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A note on the Demjanenko matrices related
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Abstract: In this note, we define the Demjanenko matrices related to the cyclotomic Zp-
extension, which can be regarded as generalization of the ordinary Demjanenko matrices. As a
special case, we generalize the Maillet determinant defined by Girstmair.
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0. Introduction. Let N be the set of natu-
ral numbers, Z the ring of rational integers, Q the
field of rational numbers, R the field of real numbers
and Zp the ring of p-adic integers for a prime p. For
n ∈ N, the Maillet determinant D(n) can be defined
by

D(n) = det
(
Rn(ab′)

)
a,b∈An

,

where An = {a ∈ Z | 1 ≤ a < n/2, (a, n) = 1},
Rn(x) is the residue of x modulo n with 0 ≤ Rn(x) <
n, and x′ is the integer with xx′ ≡ 1 (mod n) and
1 ≤ x′ < n for x ∈ Z. D(n) was conjectured not to
be zero.

For an imaginary abelian field K, we define
the relative class number h−(K) by h−(K) =
h(K)/h(K ∩R), where h(K) and h(K ∩R) are the
class numbers of K and K ∩R, respectively.

Carlitz and Olson proved the following fascinat-
ing formula for any odd prime p:

D(p) = (−p)(p−3)/2 h−(Q(ζp)),(0.1)

where h−(Q(ζp)) is the relative class number of the
p-th cyclotomic field Q(ζp). This fact showed that
D(p) 6= 0 for any odd prime p. In the general case,
Tateyama proved the generalized formula of (0.1),
and gave the criterion whether D(n) = 0 or not (see
[5]). The above formula (0.1) has been investigated
by a lot of authors. Recently Girstmair defined a
generalization of the Maillet determinant for imag-
inary abelian number fields and proved a general-
ized formula of (0.1) (see [3]). As an analogue of
D(p), the Demjanenko matrix M(p) was defined by
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M(p) = (c(ab)) with a, b ∈ Ap, where

c(x) =
{

1 if Rp(x) ∈ Ap,
0 otherwise,

for x ∈ Z. In [1], Hazama proved a relation between
the Demjanenko matrix and the relative class num-
ber of Q(ζp). This relation can be regarded as an
analogue of (0.1). Hazama’s result was generalized
by Sands and Schwarz (see [4]). They defined the
Demjanenko matrix for an imaginary abelian field
of odd prime power conductor. They proved the
relation formula between the determinant of their
matrix and the relative class number of the field.
Recently we succeeded in generalizing this result as
follows (see [6]). Let K be an imaginary abelian
field and n be its conductor. We can assume that
n 6≡ 2 (mod 4). For ` ∈ Z with (`, n) = 1 and
` > 1, we defined the generalized Demjanenko ma-
trix ∆(K, `) (see [6, Definition 2.5]). We proved the
relation formula between det∆(K, `) and the rela-
tive class number h−(K), which could be regarded
as a generalization of the one in [1] and [4]. In fact,
we verified that ∆(K, 2) played the same role as the
ordinary Demjanenko matrix. Moreover we verified
that det∆(K,n + 1) coincided with the Maillet de-
terminant defined by Girstmair in [3]. Hence the re-
sult in [6] showed that the Maillet determinant and
the Demjanenko matrix could be treated as an unity.
In [2], Hirabayashi generalized our result completely.
His result holds for any imaginary abelian field even
if ` = 2. Recently Kučera modified Hirabayashi’s re-
sult. The above generalizations are natural, but the
size of ∆(K, `) becomes larger as the degree [K : Q]
becomes larger. It is not useful when the degree is
large.
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In this note, we construct the Demjanenko ma-
trices attached to the cyclotomic Zp-extension of an
imaginary abelian field K:

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km ⊂ · · · ,

for an odd prime p. We assume that the conductor
of K is equal to dp such that (d, p) = 1. Let ` ∈
Z with (`, dp) = 1 and ` > 1. Corresponding to
{Km | m ≥ 0}, we define the Demjanenko matrices
{∆(K, `,m) | m ≥ 0} (see Definition 2.5). Then the
following theorem holds.

Theorem. For m ≥ 0,

det∆(K, `,m) =
(−2)[Km:Q]/2

Q(Km)w(Km)
h−(Km)

×
∏

χ∈X−
m

(`χ(`)− 1)
∏

q:prime
q|dp

(1− χ(q))

 ,

where Q(Km) is what is called the unit index of
Km, w(Km) is the number of roots of unity in Km,
and X−

m is the set of odd primitive characters of
Gal(Km/Q).

