (1999).
- [2] Aoki, N.: Selmer groups and ideal class groups. Comment. Math. Univ. St. Paul., 42, 209–229 (1993).
- [3] Birch, B. J., and Stephens, N. M.: The parity of the rank of the Mordell-Weil group. Topology, 5, 295–299 (1966).
- [4] Bremner, A., and Cassels, J. W. S.: On the equation $Y^2 = X(X^2 + p)$. Math. Comp., **42**, 257–264 (1984).
- [5] Iskra, B.: Non-congruent numbers with arbitrarily many prime factors congruent to 3 modulo 8. Proc. Japan Acad., **72A**, 168–169 (1996).
- [6] Goto, T.: Calculation of Selmer groups of elliptic curves with rational 2-torsions and θ-congruent number problem. Comment. Math. Univ. St. Paul (to appear).
- [7] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem. II. Invent. Math., 118, 331–370 (1994).
- [8] Silverman, J. H.: The Arithmetic of Elliptic Curves. Graduate Texts in Math., vol. 106, Springer, New York (1986).
- [9] Yoshida, S.: On the equation $y^2 = x^3 + pqx$. Comment. Math. Univ. St. Paul., **49**, 23–42 (2000).

No. 7]