# A note on $K 3$ surfaces and sphere packings 

By Tetsuji Shioda<br>Department of Mathematics, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501<br>(Communicated by Shigefumi Mori, M. J. A., May 12, 2000)


#### Abstract

We study the Mordell-Weil lattices ([9]) of the elliptic K3 surfaces which have been introduced by Inose [4] and Kuwata [6]. The point is that the lattices (of rank up to 18) arising this way can be of some interest in terms of sphere packings. In this note, we treat the case of rank 16,17 or 18 , and show that these Mordell-Weil lattices are potentially comparable with the record lattices in these dimensions ([2]). The detailed account is in preparation, which will include the corresponding results for other dimensions as well.


Key words: Mordell-Weil lattice; K3 surface; sphere packings.

1. Elliptic $K 3$ surfaces of Inose and Kuwata. Recently Kuwata [6] has constructed elliptic $K 3$ surfaces with high Mordell-Weil rank (up to rank 18), starting from the Kummer surfaces $\operatorname{Km}(A)$ of the product abelian surfaces $A=C_{1} \times C_{2}$, where $C_{1}$ and $C_{2}$ are two elliptic curves defined over $k$, an algeraically closed field contained in the field of complex numbers C. More precisely, he defines six elliptic $K 3$ surfaces $F^{(n)}$ over $\mathbf{P}^{1}(1 \leq n \leq 6)$ for a given $A$, with the property that (i) $F^{(2)}$ is isomorphic to $\operatorname{Km}(A)$ and (ii) for each divisor $d$ of $n(n=d e), F^{(n)}$ is obtained as the base change of $F^{(e)}$ by the map $t \mapsto t^{d}$ of degree $d$. Then he determines the MordellWeil rank $r^{(n)}$ of $F^{(n)}$ by the wellknown relation of the Picard number and the Mordell-Weil rank, using Inose's theorem ([3]) that two $K 3$ surfaces $X, Y$ have the same Picard number $\rho(X)=\rho(Y)$ if there is a rational map of finite degree between them. The latter implies

$$
\begin{align*}
& \rho\left(F^{(n)}\right)=\rho\left(\operatorname{Km}\left(C_{1} \times C_{2}\right)\right)=18+h,  \tag{1}\\
& h=\operatorname{rk} \operatorname{Hom}\left(C_{1}, C_{2}\right) .
\end{align*}
$$

Actually Inose [4] has earlier studied the elliptic fibration $F^{(2)}$ on the Kummer surface $\operatorname{Km}\left(C_{1} \times C_{2}\right)$, and constructed the elliptic $K 3$ surface $F^{(1)}$, together with its defining equation:

$$
\begin{align*}
y^{2}= & x^{3}-\left(3 \sqrt[3]{j_{1} j_{2}}\right) t^{4} x  \tag{2}\\
& +t^{5}\left(t^{2}+1-2 t \sqrt{\left(j_{1}-1\right)\left(j_{2}-1\right)}\right)
\end{align*}
$$

where $j_{1}, j_{2}$ denote the $j$-invariant of $C_{1}, C_{2}$ respectively. The reducible fibers of $F^{(1)}$ are as follows.

[^0]There are two reducible fibers of Kodaira type $\mathrm{II}^{*}$ at $t=0$ and $\infty$, and no other ones if $j_{1} \neq j_{2}$. If $j_{1}=j_{2} \neq 0,1$, there is an additional one of type $\mathrm{I}_{2}$; if $j_{1}=j_{2}=1$, then two of type $\mathrm{I}_{2}$; finally if $j_{1}=j_{2}=0$, then there is one ot type IV.