On the above assumption, we can see that
∆(K, `, 0) = ∆(K, `) and

∆(K, `,m) ∈ M
(

[K : Q]
2

,Q
)
,

for any m ∈ N (see Lemma 2.6).
1. Preliminaries. We make use of the same

notations as in Chap. 7 of [7]. In this section, we fix
m ∈ Z with m ≥ 0. Let

Gal(Q(ζdpm+1)/Q)

= {σa | σa : ζdpm+1 → ζadpm+1 , (a, dp) = 1},

where ζn = exp(2πi/n). Since Km ⊂ Q(ζdpm+1), we
let σa denote both the element of
Gal(Q(ζdpm+1)/Q) and its restriction to Km. Let
GK = Gal(K/Q), Γm = Gal(Km/K) and Gm =
Gal(Km/Q). Then we have Gm ' GK × Γm.
Corresponding to this decomposition, we can write
σa = δ(a)γm(a), where δ(a) ∈ GK and γm(a) ∈ Γm.
Let J = σ−1 be complex conjugation. We consider
Q which is an algebraic closure of Q, and consider
the group ring V = Q[GK ]. Let V − = {x ∈ V |
Jx = −x}. We can see that V − = (1− J)V .

Since K ⊂ Q(ζdp), we can take

TK ⊂ {a ∈ Z | 1 ≤ a < dp, (a, dp) = 1},

such that G(Q(ζdp)/K) = {σa | a ∈ TK}. Since
K/Q is an imaginary abelian extension, we can

uniquely take a set

SK ⊂ {c ∈ Z | 1 ≤ c < dp/2, (c, dp) = 1}

such that

GK = {σc | c ∈ SK} ∪ {σ−c | c ∈ SK}.

Let Θ, Ym and Xm be the character groups of
GK , Γm and Gm respectively. And let Θ− and X−

m

be sets of odd characters in Θ and Xm respectively.
For χ ∈ X−

m, we may uniquely write χ = θψ, where
θ ∈ Θ− and ψ ∈ Ym. Then θ is a character of con-
ductor dividing d or dp, while ψ has p-power order
and is either trivial or has conductor of the form pj .
θ (resp. ψ) is called a character of the first (resp. sec-
ond) kind. Note that the characters of the first kind
are associated with Q(ζdp), while those of the second
kind are associated with the subfield of Q(ζdpm+1)
of degree pm over Q. Hence the characters of the
first kind correspond to tame ramification at p, while
those of the second kind correspond to wild ramifi-
cation. We see that ψ is an even character since it
corresponds to a real field. So we can see that if χ is
even then θ is even.

Let

An(b, `) =
∑
ζ`=1
ζ 6=1

ζn−b

1− ζn
∈ Q,(1.1)

for b ∈ Z. For simplicity, we denote A(b, `) instead
of Adpm+1(b, `). Let χ = χ−1. For ψ ∈ Ym, we define

ρψ = ρψ(Km, `)(1.2)

=
dpm+1∑
a=1

(a,dp)=1

A(a, `)ψ(a)δ(a)−1 ∈ V.

Lemma 1.1. ρψ ∈ V − for any ψ ∈ Ym.

For θ ∈ Θ−, we consider the orthogonal idem-
potent of V −

εθ =
1

[K : Q]

∑
a∈SK

θ(a) (δ(a)−1 − δ(−a)−1).

Note that εθδ(a)−1 = θ(a)εθ. We can easily verify
that {εθ | θ ∈ Θ−} forms a Q-basis for V −. For r ∈
V −, let Lr be the endomorphism of V − defined by
Lr(v) = rv. By [6, Lemma 1.2], we get the following.
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Lemma 1.2. For θ ∈ Θ− and ψ ∈ Ym,

Lρψ (εθ) = εθ

[
(`θψ(`)− 1)

×B1,θψ

∏
q|dp

(1− θψ(q))
]
,

where B1,χ is the generalized Bernoulli number (see
e.g. [7] Chap. 4).

It seems that the values {A(b, `)} are unclear.
So we need to make these values clear. In fact we
can prove the following lemma.

Lemma 1.3. Let R̃(·) = Rdpm+1(·). With the
above notations,

A(R̃(a), `) =
`R̃(a`′)− R̃(a)

dpm+1
− `− 1

2
.

