On the defining relations of the simply-laced elliptic Lie algebras

By Tadayoshi Takebayashi
College of Industrial Technology, Nihon University, 1-2-1, Izumicho, Narashino, Chiba 275-8575
(Communicated by Heisuke Hironaka, m. J. A., Sept. 12, 2001)

Abstract

We rewrite the defining relations [5] of the simply-laced elliptic Lie algebras in terms of the extended elliptic Cartan matrix by considering the extended elliptic diagram.

Key words: Elliptic root system; elliptic Lie algebra; elliptic Cartan matrix.

1. Introduction. K. Saito and D. Yoshii [5] introduced the simply-laced elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ for the simply-laced elliptic root system $R([4])$, whose derived algebra $\mathfrak{g}(R):=[\tilde{\mathfrak{g}}(R), \tilde{\mathfrak{g}}(R)]$ is isomorphic to 2 -toroidal Lie algebra [3] which is the universal central extension of the tensor of a Lie algebra with the Laurent series of two variables. According to the work of Borchards [2], they consider a Lie algebra $V_{Q} / D V_{Q}$ as a quotient of the vertex algebra V_{Q} attached to an even lattice Q, and constructed the elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ as a subalgebra of $V_{Q} / D V_{Q}$. If R is a simply-laced finite or affine root system, then $\mathfrak{g}(R)$ is isomorphic to a finite or affine Kac-Moody algebra [1], respectively. The defining relations of the generators of $\tilde{\mathfrak{g}}(R)$ in terms of the elliptic diagram have been described in [5]. In this article, we rewrite the defining relations more simply by considering the extended elliptic diagram consisting of all pairs of $\alpha_{i}, \alpha_{i}^{*}(0 \leq i \leq l)$ for the sake of explicitness, although the results are already intrinsically in [5].
2. Simply-laced elliptic Lie algebras.

We recall the elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ and its defining relations. Let $\Gamma_{\text {ell }}=\Gamma(R, G)$ be the elliptic diagram of a simply-laced marked elliptic root system (R, G) ([4], [5]). Let $Q(R)$ be the root lattice and $F_{Q}:=$ $\mathbf{Q} \otimes_{\tilde{\mathbf{Z}}} Q(R)$. Let $\left(\widetilde{F_{\mathbf{Q}}}, \tilde{I}\right)$ be its non degenerate hull and $\tilde{\mathfrak{h}}:=\operatorname{Hom}_{\mathbf{Q}}\left(\widetilde{F_{\mathbf{Q}}}, \mathbf{Q}\right)$. Explicitly, $R=R_{f}+\mathbf{Z} b+$ $\mathbf{Z} a, Q(R)=Q_{f} \oplus \underset{\tilde{I}}{\mathbf{Z}} b \oplus \mathbf{Z} a, \widetilde{F_{\mathbf{Q}}}=F_{\mathbf{Q}} \oplus \mathbf{Q} \Lambda_{b} \oplus \mathbf{Q} \Lambda_{a}$, and $\tilde{I}\left(\Lambda_{a}, a\right)=\tilde{I}\left(\Lambda_{b}, b\right)=1, \tilde{I}\left(\Lambda_{a}, b\right)=\tilde{I}\left(\Lambda_{b}, a\right)=$ $0, \tilde{I}\left(\Lambda_{a}, \Gamma_{f}\right)=\tilde{I}\left(\Lambda_{b}, \Gamma_{f}\right)=0$, where R_{f}, Q_{f} and Γ_{f} are the finite root, root lattice and Dynkin diagram, respectively. Further, $\tilde{\mathfrak{h}}=\mathfrak{h}_{f} \oplus \mathbf{Q} h_{a \vee} \oplus \mathbf{Q} h_{b} \vee \oplus$ $\mathbf{Q} h_{\Lambda_{a}} \oplus \mathbf{Q} h_{\Lambda_{b}}=\bigoplus_{\alpha \in \Gamma_{\text {ell }}} \mathbf{Q} h_{\alpha^{\vee}} \oplus \mathbf{Q} h_{\Lambda_{a}} \oplus \mathbf{Q} h_{\Lambda_{b}}, \mathfrak{h}_{f}:=$ $\bigoplus_{\alpha \in \Gamma_{f}} \mathbf{Q} h_{\alpha^{\vee}}, \alpha^{\vee}:=2 \alpha /\{I(\alpha, \alpha)\}$ for $\alpha \in \Gamma_{\text {ell }}$, with

