The fundamental group of the moduli space of polygons in the Euclidean plane

By Shuichi Tsukuda
Department of Mathematical Sciences, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213
(Communicated by Shigefumi Mori, m.J.A., June 15, 1999)

1. Introduction. Let \mathcal{C}_{n} be the configuration space of planar polygons with n vertices, each edge having length 1 in \mathbf{R}^{2};

$$
\begin{gathered}
\mathcal{C}_{n}=\left\{\left(u_{1}, \ldots, u_{n}\right)| | u_{i+1}-u_{i} \mid=1(1 \leq i \leq n-1),\right. \\
\left.\left|u_{1}-u_{n}\right|=1\right\} \subset\left(\mathbf{R}^{2}\right)^{n} .
\end{gathered}
$$

Note that Iso $\left(\mathbf{R}^{2}\right)$, the isometry group of \mathbf{R}^{2}, naturally acts on \mathcal{C}_{n}. We define

$$
\begin{aligned}
M_{n} & =\mathcal{C}_{n} / \operatorname{Iso}^{+}\left(\mathbf{R}^{2}\right) \\
M_{n}^{\prime} & =\mathcal{C}_{n} / \operatorname{Iso}\left(\mathbf{R}^{2}\right)
\end{aligned}
$$

where $\mathrm{IsO}^{+}\left(\mathbf{R}^{2}\right)$ is the orientation preserving isometry group. Identifying \mathbf{R}^{2} with \mathbf{C}, we can write M_{n} as

$$
\begin{aligned}
M_{n}=\left\{\left(z_{1}, \ldots, z_{n-1}\right) \mid z_{1}+\ldots+z_{n-1}\right. & -1=0\} \\
& \subset\left(S^{1}\right)^{n-1}
\end{aligned}
$$

and $M_{n}^{\prime}=M_{n} / \sigma$ where σ is the complex conjugation. Note that the action of σ on M_{n} is free if n is odd and has fixed points if n is even.

For $n \leq 5$, the explicit topological type of M_{n} is known ([1], [2], [4], and [8]).

It is known that $M_{2 m+1}$ is a smooth manifold, while $M_{2 m}$ is a manifold with singular points ([5], [7], and [9]).

The purpose of this paper is to study the fundamental group of $M_{2 m}$ and $M_{2 m}^{\prime}$.

In [7], Y. Kamiyama and M. Tezuka showed by the Morse theory that if n is odd, the inclusion

$$
i_{n}: M_{n} \rightarrow\left(S^{1}\right)^{n-1}
$$

is a homotopy equivalence up to certain dimension.
Theorem 1.1 ([7]).

$$
\left(i_{2 m+1}\right)_{*}: \pi_{q}\left(M_{2 m+1}\right) \rightarrow \pi_{q}\left(\left(S^{1}\right)^{2 m}\right)
$$

is an isomorphism for $q \leq m-2$.
T.Hinokuma and H.Shiga showed the corresponding result for even n using the other Morse function ([3]). We give the alternative proof based on the method of [7] and show the following.

Theorem 1.2.

$$
\left(i_{2 m}\right)_{*}: \pi_{q}\left(M_{2 m}\right) \rightarrow \pi_{q}\left(\left(S^{1}\right)^{2 m-1}\right)
$$

is an isomorphism for $q \leq m-2$.
Remark 1.3. In [3], much more information about the topology of M_{n} is obtained.

In particular we have the following.
Corollary 1.4. $\pi_{1}\left(M_{2 m}\right)$ is abelian for $m \geq 3$.
The topology of M_{n}^{\prime} is studied in [6] and he determined the fundamental group of $M_{2 m+1}^{\prime}$ as well as almost all the homology groups of M_{n}^{\prime}.

We determine the fundamental group of $M_{2 m}^{\prime}$.
Theorem 1.5. For $m \geq 3$

$$
\pi_{1}\left(M_{2 m}^{\prime}\right)=\mathbf{Z} / 2
$$

2. Outline of the proof of Theorem 1.2. Following [7], we consider the function

$$
g_{2 m-1}:\left(S^{1}\right)^{2 m-1} \rightarrow \mathbf{R}
$$

defined by $g_{2 m-1}\left(z_{1}, \ldots, z_{2 m-1}\right)=\mid z_{1}+\ldots+z_{2 m-1}-$ $\left.1\right|^{2}$. Note that $g_{2 m-1}^{-1}(0)=M_{2 m}$ is a "critical singular submanifold".

Proposition 2.1 ([7]).

$$
\left(z_{1}, \ldots, z_{2 m-1}\right) \in\left(S^{1}\right)^{2 m-1}-M_{2 m}
$$

is a critical point of $g_{2 m-1}$ if and only if $z_{i}=$ $\pm 1(1 \leq i \leq 2 m-1)$. Moreover such points are non-degenerate with index greater than or equal to m.

Proposition 2.2. There exist $0<\varepsilon<2$ and a retraction $r: g_{2 m-1}^{-1}([0, \varepsilon]) \rightarrow M_{2 m}$.