Proof. Let η =
∑
aA(R̃(a), `)σ−1

a ∈ V , then
we can see that η ∈ V − by the proof of Lemma 1.1.
By [6, Lemma 1.2], we have

ηεχ = (`χ(`)− 1)B1,χεχ
∏
q|dp

(1− χ(q)),(1.3)

for any χ ∈ X−
m. On the other hand, for the Bernoulli

polynomial B1(x) = x− 1/2, let

τ = (`σ−1
` − 1)

dpm+1∑
a=1

(a,dp)=1

B1

(
R̃(a)
dpm+1

)
σ−1
a ,

=
dpm+1∑
a=1

(a,dp)=1

{
`R̃(a`′)− R̃(a)

dpm+1
− `− 1

2

}
σ−1
a ,

where l′ is the integer with ll′ ≡ 1 (mod dpm+1) and
1 ≤ l′ < dpm+1. Then it follows from (1.3) that
τεχ = ηεχ for any χ ∈ X−

m. Since τ , η ∈ V −, we
have τ = η in V . Thus we get the proof.

2. Definition of ∆(K, `, m). For a ∈ Z
with (a, dp) = 1, let

ξ(a) =
δ(a)−1 − δ(−a)−1

2
.

A short calculation shows that ξ(a)ξ(b) = ξ(ab) and
ξ(−a) = −ξ(a). We can also verify that {ξ(s) | s ∈
SK} forms a Q-basis for V −. In this section, we
shall determine the matrix of Lρψ with respect to
{ξ(s) | s ∈ SK}.

Note that δ(b+ dpk) = δ(b). By Lemma 1.1, we

get

ρψ =
dp∑
a=1

(a,dp)=1

pm−1∑
j=0

A(a+ dpj, `)ψ(a+ dpj)δ(a)−1.(2.1)

For a ∈ Z, let R(a) be the residue of a modulo dp

with 0 ≤ R(a) < dp, and let a′ be the integer with
aa′ ≡ 1 (mod dp) and 1 ≤ a′ < dp. By the definition
of SK and TK , we see that

{R(ts) | s ∈ SK , t ∈ TK}
∪ {R(−ts) | s ∈ SK , t ∈ TK}

forms a set of representatives for (Z/dpZ)×. For sim-
plicity, we let

β(c, dpm+1, `, ψ)

=
pm−1∑
j=0

A(R(c) + dpj, `)ψ(R(c) + dpj),

for c ∈ Z. Since δ(R(ts)) = δ(s) and
δ(R(−ts)) = δ(−s) for s ∈ SK and t ∈ TK , we have

ρψ =
∑
s∈SK

∑
t∈TK

{
β(ts, dpm+1, `, ψ)δ(s)−1(2.2)

+β(−ts, dpm+1, `, ψ)δ(−s)−1

}
.

Lemma 2.1. With the above notations,

β(−ts, dpm+1, `, ψ) = −β(ts, dpm+1, `, ψ).

Proof. The left-hand side of above equation is
equal to

pm−1∑
j=0

A(dp−R(ts) + dpj, `)(2.3)

×ψ(dp−R(ts) + dpj).

By the facts that A(dpm+1 − a, `) = −A(a, `) and
ψ(dpm+1 − a) = ψ(a), we can see that (2.3) is equal
to the right-hand side of above equation by letting
k = pm − 1− j. Thus we have the assertion.

By (2.2) and Lemma 2.1, we have

ρψ =
∑
s∈SK

(
2
∑
t∈TK

β(ts, dpm+1, `, ψ)

)
ξ(s).(2.4)

In order to determine the matrix of Lρψ with
respect to the basis {ξ(s)}, we recall the following
two functions f(x) and g(x) (see [6] §2). For a ∈ Z
with (a, dp) = 1, let g(a) = R(a) and f(a) = 1 if 1 ≤
R(a) < dp/2, and g(a) = dp − R(a) and f(a) = −1
if dp/2 < R(a) < dp. We can immediately see that
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1 ≤ g(a) < dp/2 and g(a)f(a) ≡ a (mod dp). The
following two lemmas were proved (see [6, Lemma
2.2, Lemma 2.3]).

Lemma 2.2. If r ∈ SK , then {g(sr) | s ∈ SK}
= SK .

Lemma 2.3. Let s, r, u ∈ SK with g(sr) = u.
Then s = g(ur′) and ξ(sr) = f(ur′) ξ(u).

Proposition 2.4. For r ∈ SK ,

Lρψ (ξ(r))

=
∑
s∈SK

(
2
∑
t∈TK

β(tsr′, dpm+1, `, ψ)

)
ξ(s).

Proof. It follows from (2.4) that

Lρψ (ξ(r))(2.5)

=
∑
s∈SK

(
2
∑
t∈TK

β(ts, dpm+1, `, ψ)

)
ξ(sr).