[^0]the inner product $\left\langle h_{x}, y\right\rangle:=\tilde{I}(x, y)$ for $x, y \in \widetilde{F_{\mathbf{Q}}}$.
Definition 2.1 (K. Saito and D. Yoshii [5]). The elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ is the algebra generated by the following generators and relations.
generators: $\tilde{\mathfrak{h}}$ and $\left\{E^{\alpha} \mid \alpha \in \pm \Gamma_{\text {ell }}\right\}$
relations:
0. $\tilde{\mathfrak{h}}$ is abelian
I. $\left[h, E^{\alpha}\right]=\langle h, \alpha\rangle E^{\alpha}$
II.1. $\left[E^{\alpha}, E^{-\alpha}\right]=-h_{\alpha} \vee$ $\left[E^{\alpha}, E^{\beta}\right]=0 \quad$ for $I(\alpha, \beta) \geq 0$
II.2. $\quad\left(a d E^{\alpha}\right)^{1-\left\langle h_{\alpha} \vee, \beta\right\rangle} E^{\beta}=0 \quad$ for $I(\alpha, \beta) \leq 0$
III. $\left[\left[E^{\alpha}, E^{\beta}\right], E^{\beta^{*}}\right]=0$
$\left[\left[E^{-\alpha}, E^{-\beta}\right], E^{-\beta^{*}}\right]=0$
for

IV. $\quad\left[\left[\left[E^{\alpha}, E^{\beta}\right], E^{\gamma}\right], E^{\beta^{*}}\right]=0$
$\left[\left[\left[E^{-\alpha}, E^{-\beta}\right], E^{-\gamma}\right], E^{-\beta^{*}}\right]=0 \quad$ for

V. $\left[\left[E^{\alpha^{*}}, E^{-\alpha}\right], E^{\beta}\right]=E^{\beta^{*}}$
$\left[\left[E^{-\alpha^{*}}, E^{\alpha}\right], E^{-\beta}\right]=E^{-\beta^{*}}$

where h runs over $\tilde{\mathfrak{h}}$ in I, α, β run over $\pm \Gamma_{\text {ell }}$ in I, II, and α, β, γ run over $\pm \Gamma_{a f}$ in III, IV and V.

We set $e_{\alpha}:=E^{\alpha}, f_{\alpha}:=-E^{-\alpha}$ for $\alpha \in \Gamma_{\text {ell }}$ (i.e. $e_{\alpha}^{*}:=e_{\alpha^{*}}=E^{\alpha^{*}}, f_{\alpha}^{*}:=f_{\alpha^{*}}=-E^{-\alpha^{*}}$), and set $a_{\alpha \beta}:=I\left(\alpha^{\vee}, \beta\right)$, then the matrix $\left(a_{\alpha \beta}\right)_{\alpha, \beta \in \Gamma_{\text {ell }}}$ is called the elliptic Cartan matrix. Now we normalize $I(\alpha, \alpha)=2$ so that $\alpha^{\vee}=\alpha$, then using the above
conventions, the defining relations are rewritten as follows:

