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Trigonal modular curves X∗
0(N)
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Abstract: For a positive integer N , let X∗
0 (N) denote the quotient curve of X0(N) by

the Atkin–Lehmer involutions. In this paper, we determine the trigonality of X∗
0 (N) for all N . It

turns out that there are seven values of N for which X∗
0 (N) is a non-trivial trigonal curve.
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1. Introduction. Let N be a positive inte-
ger, and letX0(N) be the modular curve correspond-
ing to the congruence subgroup

Γ0(N) =
{(a b

c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N
}
.

For a positive divisor d of N such that d 6= 1 and
(d,N/d) = 1, let X+d

0 (N) denote the quotient curve
of X0(N) by the Atkin–Lehner involution Wd cor-
responding to d; in case d = N , this is the curve
usually denoted by X+

0 (N). By our previous works
[6][7], all the trigonal modular curves X0(N) and
X+d

0 (N) have been determined. Here an algebraic
curve is said to be trigonal if it has a finite mor-
phism of degree 3 to the projective line P1. It turns
out that every trigonal modular curve of type X0(N)
is “trivial” in the sense it has genus at most 4 (see
the beginning of Section 2); on the other hand, there
do exist non-trivial trigonal modular curves of type
X+d

0 (N).
Now let X∗

0 (N) be the quotient curve of X0(N)
by the group of Atkin–Lehner involutions. By defini-
tion, this equalsX+

0 (N) whenN is a prime power. In
this article, we determine the trigonal modular cur-
ves X∗

0 (N) by an argument analogous to [7]. That is,
Theorem 1. The curve X∗

0 (N) is trigonal of
genus g ≥ 5 if and only if

N = 181, 227, 253, 302, 323, 555 (g = 5);

N = 351 (g = 6).

Notation. For a positive integer N , we define
ω(N) to be the number of distinct prime divisors
of N , and ψ(N) to be the product N

∏
q(1 + 1/q),
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where the product runs over the set of distinct prime
divisors of N . We also denote, for a (fixed) prime
p - N , by X̃0(N), X̃∗

0 (N) the reduction of X0(N),
X∗

0 (N) at p respectively.
2. An upper bound for N . An algebraic

curve of genus g ≤ 4 is trigonal, unless g = 3, 4 and it
is hyperelliptic. On the other hand, any hyperelliptic
curve of genus g ≥ 3 is not trigonal. See [9][3][1] for
details. In view of these facts, we first exhibit the
values of N for which X∗

0 (N) is hyperelliptic of genus
g ≥ 3.

Theorem 2 ([4]). The curve X∗
0 (N) is hyper-

elliptic of genus g ≥ 3 if and only if

N = 136, 171, 207, 252, 315 (g = 3);

N = 176 (g = 4);

N = 279 (g = 5).

Given a non-negative integer g, it is not difficult
to determine the values of N for which the genus
g∗(N) of X∗

0 (N) is equal to g. Thus we obtain:
Proposition 1. The curve X∗

0 (N) is trigonal
of genus g = 3 or 4 if and only if N is in the following
list.
g N

97 109 113 127 128 139 144 149 151 152
162 164 169 175 178 179 183 185 187 189

3
194 196 203 217 234 236 239 240 245 246
248 249 258 270 282 290 294 295 303 310
312 318 329 348 420 429 430 455 462 476
510
137 148 160 172 173 199 200 201 202 214
219 224 225 228 242 247 251 254 259 260

4
261 262 264 267 273 275 280 300 305 306
308 311 319 321 322 334 335 341 342 345
350 354 355 366 370 374 385 395 399 426
434 483 546 570
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In what follows, we always assume g∗(N) ≥ 5
and N 6= 279. We know from [10, Thm. 2.1] that
every trigonal curve over Q of genus g ≥ 5 has
a Q-rational finite morphism of degree 3 to a ra-
tional curve over Q. Thus if X∗

0 (N) is trigonal,
then X0(N) admits a Q-rational morphism of de-
gree 3 · 2ω(N) to P1, since the natural projection
X0(N) → X∗