This information determines the structure of trivial lattice of $F^{(n)}(n \leq 6)$ to be $U \oplus V^{-}$, where $U$ is the hyperbolic lattice of rank 2 and $V=V^{(n)}$ is a sum of the root lattices. In case $j_{1} \neq j_{2}$, we have, according as $n=1, \ldots, 6$,

$$
\begin{equation*}
V^{(n)}=E_{8}^{\oplus 2}, E_{6}^{\oplus 2}, D_{4}^{\oplus 2}, A_{2}^{\oplus 2},\{0\},\{0\} \tag{3}
\end{equation*}
$$

In case $j_{1}=j_{2} \neq 0,1$ (resp. $=1$ or $=0$ ), $V^{(n)}$ has an additional factor $A_{1}^{\oplus n}$ (resp. $A_{1}^{\oplus 2 n}$ or $A_{2}^{\oplus n}$ ).

In view of (1), the rank $r^{(n)}=\rho\left(F^{(n)}\right)-2-$ $\mathrm{rk} V^{(n)}$ is given as follows (cf. [6, Th.4.1]): for any $n \leq 6$, we have

$$
\begin{align*}
r^{(n)}= & \operatorname{Min}\{4(n-1), 16\}+h  \tag{4}\\
& -\left\{\begin{array}{lll}
0 & \text { if } & j_{1} \neq j_{2} \\
n & \text { if } & j_{1}=j_{2} \neq 0,1 \\
2 n & \text { if } & j_{1}=j_{2}=0 \text { or } 1 .
\end{array}\right.
\end{align*}
$$

Note, in particular, that if $j_{1} \neq j_{2}$ (i.e. if $C_{1}$ and $C_{2}$ are not isomorphic), then $F^{(5)}$ and $F^{(6)}$ have no reducible fibres, and we have

$$
r^{(n)}=\rho\left(F^{(n)}\right)-2=16+h \quad(n=5,6) .
$$

2. Reconstruction. Recall that the Kummer surface $X=\operatorname{Km}(A)$ is a smooth $K 3$ surface obtained from the quotient surface $A / \iota_{A}\left(\iota_{A}\right.$ : the inversion map of $A$ ) by resolving the 16 singular points corresponding to the points of order 2 on $A$.

Suppose $A=C_{1} \times C_{2}$ where $C_{i}$ is defined by the

Weierstrass equation

$$
\begin{equation*}
C_{i}: y_{i}^{2}=f_{i}\left(x_{i}\right)=x_{i}^{3}+\cdots \quad(i=1,2) \tag{5}
\end{equation*}
$$

Then $X$ is birational to the surface defined in the $\left(x_{1}, x_{2}, t\right)$-space by

$$
\begin{equation*}
f_{1}\left(x_{1}\right) t^{2}=f_{2}\left(x_{2}\right) \tag{6}
\end{equation*}
$$

The function $t=y_{2} / y_{1}$ on $A$ is invariant under $\iota_{A}$, and it defines an elliptic fibration on $X$ whose generic fibre is the plane cubic curve defined by the above equation over $k(t)$. This yields the elliptic $K 3$ surface $F^{(2)}$.

We consider the linear pencil of cubic curves (in the projective plane with affine coordinates $x_{1}, x_{2}$ ), associated with (6):

$$
\begin{equation*}
f_{1}\left(x_{1}\right) t=f_{2}\left(x_{2}\right) \quad\left(t \in \mathbf{P}^{1}\right) \tag{7}
\end{equation*}
$$

It has the 9 base points corresponding to the 9 (out of 16) torsion points of order 2 on $A$. By choosing one of them $x^{0}=\left(x_{1}^{0}, x_{2}^{0}\right)$, we perform a Weierstrass transformation (cf. [11, §2]). Namely, by transforming the cubic curve (7) into a Weierstrass cubic over $k(t)$ so that $x^{0}$ is mapped to the point at infinity $O$, we obtain

$$
\begin{equation*}
E^{(1)}: y^{2}=x^{3}+t^{2} A x+t^{2} B(t) \tag{8}
\end{equation*}
$$

where
(9) $A \in k, B(t)=B_{0} t^{2}+B_{1} t+B_{2} \in k[t]$

$$
\left(B_{0}, B_{2} \neq 0\right)
$$

are determined in terms of the coefficients of $f_{i}$. We then consider the twist of the elliptic curve $E^{(1)}$

$$
\begin{equation*}
F^{(1)}: y^{2}=x^{3}+t^{4} A x+t^{5} B(t) \tag{10}
\end{equation*}
$$

with respect to the quadratic extension $k(\sqrt{t}) / k(t)$. This is essentially the same as Inose's equation (2) and that given by Kuwata [6].