Lemma 2.2. The elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ is described by the following generators and relations.
generators: $\tilde{\mathfrak{h}}$ and e_{α}, f_{α} for $\alpha \in \Gamma_{\text {ell }}$
relations:
0. $\tilde{\mathfrak{h}}$ is abelian
I. $\left[h, e_{\alpha}\right]=\langle h, \alpha\rangle e_{\alpha}$
$\left[h, f_{\alpha}\right]=-\langle h, \alpha\rangle f_{\alpha}$
II.1. $\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}$
$\left[e_{\alpha}, f_{\beta}\right]=0 \quad$ if $a_{\alpha \beta} \leq 0$
II.2. $\quad\left[e_{\alpha}, e_{\alpha}^{*}\right]=0, \quad\left[f_{\alpha}, f_{\alpha}^{*}\right]=0$
II.3. $\quad\left(a d e_{\alpha}\right)^{1-a_{\alpha \beta}} e_{\beta}=0 \quad$ if $a_{\alpha \beta} \leq 0$
$\left(a d f_{\alpha}\right)^{1-a_{\alpha \beta}} f_{\beta}=0 \quad$ if $a_{\alpha \beta} \leq 0$
III. $\quad a d e_{\beta}^{*} a d e_{\beta} e_{\alpha}=0$
$a d f_{\beta}^{*} a d f_{\beta} f_{\alpha}=0$
for

IV. $\quad a d e_{\beta}^{*} a d e_{\gamma} a d e_{\beta} e_{\alpha}=0$ $a d f_{\beta}^{*} a d f_{\gamma} a d f_{\beta} f_{\alpha}=0$
for

V. $a d e_{\beta} a d e_{\alpha}^{*} f_{\alpha}=e_{\beta}^{*}$
$a d f_{\beta} a d f_{\alpha}^{*} e_{\alpha}=f_{\beta}^{*}$

Remark 2.3. We have the relations $\left[h_{\alpha}, e_{\beta}\right]=$ $a_{\alpha \beta} e_{\beta},\left[h_{\alpha}, f_{\beta}\right]=-a_{\alpha \beta} f_{\beta}$.
3. The main theorem. We consider the extended elliptic diagram $\widetilde{\Gamma_{\text {ell }}}$ consisting of all pairs of $\alpha_{i}, \alpha_{i}^{*}(0 \leq i \leq l)$, if necessary, by adding some vertices α_{i}^{*} to $\Gamma_{\text {ell }}$. In what follows, we consider $\widetilde{\Gamma_{\text {ell }}}$ instead of $\Gamma_{\text {ell }}$. In the following diagram (3.1), we define $e_{\alpha_{1}}^{*}:=a d e_{\alpha_{1}} a d e_{\alpha_{0}}^{*} f_{\alpha_{0}}, f_{\alpha_{1}}^{*}:=a d f_{\alpha_{1}} a d f_{\alpha_{0}}^{*} e_{\alpha_{0}}$ and inductively $e_{\alpha_{i}}^{*}, f_{\alpha_{i}}^{*}$ for all added vertices α_{i} (see [5]),

Then from the results of [5] (Theorem 4.1 and its proof, i.e. from the realization of $\tilde{\mathfrak{g}}(R)$ by the vertex algebra and the relations of the corresponding elements in the vertex algebra), we can regard $\tilde{\mathfrak{g}}(R)$ as the Lie algebra generated by the elements $e_{\alpha}, e_{\alpha}^{*}, f_{\alpha}$, f_{α}^{*} for $\alpha \in\left\{\alpha_{0}, \ldots, \alpha_{l}\right\}$ with the relations in Lemma 2.2.