0 (N) has degree 2ω(N) and is defined
over Q. This means that, for each prime p -N , there
is a morphism X̃0(N)→P1 over Fp of degree at
most 3 · 2ω(N) ([10, Lem. 5.1]). Ogg’s lower bound
for ]X̃0(N)(Fp2) then tells us:

Lemma 1 ([11]). The curve X∗
0 (N) is not

trigonal if there exists a prime p not dividing N such
that

(1)
p− 1
12

ψ(N) + 2ω(N) > 3 · 2ω(N)(p2 + 1).

Using this, we can find an upper bound for the
values of N for which X∗

0 (N) is possibly trigonal.
Proposition 2. The curve X∗

0 (N) is not trig-
onal whenever N > 4830.

Proof. (The proof is essentially the same as
the hyperelliptic case; see the argument given in [5,
p. 181].) Let p be the smallest prime not dividing
N . We will then show that (1) actually holds for all
N > 4830. Let us write

f(N) :=
1

2ω(N)
ψ(N), g(x) := 12

3x2 + 2
x− 1

.

Note that f(N) is multiplicative and g(n) is increas-
ing for integers n ≥ 2. Clearly it suffices to show
that

(2) f(N) > g(p).

First assume that r := ω(N) ≥ 6. Let pi be the i-th
prime. Then we have

f(N) ≥ f(p1 · · · pr) and g(pr+1) ≥ g(p).

Thus we are reduced to show that

(3) f(p1 · · · pr) > g(pr+1).

Obviously, this holds for r = 6. For r > 6, this
can be shown by induction on r. Indeed, we have
pr+1 < 2pr by Chebyshev’s theorem, so

g(pr+1)
g(pr)

=
3pr+1

2 + 2
3pr

2 + 2
pr − 1
pr+1 − 1

<
3pr+1

2 + 2
3pr

2 + 2
≤ 12pr

2 + 2
3pr

2 + 2
< 4.

On the other hand, since f(N) is multiplicative, we

have

f(p1 · · · pr)
f(p1 · · · pr−1)

= f(pr) =
1
2

(pr + 1) > 4.

It follows that

f(p1 · · · pr)
f(p1 · · · pr−1)

>
g(pr+1)
g(pr)

.

This implies (3), since f(p1 · · · pr−1) > g(pr) by the
induction hypothesis.

Assume now that r < 6, so p ≤ pr+1 ≤ p6 = 13.
Let us define

N0(r) = max
1≤i≤r+1

{N0(r; i)},

where

N0(r; i) =

2r · g(2)− 1 if i = 1;

2r p1 · · · pi−1

ψ(p1 · · · pi−1)
g(pi) if i > 1.

Then clearly (2) holds for all N > N0(r) such that
ω(N) = r, since

ψ(N) ≥


N + 1 if p = 2;

N
ψ(p1 · · · pi−1)
p1 · · · pi−1

if p = pi, i > 1.

More explicitly, the inequality (2) holds for

N >

{
2r · 168− 1 if 1 ≤ r ≤ 4;
5443 if r = 5.

Note that in the range N ≤ 5443 there are only
seven values of N for which r = 5, the largest being
N = 4830. The assertion follows.

3. Determination of the trigonal mod-
ular curves X∗

0(N). We are now ready to de-
termine the trigonal modular curves X∗

0 (N). Be-
fore applying the trisecant criterion described in [7,
§ 2] to the canonical embedding of X∗

0 (N), we pro-
ceed as follows. To begin with, we check whether
ψ(N) > 128 ·3 ·2ω(N); if this is the case, then X∗

0 (N)
cannot be trigonal by Zograf’s theorem [14, Thm. 5].
If not, we next check whether N satisfies the condi-
tion of Lemma 1 (we let p be the smallest prime
not dividing N). If this is not the case either, then
using Eichler–Shimura congruence relation we count
the exact number ]X̃∗

