"Hasse principle" for $S L_{n}(D)$

By Hideo Wada
Department of Mathematics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554
(Communicated by Shokichi Iyanaga, m.J.A., May 12, 1999)

1. Notation and results. Extending the usage of language in Galois cohomology, T. Ono defined "Hasse principle" for any group G (cf. [2]). We know that the Hasse principle holds for $G=$ abelian, dihedral, quatenion, $P S L_{2}(\mathbf{Z}), P S L_{2}\left(\mathbf{F}_{p}\right)$ (cf. [2]), free groups ([3]), symmetric groups and alternating groups ([4]).
Let D be an Euclidean domain(for examples $D=\mathbf{Z}$, $D=\mathbf{F}_{p}$). Put $\varepsilon=(-1)^{n-1}$ and we define in $S L_{n}(D)$

$$
\begin{gathered}
S=\left(\begin{array}{ccccc}
0 & \ldots & \ldots & 0 & \varepsilon \\
1 & \ddots & & & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & 0
\end{array}\right) \\
T_{\mu}=\left(\begin{array}{cccccc}
1 & \mu & 0 & \ldots & 0 \\
0 & \ddots & 0 & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right), T=T_{1}
\end{gathered}
$$

Then $S L_{n}(\mathbf{Z})$ is generated by S and T (cf.[1]). Similarly using Eucledian algorithm we can prove that $S L_{n}(D)$ is generated by S and $\left\{T_{\mu} \mid \mu \in D\right\}$. Using this fact, T. Ono proved that $S L_{2}(D)$ enjoys the Hasse principle (unpublished). In this paper, we shall prove more generally the following

Theorem. For any natural number $n, S L_{n}(D)$ and $P S L_{n}(D)$ enjoy the Hasse principle.
M. Mazur [5] noticed that $f(x)$ is a cocycle iff $g(x)=f(x) x$ is an endomorphism of $G, f(x)$ is a local coboundary iff $g(x) \sim x$ (conjugate in G) for each $x \in G$ and $f(x)$ is a global coboundary iff $g(x)$ is an inner automorphism. Therefore "Hasse principle" is equivalent to say that "any endomorphism of G which satisfies $g(x) \sim x$ for each $x \in G$ must be an inner automorphism".
2. Proof of the theorem. Let $g(x)$ be an endomorphism which satisfies $g(x) \sim x$ for each $x \in$ G. We may assume $g(S)=S, g(T)=M^{-1} T M$
where

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n} \\
\vdots & \vdots & & \vdots \\
g_{1} & g_{2} & \ldots & g_{n}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{a} \\
\boldsymbol{b} \\
\vdots \\
\boldsymbol{g}
\end{array}\right) \\
M^{-1}=\left(\begin{array}{cc}
x_{1} & \\
x_{2} & \\
\vdots & * \\
x_{n} &
\end{array}\right)
\end{gathered}
$$

Then

$$
\begin{gathered}
g(T)=E+M^{-1} E_{12} M= \\
\left(\begin{array}{cccc}
1+x_{1} b_{1} & x_{1} b_{2} & \ldots & x_{1} b_{n} \\
x_{2} b_{1} & 1+x_{2} b_{2} & \ldots & x_{2} b_{n} \\
\vdots & \vdots & & \vdots \\
x_{n} b_{1} & x_{n} b_{2} & \ldots & 1+x_{n} b_{n}
\end{array}\right)
\end{gathered}
$$

where $E_{i j}$ is the matrix unit whose $i j$-element is 1 and the other elements are 0 . Put

$$
\tilde{M}=\left(\begin{array}{c}
\boldsymbol{v}_{1} \tag{1}\\
\boldsymbol{b} \\
\boldsymbol{v}_{3} \\
\boldsymbol{v}_{4} \\
\vdots \\
\boldsymbol{v}_{n}
\end{array}\right)=
$$

$$
\left(\begin{array}{cccccc}
b_{2} & b_{3} & b_{4} & \ldots & b_{n} & \varepsilon b_{1} \\
b_{1} & b_{2} & b_{3} & \ldots & b_{n-1} & b_{n} \\
\varepsilon b_{n} & b_{1} & b_{2} & \ldots & b_{n-2} & b_{n-1} \\
\varepsilon b_{n-1} & \varepsilon b_{n} & b_{1} & \ldots & b_{n-3} & b_{n-2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\varepsilon b_{3} & \varepsilon b_{4} & \varepsilon b_{5} & \ldots & b_{1} & b_{2}
\end{array}\right) .
$$

