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A stochastic variational condition for the Maxwell connections
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Abstract: The infinitesimal reduced variation of the stochastic parallel displacement on
the commutative principal bundle is martingale if and only if the connections satisfy the Maxwell
equations.
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1. Introduction and results. In this brief
note we shall show some connections between the
Maxwell equations and the stochastic parallel dis-
placement along the Brownian path as an application
of the stochastic variational theory by P. Malliavin
([2]).

R. O. Bauer ([1]) recently showed that some
variational problems of stochastic parallel displace-
ment give the non-commutative Maxwell equations
or the Yang-Mills equations. He perturbed the con-
nections of the principal bundle which determine
the stochastic parallel displacement to get the Yang-
Mills equations; but we shall show that we can sub-
stitute the variational problem on the path space in
Malliavin’s sense for the perturbation of the connec-
tions at least in commutative situation.

We can start with the simple setting:
Let (X1

t , X2
t , . . . , Xn

t ) be the standard Brown-
ian motion on the n dimensional Euclidian space
and Xn+1

t be the stochastic parallel displacement
along the Brownian path (X1

t , . . . , Xn
t ). Our process

Xt = (X1
t , . . . , Xn

t , Xn+1
t ) is defined on the trivial

principal bundle Rn×U(1) by the following stochas-
tic differential equations (S.D.E.):

dXi
t = dwi

t, (i = 1, 2, . . . , n)

dXn+1
t =

n∑
µ=1

Aµ(X1
t , . . . , Xn

t )Xn+1
t ◦ dwµ

t ,

Xi
0 = xi, (i = 1, 2, . . . , n + 1)

where (w1
t , . . . , wn

t ) is the standard Brownian motion
on Rn and Aµ(x) are the pure imaginary smooth
functions Aµ : Rn → iR, which are called the con-
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nections on the principal bundle or the vector poten-
tials. The initial datas x1, . . . , xn are real valued and
xn+1 is an element of U(1). We denote by ◦dwt the
Stratonovitch differential. Let us denote simply the
system of the S.D.E. above in the one line:

dXi
t =

n∑
µ=1

Ãi
µ(Xt) ◦ dwµ

for i = 1, 2, . . . , n + 1, where Ãi
µ is naturally de-

fined by Aµ and the initial conditions are the same
above. We consider the derivative on the path space
in Malliavin’s sense. We know that the derivative
DwXt for the process Xt = Xt(x,w) is given by

DwXt[h] = 〈fs, h〉

= Yt

∫ t

0

(Y −1
s Ã(Xs))ḣ(s)ds,

where Yt = Y i
j (t) = ∂Xi/∂xj(x,w) and h ∈ CM

(the Cameron-Martin space), that is, h is absolutely
continuous and its Radon-Nikodym derivative ḣ is
square integrable.

Note that fs means the infinitesimal reduced
variation of the stochastic parallel displacement (see
[3]).

In this simple setting, our result is the following.
Theorem 1. fs is a martingale if and only if

Aµ satisfies the Maxwell equations.
Remark. We can automatically extend this to

the theorem for the trivial principal bundles of dif-
ferentiable Riemannian manifolds and commutative
groups because our proof below can also be applied
to the situation in the same way. The essential point
of our proof is that we can explicitly solve the S.D.E.
of the stochastic parallel displacement, and it works
in the general commutative case.
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2. Proof of the theorem. Our proof is by
explicit calculations. Of course we can solve the
S.D.E. on the preceding page:

Xi(t) = xi + wi
t (i = 1, 2, . . . , n)

and

Xn+1(t) = xn+1 exp{∫ t

0

n∑
µ=1

Aµ(X1(s), . . . , Xn(s)) ◦ dwµ
s

}
.

By this explicit form of Xi(t), we can get the expres-
sion of the matrix valued process Y i

j (t):

Y i
j (t) =



1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 0

Y n+1
1 Y n+1

2 . . . . . . Y n+1
n+1

 ,

where Y n+1
j are

Y n+1
j (t) = Xn+1

t

∫ t

0

∂Aµ

∂xj
◦ dwµ

for j = 1, 2, . . . , n, and

Y n+1
n+1 (t) = exp

∫ t

0

n∑
µ=1

Aµ ◦ dwµ
s .

Remember that Ãi
µ(x) is the (n+1, n) -matrix, whose

entries are

Ãi
µ(x) =

{
δiµ, (1 ≤ i, µ ≤ n)

An+1
µ (x1, . . . , xn)xn+1, (i = n + 1)

where δiµ is 1 if i = µ and is 0 the otherwise. Here we
can get the form of fs = Y −1Ã by easy calculations.
Then the non-constant entries of fs are

rν = xn+1

(∫ t

0

∑
µ

∂νAµ ◦ dwµ −Aν

)
where ∂ν denotes the derivative by ν-th coordinate.
By Itô formula,

rν

xn+1
=
∫ t

0

∑
µ

∂νAµ ◦ dwµ

−Aν(0)−
∫ t

0

∑
µ

∂µAν ◦ dwµ

= −Aν(0)

+
∫ t

0

∑
µ

(∂νAµ − ∂µAν) ◦ dwµ

= −Aν(0)

+
∫ t

0

∑
µ

(∂νAµ − ∂µAν)dwµ

+
1
2

∫ t

0

∑
µ

∂µ(∂νAµ − ∂µAν)dt.

In the last line above, we rewrote the Stratonovitch
type integral to the Itô type one. If fs is a martin-
gale, the third term of the right hand side vanishes
for any coordinate ν and now we get the Maxwell
equations on the n dimensional state space with
imaginary time: ∑

µ

∂µFνµ = 0,

where

Fνµ = (∂νAµ − ∂µAν)

is the curvature of the principal bundle or the field
strength. If the Maxwell equations are satisfied, fs is
a martingale. The proof of the theorem is complete.

The author have not found the suitable setting
for non-commutative case at present, but we shall
discuss this problem in the following article.
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