Further let $E^{(n)} / k(t)$ (resp. $\left.F^{(n)} / k(t)\right)$ denote the elliptic curve obtained from (8) (resp. (10)) by replacing $t \rightarrow t^{n}$. In other words, fixing a compatible system of variables $\left\{t_{n}(1 \leq n \leq 6)\right\}$ such that $\left(t_{n}\right)^{n}=t_{1},\left(t_{n}\right)^{d}=t_{e}$ for $n=d e$, we define the elliptic curves over $k\left(t_{n}\right)$ by

$$
\begin{align*}
& E^{(n)}=E^{(1)} \otimes_{k\left(t_{1}\right)} k\left(t_{n}\right) \\
& F^{(n)}=F^{(1)} \otimes_{k\left(t_{1}\right)} k\left(t_{n}\right)(1 \leq n \leq 6) \tag{11}
\end{align*}
$$

We sometimes write $t$ for $t_{n}$ in dealing with $E^{(n)} / k\left(t_{n}\right)$.

In the following, given an elliptic curve $E / k(t)$, we use the same symbol $E$ to denote the elliptic sur-
face over $\mathbf{P}^{1}$ (the $t$-line). Note that we have

$$
\begin{equation*}
E^{(2)} \simeq F^{(2)} \simeq \operatorname{Km}\left(C_{1} \times C_{2}\right) \tag{12}
\end{equation*}
$$

Also we have $E^{(4)} \simeq F^{(4)}$ and $E^{(6)} \simeq F^{(6)}$. The elliptic surfaces $F^{(n)}$ are $K 3$ surfaces for all $n \leq 6$, while $E^{(1)}$ and $E^{(3)}$ are rational elliptic surfaces. There is a rational map of degree $d=n / e$
(13) $\pi=\pi_{n, e}: F^{(n)} \longrightarrow F^{(e)},(x, y, t) \mapsto\left(x, y, t^{d}\right)$.
3. Mordell-Weil lattices of rank $16,17,18$. Now we assume that $C_{1}$ and $C_{2}$ are ont isomorphic (i.e. $j_{1} \neq j_{2}$ ), and let $h=\operatorname{rk} \operatorname{Hom}\left(C_{1}, C_{2}\right)$ as before. Also we denote by $C_{\tau}$ the elliptic curve isomorphic to $\mathbf{C} / \mathbf{Z}+\mathbf{Z} \tau$ as a complex torus, $\tau \in \mathbf{C}$ being a point in the upper half plane $\mathcal{H}$.

Theorem 3.1. The Mordell-Weil lattice $L^{(5)}=F^{(5)}(k(t))$ is a positive-definite even integral lattice of rank $r=16+h$ and minimal norm $\mu=4$. Its determinant and the center density $\delta$ are given as follows:
(i) If $h=0$ (i.e. $C_{1}$ and $C_{2}$ are not isogenous), we have $r=16$ and

$$
\operatorname{det} L^{(5)}=5^{4} / \nu^{2}, \quad \delta\left(L^{(5)}\right)=\nu / 25
$$

for some $\nu$ dividing $5^{2}$. Actually we have $\nu=1$ here (see below).
(ii) If $h=1$, let $m \geq 2$ be the minimal degree of isogenies $\phi: C_{1} \rightarrow C_{2}$ (the assumption $j_{1} \neq j_{2}$ implies that $m \neq 1$ ). Then $r=17$ and
$\operatorname{det} L^{(5)}=2 m \cdot 5^{3} / \nu^{2}, \quad \delta\left(L^{(5)}\right)=\nu / 5 \cdot \sqrt{10 m}$
for some $\nu$ dividing $5^{3}$.
(iii) If $h=2$, we may assume that $C_{1}=C_{\tau}$ and $C_{2}=C_{m \tau}$ with $\tau \in \mathcal{H}$ satisfying $a \tau^{2}+b \tau+c=0$ for some integers $a, b, c$ with $\operatorname{gcd}(a, b, c)=1$, and some positive integer $m \geq 2$ ([7]). Then $r=18$ and