Combining these propositions, we see that $\left(i_{2 m}\right)_{*}: \pi_{q}\left(M_{2 m}\right) \rightarrow \pi_{q}\left(\left(S^{1}\right)^{2 m-1}\right)$ is injective for $q \leq$ $m-2$. By [7], we know that $\left(i_{2 m}\right)_{*}: H_{1}\left(M_{2 m} ; \mathbf{Z}\right) \rightarrow$ $H_{1}\left(\left(S^{1}\right)^{2 m-1} ; \mathbf{Z}\right)$ is an isomorphism, which complete the proof.
3. Outline of the proof of Theorem 1.5. We set

$$
\Sigma_{n-1}=\left\{\left(z_{1}, \ldots, z_{n-1}\right) \mid z_{i}= \pm 1\right\} \subset\left(S^{1}\right)^{n-1}
$$

$\Sigma_{n-1}^{1}=\left\{\left(z_{1}, \ldots, z_{n-1}\right) \mid z_{i}= \pm 1, \sum z_{i}=1\right\} \subset \Sigma_{n-1}$
$\Sigma_{n-1}^{2}=\left\{\left(z_{1}, \ldots, z_{n-1}\right) \mid z_{i}= \pm 1, \sum z_{i} \neq 1\right\} \subset \Sigma_{n-1}$.
Note that Σ_{n-1} is the fixed point set of the action of σ, the complex conjugation, on $\left(S^{1}\right)^{n-1}$ and $\Sigma_{n-1}^{1}=$ $\Sigma_{n-1} \cap M_{n}$. We define V_{n-1} and V_{n-1}^{\prime} by

$$
\begin{aligned}
& V_{n-1}=\left(S^{1}\right)^{n-1}-\Sigma_{n-1} / \sigma \\
& V_{n-1}^{\prime}=\left(S^{1}\right)^{n-1}-\Sigma_{n-1}^{2} / \sigma
\end{aligned}
$$

respectively. Then we have the following map of covering spaces.

Let $i_{n}^{\prime}: M_{n}^{\prime} \rightarrow V_{n-1}^{\prime}$ be the inclusion. Since $\Sigma_{2 m}^{1}=\emptyset$ and $V_{2 m}=V_{2 m}^{\prime}$, we have the following ([6]).

Theorem 3.1 ([6]).

$$
\left(i_{2 m+1}^{\prime}\right)_{*}: \pi_{q}\left(M_{2 m+1}^{\prime}\right) \rightarrow \pi_{q}\left(V_{2 m}^{\prime}\right)
$$

are isomorphisms for $q \leq m-2$ and an epimorphism for $q=m-1$.

For even n, we have the following.
Lemma 3.2. The inclusion induces an isomorphism of fundamental group $\pi_{1}\left(M_{2 m}-\Sigma_{2 m-1}^{1}\right) \cong$ $\pi_{1}\left(V_{2 m-1}\right)$ for $m \geq 4$.

By Van Kampen Theorem and diagram chasing with a little more work for $m=3$, we have the following lemmas which complete the proof of Theorem 1.5 .

Lemma 3.3.

$$
\left(i_{2 m}^{\prime}\right)_{*}: \pi_{1}\left(M_{2 m}^{\prime}\right) \rightarrow \pi_{1}\left(V_{2 m-1}^{\prime}\right)
$$

is an isomorphism for $m \geq 3$.
Lemma 3.4. $\pi_{1}\left(V_{2 m-1}^{\prime}\right)=\mathbf{Z} / 2$.

References

[1] J. C. Hausmann: Sur la topologie des bras articuleś. Algebraic Topology, Poznań, 1989, Lecture Notes in Math., 1474, 146-159 (1991).
[2] T. Havel: The use of distances as coordinates in computer-aided proofs of theorems in Euclidean geometry. J. Symbolic Comput., 11, 579-593 (1991).
[3] T. Hinokuma and H. Shiga: Topology of the configuration space of polygons as a codimension one submanifold of a torus. Publ. Res. Inst. Math. Sci., Kyoto Univ., 34, 313-324 (1998).
[4] Y. Kamiyama: An elementary proof of a theorem of T. F. Havel. Ryukyu Math. J., 5, 7-12 (1992).
[5] Y. Kamiyama: Topology of equilateral polygon linkages. Topology Appl., 68, 13-31 (1996).
[6] Y. Kamiyama: Topology of equilateral polygon linkages in the Euclidean plane modulo isometry group. Osaka J. Math. (to appear).
[7] Y. Kamiyama and M. Tezuka: Topology and geometry of equilateral polygon linkages in the Euclidean plane. Quart. J. Math. (to appear).
[8] M. Kapovich and J. Millson: On the moduli space of polygons in the Euclidean plane. J. Differential Geom., 42, 133-164 (1995).
[9] I. Schoenberg: Linkages and distance geometry, I. Linkages. Indag. Math., 31, 42-52 (1969).