Lemma 3.1. For $\alpha, \beta \in\left\{\alpha_{0}, \ldots, \alpha_{l}\right\}$, there hold the following relations.
(i) $\left[e_{\alpha}, e_{\beta}^{*}\right]=\left[e_{\alpha}^{*}, e_{\beta}\right]$
(ii) $\left[f_{\alpha}, f_{\beta}^{*}\right]=\left[f_{\alpha}^{*}, f_{\beta}\right]$

Proof. (i) When $a_{\alpha \beta} \geq 0$, the two sides of the equation (i) vanish, and when $a_{\alpha \beta}=-1$, by using the relation V in Lemma 2.2,

$$
\begin{aligned}
{\left[e_{\beta}^{*}, e_{\alpha}\right] } & =\left[a d e_{\beta} a d e_{\alpha}^{*} f_{\alpha}, e_{\alpha}\right] \\
& =\left[\left[e_{\beta},\left[e_{\alpha}^{*}, f_{\alpha}\right]\right], e_{\alpha}\right] \\
& =-\left[\left[f_{\alpha},\left[e_{\beta}, e_{\alpha}^{*}\right]\right], e_{\alpha}\right] \quad\left(\text { by }\left[f_{\alpha}, e_{\beta}\right]=0\right) \\
& =\left[\left[e_{\alpha}, f_{\alpha}\right],\left[e_{\beta}, e_{\alpha} *\right]\right] \quad\left(\text { by }\left[\left[e_{\beta}, e_{\alpha}^{*}\right], e_{\alpha}\right]=0\right) \\
& =\left[h_{\alpha},\left[e_{\beta}, e_{\alpha}^{*}\right]\right] \\
& =-\left[e_{\beta},\left[e_{\alpha}^{*}, h_{\alpha}\right]\right]-\left[e_{\alpha}^{*},\left[h_{\alpha}, e_{\beta}\right]\right] \\
& =2\left[e_{\beta}, e_{\alpha}^{*}\right]+\left[e_{\alpha}^{*}, e_{\beta}\right] \\
& =\left[e_{\beta}, e_{\alpha}^{*}\right]
\end{aligned}
$$

so we get (i), and (ii) is similar.
Theorem 3.2. The elliptic Lie algebra $\tilde{\mathfrak{g}}(R)$ is described by the following generators and relations. generators: $\tilde{\mathfrak{h}}$ and e_{α}, f_{α} for $\alpha \in \widetilde{\Gamma_{\text {ell }}}$
relations:
0. $\tilde{\mathfrak{h}}$ is abelian
I. $\left[h, e_{\alpha}\right]=\langle h, \alpha\rangle e_{\alpha}$

$$
\left[h, f_{\alpha}\right]=-\langle h, \alpha\rangle f_{\alpha}
$$

II.1. $\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}$ $\left[e_{\alpha}, f_{\beta}\right]=0 \quad$ if $a_{\alpha \beta} \leq 0$
II.2. $\left[e_{\alpha}, e_{\alpha}^{*}\right]=0,\left[f_{\alpha}, f_{\alpha}^{*}\right]=0$
II.3. $\quad\left(a d e_{\alpha}\right)^{1-a_{\alpha \beta}} e_{\beta}=0 \quad$ if $a_{\alpha \beta} \leq 0$ $\left(a d f_{\alpha}\right)^{1-a_{\alpha \beta}} f_{\beta}=0 \quad$ if $a_{\alpha \beta} \leq 0$
III. $\quad\left[e_{\alpha}^{*}, e_{\beta}\right]=\left[e_{\alpha}, e_{\beta}^{*}\right],\left[f_{\alpha}^{*}, f_{\beta}\right]=\left[f_{\alpha}, f_{\beta}^{*}\right]$
where h runs over $\tilde{\mathfrak{h}}$ in I, and α, β run over $\widetilde{\Gamma_{\text {ell }}}$ in I, II.1, II. 3 and run over $\Gamma_{a f}$ in II.2, III.