$$
\begin{aligned}
& \operatorname{det} L^{(5)}=\left(4 a c-b^{2}\right) m^{2} 5^{2} / \nu^{2}, \\
& \delta\left(L^{(5)}\right)=\nu / 5 m \sqrt{4 a c-b^{2}}
\end{aligned}
$$

for some $\nu$ dividing $5^{2}$.
Theorem 3.2. The Mordell-Weil lattice $L^{(6)}=F^{(6)}(k(t))$ is a positive-definite even integral lattice of rank $r=16+h$ and minimal norm $\mu=4$. Its determinant and the center density $\delta$ are given as follows:
(i) If $h=0$ (i.e. $C_{1}$ and $C_{2}$ are not isogenous), we have $r=16$ and

$$
\operatorname{det} L^{(6)}=6^{4} / \nu^{2}, \quad \delta\left(L^{(6)}\right)=\nu / 36
$$

for some $\nu$ dividing $3^{2}$.
(ii) If $h=1$, let $m \geq 2$ be the minimal degree of isogenies from $C_{1}$ to $C_{2}$ as before. Then $r=17$ and

$$
\operatorname{det} L^{(6)}=2 m \cdot 6^{3} / \nu^{2}, \quad \delta\left(L^{(6)}\right)=\nu / 12 \cdot \sqrt{3 m}
$$

for some $\nu$ dividing $3^{3}$.
(iii) If $h=2$, we take $C_{1}=C_{\tau}$ and $C_{2}=C_{m \tau}$ with $\tau \in \mathcal{H}$ as before, with some $m \geq 2$. Then $r=18$ and

$$
\begin{aligned}
& \operatorname{det} L^{(6)}=\left(4 a c-b^{2}\right) m^{2} 6^{2} / \nu^{2}, \\
& \delta\left(L^{(6)}\right)=\nu / 6 m \sqrt{4 a c-b^{2}}
\end{aligned}
$$

for some $\nu$ dividing $3^{2}$.
Remark. According to [2, Table 1.2], the record lattice in dimension $r=16,17,18$ is given by the lattice $\Lambda_{r}$, whose center density is as follows:

$$
\delta\left(\Lambda_{16}\right)=1 / 16, \delta\left(\Lambda_{17}\right)=1 / 16, \delta\left(\Lambda_{18}\right)=1 / 8 \sqrt{3}
$$

Moreover an upper bound $\beta_{r}$ for center density is known as follows:

$$
\beta_{16}=0.11774, \beta_{17}=0.14624, \beta_{18}=0.18629
$$

Let us compare the lattices in the above theorems with these data.

First, for Theorem 3.1:

1. In (i), $\nu=1$ must hold, since otherwise the center density of $L^{(5)}$ will exceed the bound:

$$
\begin{aligned}
\left.\delta\left(L^{(5)}\right)\right|_{\nu=1} & =1 / 25<\delta\left(\Lambda_{16}\right) \\
& =1 / 16<\beta_{16}<\left.\delta\left(L^{(5)}\right)\right|_{\nu=5}=1 / 5
\end{aligned}
$$

2. In (ii), consider the case $m=2$. Then $\nu=1$ must hold again, because

$$
\begin{aligned}
\left.\delta\left(L^{(5)}\right)\right|_{\nu=1} & =1 / 10 \sqrt{5}<\delta\left(\Lambda_{17}\right) \\
& =1 / 16<\beta_{17}<\left.\delta\left(L^{(5)}\right)\right|_{\nu=5}=1 / 2 \sqrt{5}
\end{aligned}
$$