Then after a little calculation we have

$$
\begin{gathered}
|x E-S g(T)|= \\
x^{n}-\sum_{i=1}^{n-1}\left(x_{1} b_{i+1}+x_{2} b_{i+2}+\cdots+x_{n-i} b_{n}\right. \\
\left.+\varepsilon x_{n-i+1} b_{1}+\cdots+\varepsilon x_{n} b_{i}\right) x^{n-i}-\varepsilon=
\end{gathered}
$$

$$
\begin{gathered}
x^{n}-\left|\begin{array}{c}
\boldsymbol{v}_{1} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right| x^{n-1}-\left|\begin{array}{c}
\varepsilon \boldsymbol{v}_{n} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right| x^{n-2}-\cdots-\left|\begin{array}{c}
\varepsilon \boldsymbol{v}_{3} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right| x-\varepsilon, \\
|x E-S T|=x^{n}-x^{n-1}-\varepsilon
\end{gathered}
$$

As $g(x) \sim x, S g(T)$ and $S T$ are conjugate in $S L_{n}(D)$. Therefore their characteristic polynomials are equal. So we have

$$
\left|\begin{array}{c}
\boldsymbol{v}_{1} \tag{2}\\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right|=1,\left|\begin{array}{c}
\varepsilon \boldsymbol{v}_{n} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right|=0, \ldots,\left|\begin{array}{c}
\varepsilon \boldsymbol{v}_{3} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right|=0
$$

As $g(T)$ is only depend on $\boldsymbol{b}, \boldsymbol{c}, \ldots, \boldsymbol{g}$, we may assume $\boldsymbol{a}=\boldsymbol{v}_{1}$. Let ζ be an n-th root of ε taken from the algebraic closure of the quotient field of D. Then ζ is an algebraic integer over D. Using (2)

$$
\begin{aligned}
(3) \zeta & =\left|\begin{array}{c}
\boldsymbol{b} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right|+\zeta\left|\begin{array}{c}
\boldsymbol{v}_{1} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right|+\zeta^{2}\left|\begin{array}{c}
\varepsilon \boldsymbol{v}_{n} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right|+\cdots+\zeta^{n-1}\left|\begin{array}{c}
\varepsilon \boldsymbol{v}_{3} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right| \\
& =\left(b_{1}+\zeta b_{2}+\cdots+\zeta^{n-1} b_{n}\right)\left|\begin{array}{c}
1 \zeta^{-1} \ldots \zeta^{-(n-1)} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\vdots \\
\boldsymbol{g}
\end{array}\right|
\end{aligned}
$$

$$
\prod_{\zeta^{n}=\varepsilon} \zeta=1, \quad|\tilde{M}|=\prod_{\zeta^{n}=\varepsilon}\left(b_{1}+\zeta b_{2}+\cdots+\zeta^{n-1} b_{n}\right)
$$

As D is integrally closed, we get

$$
\begin{equation*}
|\tilde{M}|=\text { unit. } \tag{4}
\end{equation*}
$$

From (1), (2), (4) we have $\operatorname{dim}\left\langle\boldsymbol{v}_{1}, \boldsymbol{b}, \boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n}\right\rangle=$ $\operatorname{dim}\left\langle\boldsymbol{v}_{1}, \boldsymbol{b}, \boldsymbol{c}, \ldots, \boldsymbol{g}\right\rangle=n$ and $\operatorname{dim}\left\langle\boldsymbol{v}_{i}, \boldsymbol{b}, \boldsymbol{c}, \ldots, \boldsymbol{g}\right\rangle=$ $n-1(3 \leq i \leq n)$. So we have $\left\langle\boldsymbol{b}, \boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n}\right\rangle=$ $\langle\boldsymbol{b}, \boldsymbol{c}, \ldots, \boldsymbol{g}\rangle$. Therefore the first column of \tilde{M}^{-1} and M^{-1} are equal and $g(T)=M^{-1} T M=\tilde{M}^{-1} T \tilde{M}$. As $g(S)=S=\tilde{M}^{-1} S \tilde{M}$ we have

$$
\begin{equation*}
A \in\langle S, T\rangle \Longrightarrow g(A)=\tilde{M}^{-1} A \tilde{M} \tag{5}
\end{equation*}
$$

