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Bernstein degree of singular unitary highest weight representations

of the metaplectic group

By Kyo Nishiyama∗) and Hiroyuki Ochiai∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Feb. 12, 1999)

Let ω be the Weil representation of the meta-
plectic double cover G = Mp(2n,R) of the symplec-
tic group Sp(2n,R) of rank n. Consider the m-fold
tensor product ω⊗m of ω. Then the orthogonal group
O(m) acts on ω⊗m from the right and the action gen-
erates the full algebra of intertwiners. Therefore we
can decompose ω⊗m as G×O(m)-module (see [6, 7]):

ω⊗m =
⊕

σ∈ bO(m)

L(σ)⊗ σ.

In this article, we consider L(1m) (1 ≤ m ≤ n)
which corresponds to the trivial representation 1m

of O(m). If 1 ≤ m ≤ n, L(1m) is an irreducible
singular unitary highest weight representation of G

and it has one-dimensional minimal K-type. Note
that, if m is even, then L(1m) factors through and
gives an irreducible representation of Sp(2n,R).

The aim of this article is to give a formula for
the Bernstein degree of L(1m), which is denoted by
Deg L(1m) (See Section 1). Main results are Theo-
rem 1.2 and Corollary 2.3. We prove them by using
Gindikin gamma function on a positive Hermitian
cone in Section 2. On the other hand, the representa-
tion L(1m) is realized on the so-called determinantal
variety, and the calculation of Deg L(1m) is equiv-
alent to obtaining the degree of the determinantal
variety. Its degree is already known as Giambelli’s
formula and proved by Harris and Tu [4] with the
help of Thom-Porteous formula. Therefore our for-
mula gives an alternative proof of the Giambelli’s
formula. We shall explain it briefly in Section 3.

1. Bernstein degree of L(1m). Let K be
a maximal compact subgroup of G. Then K is iso-
morphic to the non-trivial double cover of U(n). K-
finite vectors in ω⊗m can be identified with detm/2⊗
C[Mn,m] by the Fock realization of ω, where Mn,m

denotes the space of n×m matrices. In this picture,
K acts naturally from the left (but with the shift
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by detm/2) and O(m) acts from the right. By the
characterization of L(1m), we get

L(1m)
∣∣
K
' detm/2 ⊗C[Mn,m]O(m).

The following lemma is well-known. See [5, p. 35],
for example.

Lemma 1.1. As a representation of U(n), we
have the multiplicity free decomposition

C[Mn,m]O(m) '
⊕

l(λ)≤m

τ2λ,

where τµ denotes the irreducible finite dimensional
representation of U(n) with the highest weight µ, and
the summation is taken over all the partition λ of the
non-negative integers of length less than or equal to
m.

Using this lemma, we can define a natural K-
invariant filtration of L(1m) by putting L(1m)k =
detm/2 ⊗

(⊕
|λ|≤k,l(λ)≤m τ2λ

)
(k ≥ 0). Let d =

Dim L(1m) be the Gelfand-Kirillov dimension of
L(1m) and denote by Deg L(1m) the Bernstein de-
gree (see [10] for definition). Then the theory of
Hilbert polynomials tells us that, for sufficient large
k, dim L(1m)k is a polynomial in k and the top term
is given by

dim L(1m)k =
Deg L(1m)

d!
kd + (lower terms in k).

It is easy to see that d = Dim L(1m) = nm−m(m−
1)/2 (cf. Eq. (1) below).

Theorem 1.2. The Bernstein degree of L(1m)
is given by

Deg L(1m) =
2d−md!

m!
∏m

i=1(n− i)!

×
∫

xi≥0,
Pm

i=1 xi≤1

(x1x2 · · ·xm)n−m

×
∏

1≤i<j≤m

|xi − xj |dx1dx2 · · · dxm.

Remark 1.3. We shall give the exact formula
for the integral in the next section.
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Proof . By Weyl’s dimension formula, we have

Deg L(1m)(1)

= lim
k→∞

d!
kd

∑
l(λ)≤m,|λ|≤k

∏
α∈∆+

〈2λ + ρ, α〉
〈ρ, α〉

,

where ∆+ is a positive system of the roots of U(n),
and ρ =

∑
α∈∆+ α/2. From this formula, we get the

integral.
2. Integral over the positive Hermitian

cones. Let us slightly generalize the integral in
Theorem 1.2, and put

I(s,m) =
∫

xi≥0,
Pm

i=1 xi≤1

(x1x2 · · ·xm)s(2)

×
∏

1≤i<j≤m

|xi − xj |αdx1dx2 · · · dxm.

We give the exact formula of the integral in this sec-
tion. It arises as a natural integral over a positive
Hermitian cone.

Let V = Herm(m,F), the space of Hermitian
m × m matrices over the field F = R,C,H. Put
N = dimR V = m + α

2 m(m − 1), where α =
dimR F (= 1, 2, 4). Denote by Ω the cone of posi-
tive definite Hermitian matrices with scalar product
(x, y) = Re trace xy∗.