3. In (iii), consider the case $a=b=c=1$ and $m=2$. Then $\nu=1$ must hold again, because

$$
\begin{aligned}
\left.\delta\left(L^{(5)}\right)\right|_{\nu=1} & =1 / 10 \sqrt{3}<\delta\left(\Lambda_{18}\right) \\
& =1 / 8 \sqrt{3}<\beta_{18}<\left.\delta\left(L^{(5)}\right)\right|_{\nu=5}=1 / 2 \sqrt{3} .
\end{aligned}
$$

Next, for Theorem 3.2:
4. In (i), we have

$$
\begin{aligned}
\left.\delta\left(L^{(6)}\right)\right|_{\nu=1} & =1 / 36<\delta\left(\Lambda_{16}\right) \\
& =1 / 16<\left.\delta\left(L^{(6)}\right)\right|_{\nu=3}=1 / 12<\beta_{16} .
\end{aligned}
$$

Therefore, if $\nu=3$, the lattice $L^{(6)}$ would break the record in dimension 16 , but this is unlikely.
5. In (ii), consider the case $m=2$. Then we have

$$
\begin{aligned}
\left.\delta\left(L^{(6)}\right)\right|_{\nu=1} & =1 / 12 \sqrt{6}<\delta\left(\Lambda_{17}\right) \\
& =1 / 16<\left.\delta\left(L^{(6)}\right)\right|_{\nu=3}=1 / 4 \sqrt{6}<\beta_{17} .
\end{aligned}
$$

Hence, if $\nu=3$, the lattice $L^{(6)}$ would break the record in dimension 17 .
6. In (iii), consider the case $a=b=c=1$ and $m=2$. Then

$$
\begin{aligned}
\left.\delta\left(L^{(6)}\right)\right|_{\nu=1} & =1 / 12 \sqrt{3}<\delta\left(\Lambda_{18}\right) \\
& =1 / 8 \sqrt{3}<\left.\delta\left(L^{(6)}\right)\right|_{\nu=3}=1 / 4 \sqrt{3}<\beta_{18}
\end{aligned}
$$

Here again, if $\nu=3$, the lattice $L^{(6)}$ would break the record in dimension 18.
4. Outline of the proof. The elliptic $K 3$ surface $X=F^{(n)}(n=5,6)$ has no reducible fibres under the assumption $j_{1} \neq j_{2}$.

As for the minimal norm, this implies that the Mordell-Weil lattice coincides with the narrow Mordell-Weil lattice (see [9], [10] for this and other facts on MWL). Then the height formula says that

$$
\langle P, P\rangle=2 \chi+2(P O) \geq 4
$$

for any $P \in F^{(n)}(k(t)), p \neq O$, which shows that the minimal norm $\mu$ of $L^{(n)}$ is at least 4 (cf. [9, Th.8.7]). That $\mu=4$ follows from the following:

Proposition 4.1. The lattice $L^{(n)}(n=5,6)$ contains a sublattice isomorphic to $E_{8}[2]$ whose minimal norm is equal to 4.
N. B. Given a lattice $L$, we denote by $L[n]$ the lattice whose pairing is $n$-times the original pairing on $L$. The letters $A_{n}, D_{n}, \ldots, E_{s}$ stand for the root lattices as usual.

The proof of Proposition 4.1 for $n=6$ reduces to (ii) of the next proposition, by using the natural map of degree 2 from $F^{(6)}$ to $E^{(3)}$ in view of [9, Prop.8.12]. The case $n=5$ in similar.

## Proposition 4.2.

(i) The Mordell-Weil lattice of the rational elliptic surafce $E^{(1)}$ is equal to $\left(A_{2}^{*}\right)^{\oplus 2}$, where $A_{2}^{*}$ is the dual lattice of the root lattice $A_{2}$.
(ii) The Mordell-Weil lattice of the rational elliptic surface $E^{(3)}$ is isomorphic to the root lattice $E_{8}$ ( $c f$. [8]).
On the other hand, for the determinant, we have (ignoring the sign)