Let g(sr) = u. It follows from Lemma 2.3 that s =
g(ur′) and ξ(sr) = f(ur′)ξ(u). By Lemma 2.2, we
see that the right-hand side of (2.5) is equal to∑

u∈SK

(
2
∑
t∈TK

β(tg(ur′), dpm+1, `, ψ)

)
(2.6)

×f(ur′)ξ(u).

If f(ur′) = 1 then g(ur′) = R(ur′), so
R(tg(ur′)) = R(tur′). If f(ur′) = −1 then g(ur′) =
dp − R(ur′) = R(−ur′), so R(tg(ur′)) = R(−tur′).
In the both cases, it follows from Lemma 2.1 that
(2.6) is equal to∑

u∈SK

(
2
∑
t∈TK

β(tur′, dpm+1, `, ψ)

)
ξ(u).

Thus we have the assertion.
Definition 2.5.

∆ψ(K, `,m)

=
(

2
∑
t∈TK

pm−1∑
j=0

A(R(tsr′) + dpj, `)

×ψ(R(tsr′) + dpj)
)
s,r∈SK

,

for ψ ∈ Ym, and

∆(K, `,m) =
∏
ψ∈Ym

∆ψ(K, `,m),

for m ≥ 0, where
∏

means the matrix product.
Remark. ∆(K, `,m) can be regarded as a

generalization of the ordinary Demjanenko matrix

∆(K, `). In fact, we can easily verify that ∆(K, `, 0)
coincides with ∆(K, `), if the conductor of K is equal
to dp with (d, p) = 1 (see [6, Definition 2.5]). This as-
sumption is important. Hirabayashi and the referee
pointed out the fact that ∆(K, `, 0) did not necessar-
ily coincide with ∆(K, `), if the conductor of K was
equal to d with (d, p) = 1.

Lemma 2.6. For any m ≥ 0,

∆(K, `,m) ∈ M
(

[K : Q]
2

,Q
)
.

Proof. For any σ ∈ Gal(Q(ζpm)/Q), we have
{ψσ | ψ ∈ Ym} = Ym. For a matrix C = (cij) with
cij ∈ Q(ζpm), let Cσ = (cσij). Then ∆(K, `,m)σ =∏
ψ ∆ψσ (K, `,m) = ∆(K, `,m) for any σ. Thus we

have the assertion.
3. Proof of Theorem and some examples.

By Proposition 2.4, we see that ∆ψ(K, `,m) is the
matrix of Lρψ with respect to {ξ(s) | s ∈ SK}, for
any ψ ∈ Ym. By combining Lemma 1.2, Proposition
2.4 and Definition 2.5, we have

det∆(K, `,m) =
∏

χ∈X−
m

(`χ(`)− 1)

×B1,χ

∏
q|dp

(1− χ(q)).

By using the analytic class number formula, we get
the proof of Theorem.

Example. Let p = 5, d = 1 and K = K0 =
Q(ζ5). So K1 = Q(ζ25). We can take ` = 2. Since
A(b, 2) = (−1)b+1/2 for b ∈ Z, we can calculate that

∆(Q(ζ5), 2, 1) =
(

16 −144
144 16

)
We can verify that det∆(Q(ζ5), 2, 1) = 20992,

which is equal to

1
w(Q(ζ25))

(−2)[Q(ζ25):Q]/2

× h−(Q(ζ25))
∏

χ∈X−
1

(2χ(2)− 1).

We consider the case ` = dpm+1 + 1. By [6, Eq.
(3.3)], we have∑

a∈TK

A
(
R̃(ac), dpm+1 + 1

)
=
∑
a∈TK

dpm+1 B1

(
R̃(ac)
dpm+1

)
,

for c ∈ SK . Let Dψ(K,m) = det∆ψ(K, dpm+1 +
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1,m). By Definition 2.5, we have the following.
Lemma 3.1. For ψ ∈ Ym,

Dψ(K,m) = determinant of(
2dpm+1

∑
t∈TK

pm−1∑
j=0

B1

(
R(tsr′) + dpj

dpm+1

)

×ψ(R(tsr′) + dpj)

)
s,r∈SK

.

Hence we define

D(K,m) =
∏
ψ∈Ym

Dψ(K,m),

for m ≥ 0. We can regard those as the Maillet de-
terminants attached to the cyclotomic Zp-extension
of K. Note that D(K, 0) coincides with the Maillet
determinant D∗(K) attached to K defined in [3], if
the conductor of K is equal to dp with (d, p) = 1. By
applying Theorem, we get the following.

Proposition 3.2. For m ≥ 0,

D(K,m) =
(−2dpm+1)[Km:Q]/2

Q(Km)ω(Km)
h−(Km)

×
∏

χ∈X−
m

∏
q|dp

(1− χ(q)).
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