0 (N)(Fq) for every prime power
q such that (N, q) = 1 and q ≤ g2, and check the
inequality ]X̃∗

0 (N)(Fq) > 3(q+1). For the trace for-
mulas of Hecke operators used in this step, we refer
to [8][13]. Now we tabulate the values of N for which
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Table I. 137 values for the trisecant criterion and 34 values for the number of fixed points
g N

192 208 212 216 218 226 235 237 250 253
278 302 323 339 364 371 376 377 378 382

5 391 396 402 406 407 410 413 414 418 435
438 440 442 444 465 494 495 551 555 572
574 595 630 663 714 770 798 910
244 265 272 274 291 297 301 314 327 332

6 336 338 351 470 506 561 564 598 609 627
690 780 858
232 288 309 324 358 360 363 372 423 450

7 456 460 474 490 492 498 504 518 525 530
550 558 582 636 638 660 870 924
292 304 333 346 362 408 468 480 520 532

8 534 540 552 585 606 651 654 665 759 930
966 990 1020 1155

g N

9
328 392 404 522 528 560 588 594 602 618
642 1110 1122 1140

10
600 612 616 678 696 702 708 741 840 1050

1218 1230 1290 1326
11 666 672 1302
12 744 1170 2310
13 720 1260
14 1320 1410 1590 2730
15 810 1380 1470
16 900 1560
17 1530
19 1680 3570

Table II. Trigonal modular curves X∗
0 (N) of genus g = g∗(N) ≥ 5 (ω(N) ≥ 2)

N g Plane model of X∗
0 (N)

253 5 (3t2−7t+6)s3 − (t3−5t2+9t+1)s2 − (4t3−9t2−t−1)s+ t(t3−2t2−2) = 0

302 5 ts3 + (t3+2t2+3)s2 + (t4+3t3+6t2+5t−2)s− (t2+2t+2)(t2+2t+3) = 0

323 5 t(t+1)s3 + (t3−2t2−2)s2 − (3t3−2)s− (t4−t3−3t+1) = 0

555 5 (t2+2t+6)s3 − (2t3+13t2+12t−4)s2 + (4t4+12t3+7t2−6t−2)s− t2(4t2+2t−5) = 0

351 6 (t+1)s3 − 3(t+1)(t2+2t+3)s2

+ 3(t5+5t4+13t3+19t2+18t+11)s− (3t5+24t4+72t3+111t2+76t+34) = 0

ω(N) ≥ 2 and none of the above conditions are sat-
isfied (Table I; 171 values in total). Note that if 4|N
or 9‖N , the curve X∗

0 (N) has an involution [4]. In
this case we also check whether this involution has
more than 6 fixed points; if so, then X∗

0 (N) is not
trigonal (such values in Table I are italicized).

Example. Let N be a positive integer such
that N ≤ 4830 and r = 5, i.e., N = 2310, 2730,
3570, 3990, 4290, 4620, 4830. Then we see that
X∗

0 (N) is not trigonal for

N = 4620, 4830 by Zograf’s theorem;
N = 4290 by Lemma 1 (p = 7);
N = 3990 by the inequality
]X̃∗

0 (N)(F121) = 376 > 3(121 + 1).

For N = 2310, 2730 and 3570, none of the above
conditions are satisfied.

Now, as the final step, we determine the trigo-
nality of X∗

0 (N) for the remaining 137 values of N
by applying the trisecant criterion; the curve X∗

0 (N)

is trigonal if and only if N is in the list of Theorem
1. Table II gives the plane models of the trigonal
modular curves X∗

0 (N) of genus g ≥ 5. We refer to
[7, § 3] the method to obtain plane models of such
curves.

In each case, we choose t as a function of de-
gree 3 such that (t)∞ ≥ P∞, where P∞ is the cusp
at infinity. If we embed the (s, t)-plane in P2 by
(s, t) 7→ (s : t : 1), then P∞ = (0 : 1 : 0). Also, the
point (1:0:0) is the sole singularity of the given plane
model.
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