$$
\begin{equation*}
\operatorname{det} L^{(n)}=\operatorname{det} N S\left(F^{(n)}\right)=\operatorname{det} T\left(F^{(n)}\right) \tag{14}
\end{equation*}
$$

where $T(X)$ denotes the lattice of transcendental
cycles on a complex algebraic surface $X$. The first equality holds because there are no reducible fibres, while the second equality results from the following: by definition, $T(X)$ is the orthogonal complement of $N S(X)$ in $H^{2}(X, \mathbf{Z})$, which is (modulo torsion) a unimodular lattice by the Poincaré duality. Let $\lambda(X)=\operatorname{rk} T(X)=b_{2}(X)-\rho(X)$.

Based on Inose's work [3], [4], we can prove the following.

Lemma 4.3. If $X, Y$ are complex surfaces with the same geometric genus $p_{g}(X)=p_{g}(Y)$ and if $\pi: X \rightarrow Y$ is a rational map of degree $n$, then we have $\lambda(X)=\lambda(Y)$, and

$$
n T(X) \subset \pi^{*} T(Y) \subset T(X), \quad \pi^{*} T(Y) \simeq T(Y)[n]
$$

Denoting by $\nu=\nu(X / Y)$ the index of $\pi^{*} T(Y)$ in $T(X)$, we have

$$
\begin{equation*}
\operatorname{det} T(X)=\operatorname{det} T(Y) \cdot n^{\lambda(X)} / \nu^{2} \tag{15}
\end{equation*}
$$

Theorem 4.4. Let $A=C_{1} \times C_{2}$ and let $F^{(n)}$ be the elliptic K3 surfaces defined in §2. Then, for any $n \leq 6, T\left(F^{(n)}\right)$ has rank $\lambda=4-h$ and it contains $T(A)[n]$ as a sublattice of finite index $\nu$ which divides a power of $n$. Thus we have

$$
\begin{equation*}
\operatorname{det} T\left(F^{(n)}\right)=\operatorname{det} T(A) \cdot n^{4-h} / \nu^{2} \tag{16}
\end{equation*}
$$

Moreover $\nu$ is equal to 1 if $n=1$ or 2 .
Thus we have outlined the proof of Theorems 3.1 and 3.2.

Of course, Mordell-Weil lattices contain more information on the rational points, not just the minimal norm or determinant. Here are some examples.

Example. (1) Take $C_{1}: y^{2}=x^{3}-1, C_{2}$ : $y^{2}=x^{3}-x$ so that $j_{1}=0, j_{2}=1$ and $h=0$. Then $\operatorname{Km}\left(C_{1} \times C_{2}\right)$ is isomorphic to the elliptic surface $F^{(2)}: y^{2}=x^{3}+t^{4}\left(t^{4}+1\right)$. Its Mordell-Weil lattice is $F^{(2)}(k(t)) \simeq\left(A_{2}^{*}[2]\right)^{\oplus 2}$. It has 12 rational points $(x, y)=\left(a t^{2}, \pm t^{2}\left(t^{2} \pm 1\right)^{2}\right)\left(a^{3}= \pm 2\right)$ corresponding to the minimal vectors.

The Mordell-Weil lattice of $F^{(6)}: y^{2}=x^{3}+$ $t^{12}+1$ has rank 16. We have

$$
\begin{aligned}
F^{(6)}(k(t)) & \supset E^{(3)}\left(k\left(t^{2}\right)\right) \oplus F^{(3)}\left(k\left(t^{2}\right)\right) \\
& \supset E_{8}[2] \oplus\left(D_{4}^{*}[6]\right)^{\oplus 2},
\end{aligned}
$$

where the root lattices come from the Mordell-Weil lattices of rational elliptic surfaces. The generators (even basis) for this sublattice can be explicitly described.