Proof. It suffices to show that the relations III, IV, and V in Lemma 2.2 can be obtained from the relations in Theorem 3.2. We use the multi-bracket of length $n([5])$,
$\left[x_{n}, \ldots, x_{3}, x_{2}, x_{1}\right]:=\left[x_{n},\left[x_{n-1}, \cdots\left[x_{3},\left[x_{2}, x_{1}\right]\right] \cdots\right]\right.$
and the following identity ([5]),
for $1<s \leq n$,
V. ade ${ }_{\beta} a d e_{\alpha}^{*} f_{\alpha}$

$$
\left.=\left[e_{\beta}, e_{\alpha}^{*}\right], f_{\alpha}\right]+\left[e_{\alpha}^{*},\left[e_{\beta}, f_{\alpha}\right]\right]
$$

$$
=\left[\left[e_{\beta}^{*}, e_{\alpha}\right], f_{\alpha}\right]
$$

$$
=\left[\left[f_{\alpha}, e_{\alpha}\right], e_{\beta}^{*}\right]
$$

$$
\begin{aligned}
& {\left[y, x_{n}, \ldots, x_{3}, x_{2}, x_{1}\right] } \\
= & {\left[x_{n}, \ldots, x_{s+1}, x_{s}, y, x_{s-1}, \ldots, x_{1}\right] } \\
& +\left[x_{n}, \ldots, x_{s+1},\left[y, x_{s}\right], x_{s-1}, \ldots, x_{1}\right] \\
& +\left[x_{n}, \ldots,\left[y, x_{s+1}\right], x_{s}, x_{s-1}, \ldots, x_{1}\right]+\cdots \\
& \cdots+\left[\left[y, x_{n}\right], \ldots, x_{s+1}, x_{s}, x_{s-1}, \ldots, x_{1}\right]
\end{aligned}
$$

$$
=-\left[h_{\alpha}, e_{\beta}^{*}\right]
$$

$$
=e_{\beta}^{*}
$$

so the proof is completed.
III. $\quad a d e_{\beta}^{*} a d e_{\beta} e_{\alpha}$
$=\left[e_{\beta}^{*}, e_{\beta}, e_{\alpha}\right]$
$=\left[e_{\beta},\left[e_{\beta}^{*}, e_{\alpha}\right]\right]+\left[\left[e_{\beta^{*}}, e_{\beta}\right], e_{\alpha}\right]$
$=\left[e_{\beta},\left[e_{\beta}, e_{\alpha}^{*}\right]\right] \quad$ (by II.2, III)

$$
=0 \quad \text { (by II.3) }
$$

IV. $\quad a d e_{\beta}^{*} a d e_{\gamma} a d e_{\beta} e_{\alpha}$
$=\left[e_{\beta}^{*}, e_{\gamma}, e_{\beta}, e_{\alpha}\right]$
$=\left[\left[e_{\beta}^{*}, e_{\gamma}\right], e_{\beta}, e_{\alpha}\right]+\left[e_{\gamma},\left[e_{\beta}^{*}, e_{\beta}\right], e_{\alpha}\right]$
$=\left[\left[e_{\beta}, e_{\gamma}^{*}\right], e_{\beta}, e_{\alpha}\right] \quad$ (by II.2, III)
$=\left[\left[e_{\gamma}^{*}, e_{\beta}\right], e_{\alpha}, e_{\beta}\right]$
$=\left[e_{\gamma}^{*}, e_{\beta}, e_{\alpha}, e_{\beta}\right]-\left[e_{\beta},\left[e_{\gamma}^{*}, e_{\alpha}\right], e_{\beta}\right]$
$=0$

References

[1] Victor, G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge Univ. Press, Cambridge (1990).
[2] Richard, B.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. U.S.A., 83, 3068-3071 (1986).
[3] Moody, R. V., Eswara Rao, S., and Yokonuma, T.: Toroidal Lie algebra and vertex representation. Geom. Dedicata, 35, 283-307 (1990).
[4] Saito, K.: Extended affine root systems I (Coxeter transformations). Publ. RIMS, Kyoto Univ., 21, 75-179 (1985).
[5] Saito, K., and Yoshii, D.: Extended affine root systems IV (Simply-laced elliptic Lie algebras). Publ. RIMS, Kyoto Univ., 36, 385-421 (2000).

[^0]: 2000 Mathematics Subject Classification. Primary 17B10.