Lemma 2.1. For a function ϕ on the interval
[0,∞) and Re s > −1, we have∫

Ω

ϕ(trace y)(det y)sdy(3)

=
ΓΩ(s + N/m)
Γ(sm + N)

∫ ∞

0

ϕ(t)tsm+N−1dt,

where dy is the Euclidean measure on V and ΓΩ(s)
is the Gindikin gamma function of the cone Ω
(see [1, Chapter VII]).

Proof . Put

h(t, s) =
∫

Ω

(det y)sδ(trace y − t) (t > 0),

where δ(x) means the Dirac measure. Then the func-
tion h(t, s) is homogeneous in t of degree sm+N − 1,
i.e., h(λt, s) = λsm+N−1h(t, s) (λ > 0). Therefore we
have h(t, s) = g(s)tsm+N−1, where g(s) = h(1, s).
Take ϕ(t) = e−t in the left hand side of the formula
(3). Then we get∫

Ω

e− trace y(det y)sdy

= g(s)
∫ ∞

0

e−ttsm+N−1dt

= g(s)Γ(sm + N).

On the other hand, the left hand side of the above
formula is ΓΩ(s + N/m) by definition. So we get
g(s) = ΓΩ(s + N/m)/Γ(sm + N) and we have done.

Theorem 2.2. Let I(s,m) be as in (2). For
Re s > −1 and α = 1, 2, 4, we have

I(s,m) =

∏m
j=1 Γ(jα/2 + 1)Γ(s + 1 + (j − 1)α/2)

Γ(α/2 + 1)mΓ(sm + N + 1)
.

Proof . If we denote by (x1, · · · , xm) the eigen-
values of y ∈ Ω, we get∫

Ω

ϕ(trace y)(det y)sdy

= c0

∫
xi≥0

ϕ(
m∑

i=1

xi)(x1x2 · · ·xm)s

×
∏

1≤i<j≤m

|xi − xj |αdx1dx2 · · · dxm,

for some non-zero constant c0. If we take ϕ = χ[0,1]

the characteristic function of the interval [0, 1], we
can calculate the integral modulo the constant c0:

I(s,m) =
1
c0

∫
Ω

χ[0,1](trace y)(det y)sdy

=
1
c0

ΓΩ(s + N/m)
Γ(sm + N)

∫ 1

0

tsm+N−1dt

(by Lemma 2.1)

=
1
c0

ΓΩ(s + N/m)
Γ(sm + N + 1)

.

Since c0

∏
|xi − xj |α appears as the Jacobian of the

integral, we can calculate it as

(
√

2π)N =
∫

V

exp(−‖y‖2/2)dy

= c0

∫
Rm

exp(−
∑

i

x2
i /2)

×
∏
|xi − xj |αdx1 · · · dxm

= c0(2π)m/2
m∏

j=1

Γ(jα/2 + 1)
Γ(α/2 + 1)

.

The last equality follows from Selberg’s integral (see
[1, p. 121]). Now the formula above and the product
formula for the Gindikin gamma function ([1, Chap-
ter VII], see also [9, p. 585]) proves the theorem.

As for the integral I(s,m), see [8, Hilfsatz 10]
also.
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Corollary 2.3.

Deg L(1m)

=
2d

πm/2m!

m∏
j=1

Γ(j/2 + 1)Γ(d/m− (j − 1)/2)
Γ(n− j + 1)

.

3. Degree of the determinantal varieties.
Let Symn(m) = {X ∈ Mn(C) | tX = X, rank X ≤
m} be the variety of symmetric matrices of rank at
most m. This is called the determinantal variety.

Theorem 3.1. There is a GLn-equivariant
isomorphism C[Symn(m)] ' C[Mn,m]O(m) by the
pull back of the following map of the base spaces.

Mn,m 3 X 7−→ XtX ∈ Symn(m)

Proof . This fact is well-known in invariant
theory. See [5] for example.

The variety of symmetric matrices modulo
scalars forms a projective space P(Symn). The
homogeneous coordinate ring of the subvariety
P(Symn(m)) is C[Symn(m)]. Therefore the calcu-
lation of the degree of C[Mn,m]O(m) is equivalent
to that of the determinantal variety. The degree of
the subvariety P(Symn(m)) is given by the so-called
Giambelli’s formula.

Theorem 3.2 [4, Proposition 12]. Let r = n−
m. The degree of the subvariety P(Symn(m)) is
given by

deg(P(Symn(m))) =
r−1∏
j=0

(
n + j
r − j

)
(

2j + 1
j

) .

This theorem goes back to [3]. In [4], Harris and
Tu proved the formula in the geometric way. The
representation theoretic degree Deg L(1m) coincides

with the formula above, and our formula in Corollary
2.3 gives an alternative proof of it.
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