In this case, $\operatorname{det} F^{(6)}(k(t))=36^{2}$ has been directly shown in Usui $[12, \mathrm{II}]$.
(2) Next take $C_{1}: y^{2}=x^{3}-1$ and let $\phi$ : $C_{1} \rightarrow C_{2}$ be an isogeny of degree 2 . We have $h=2$ in this case. Then $\operatorname{Km}\left(C_{1} \times C_{2}\right)$ is isomorphic to the elliptic surface $F^{(2)}: y^{2}=x^{3}+t^{4}\left(t^{4}-11 t^{2}-1\right)$, as given by Kuwata.

The Mordell-Weil lattice of $F^{(6)}: y^{2}=x^{3}+t^{12}-$ $11 t^{6}-1$ has rank $16+h=18$. It has a sublattice of rank 16 which is similar to the above. The missing rank comes from $F^{(1)}: y^{2}=x^{3}+t^{5}\left(t^{2}-11 t-1\right)$. In [1], the authors have found rational points (sections) of height 4 on the latter.

Let $\Gamma \subset A=C_{1} \times C_{2}$ be the graph of the isogeny $\phi: C_{1} \rightarrow C_{2}$. By keeping track of the image of $\Gamma$ under the rational map $A \rightarrow \operatorname{Km}(A) \rightarrow F^{(1)}$, these rational points can be found in a slightly more conceptual way.

More generally, $F^{(1)}$ is an interesting $K 3$ surface related to $\operatorname{Hom}\left(C_{1}, C_{2}\right)$.

Proposition 4.5. $\operatorname{Hom}\left(C_{1}, C_{2}\right)$ has the structure of an even lattice, with norm defined by $\phi \mapsto$ $2 \operatorname{deg}(\phi)$. The Mordell-Weil lattice of the elliptic K3 surface $F^{(1)}$ has the same rank and determinant as the lattice $\operatorname{Hom}\left(C_{1}, C_{2}\right)$, provided that $j_{1} \neq j_{2}$.

## References

[ 1 ] Chahal, J., Meijer, M., and Top, J.: Sections on certain $j=0$ elliptic surfaces. Comment. Math., Univ. St. Pauli, 49 (2000) (to appear).
[ 2 ] Conway, J., and Sloane, N.: Sphere Packings, Lattices and Groups. 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York (1993).
[ 3 ] Inose, H.: On certain Kummer surfaces which can be realized as non-singular quartic surfaces in $\mathbf{P}^{3}$. J. Fac. Sci. Univ. Tokyo, 23, 545-560 (1976).
[ 4 ] Inose, H.: Defining equations of singular $K 3$ surfaces and a notion of isogeny. Intl. Symp. on Algebraic Geometry/Kyoto 1977. Kinokuniya, Tokyo, pp. 495-502 (1978).
[5] Inose, H., and Shioda, T.: On singular K3 surfaces. Complex Analysis and Algebraic Geometry. Iwanami Shoten, Tokyo and Cambridge Univ. Press, Cambridge-New York, pp. 119-136 (1977).
[6] Kuwata, M.: Elliptic $K 3$ surfaces with given Mordell-Weil rank. Comment. Math. Univ. St. Pauli, 49 (2000) (to sppear).
[ 7 ] Mitani, N., and Shioda, T.: Singular abelian surfaces and binary quadratic forms. Lect. Notes in Math., 412, Springer, Berlin-Heidelberg-New York, pp. 259-287 (1974).
[8] Oguiso, K., and Shioda, T.: The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Pauli, 40, 83-99 (1991).
[ 9 ] Shioda, T.: On the Mordell-Weil lattices. Comment. Math. Univ. St. Pauli, 39, 211-240 (1990).
[10] Shioda, T.: Mordell-Weil lattices and sphere packings. Amer. J. Math., 113, 931-948 (1991).
[11] Shioda, T.: Weierstrass transformations and cubic surfaces. Comment. Math. Univ. St. Pauli, 44, 109-128 (1995).
[12] Usui, H.: On the Mordell-Weil lattice of the elliptic curve $y^{2}=x^{3}+t^{m}+1$, I. Comment. Math. Univ. St. Pauli, 49 (2000) (to appear); II (in preparation).


[^0]:    1991 Mathematics Subject Classification. Primary 11H31, 14J27, 14J28.