Next we shall prove that $|\tilde{M}|=\beta^{n}$ for some unit β in D. In $S L_{n}(\mathbf{Z})$, we have $\langle S, T\rangle=S L_{n}(\mathbf{Z})$. Using natural homomorphism from \mathbf{Z} to D we have in
$S L_{n}(D)$

$$
K=\left(\begin{array}{cccc}
1 & 1 & & \tag{6}\\
& 1 & \ddots & \\
& & \ddots & 1 \\
& & & 1
\end{array}\right) \in\langle S, T\rangle
$$

From (5) and $g(x) \sim x$, we have

$$
g(K)=\tilde{M}^{-1} K \tilde{M}=N^{-1} K N \quad{ }^{\exists} N \in S L_{n}(D)
$$

$$
\begin{equation*}
K\left(\tilde{M} N^{-1}\right)=\left(\tilde{M} N^{-1}\right) K \tag{7}
\end{equation*}
$$

Comparing the elements of both sides of (7), we have

$$
\tilde{M} N^{-1}=\left(\begin{array}{ccc}
\beta & & * \\
& \ddots & \\
0 & & \beta
\end{array}\right) \quad{ }^{\exists} \beta \in D .
$$

Therefore we have $\beta^{n}=|\tilde{M}|=$ unit. So β must be a unit in D. Put $M_{1}=\beta^{-1} \tilde{M}$. Then $M_{1} \in S L_{n}(D)$, $g(T)=M_{1}^{-1} T M_{1}, S M_{1}=M_{1} S$. Therefore from now on we may assume $g(S)=S, g(T)=T$.

Next we treat T_{μ} instead of T. In the same way as for T we can find \tilde{M}_{μ} such that $g\left(T_{\mu}\right)=$ $\tilde{M}_{\mu}^{-1} T_{\mu} \tilde{M}_{\mu}, S \tilde{M}_{\mu}=\tilde{M}_{\mu} S$. Let \mathcal{S} be the subset of $\langle S, T\rangle$ defined by

$$
\mathcal{S}=\left\{E+E_{1 j} \mid 2 \leq j \leq n\right\} \cup\left\{E+E_{i 2} \mid 3 \leq i \leq n\right\} .
$$

For any $A \in \mathcal{S}$, we have $A T_{\mu}=T_{\mu} A$. As $g(A)=A$, we have
(8) $g\left(A T_{\mu}\right)=A g\left(T_{\mu}\right)=g\left(T_{\mu} A\right)=g\left(T_{\mu}\right) A \quad{ }^{\forall} A \in \mathcal{S}$

Comparing the elements of (8), we have

$$
g\left(T_{\mu}\right)=\left(\begin{array}{cccc}
b & c & & 0 \\
& b & & \\
& & \ddots & \\
0 & & & b
\end{array}\right) \quad{ }^{\exists} b,{ }^{\exists} c \in D .
$$

Hence, \tilde{M}_{μ} must be a scalar matrix. So $g\left(T_{\mu}\right)=T_{\mu}$. As $S L_{n}(D)$ is generated by S and $T_{\mu}, S L_{n}(D)$ enjoys the Hasse principle.

When n is even, $P S L_{n}(D)=S L_{n}(D) / \pm E$. From $S g(T) \sim S T$ (in $P S L_{n}(D)$) we may have $S M^{-1} T M \sim-S T$ (in $S L_{n}(D)$). In this case we may assume $\boldsymbol{a}=-\boldsymbol{v}_{1}$ and instead of \tilde{M} we use \tilde{L} whose first, second, \ldots, n-th rows are $-\boldsymbol{v}_{1}, \boldsymbol{b},-\boldsymbol{v}_{3}, \boldsymbol{v}_{4}$, $\ldots,-\boldsymbol{v}_{n-1}, \boldsymbol{v}_{n}$. Then we have $M^{-1} T M=\tilde{L}^{-1} T \tilde{L}$ and $S=-\tilde{L}^{-1} S \tilde{L}$. Instead of (7) we may have $K\left(\tilde{L} N^{-1}\right)=-\left(\tilde{L} N^{-1}\right) K$. But from this equation we have $\tilde{L} N^{-1}=0$, a contradiction. From (8) we may have $A\left(\tilde{M}_{\mu}^{-1} T_{\mu} \tilde{M}_{\mu}\right)=-\left(\tilde{M}_{\mu}^{-1} T_{\mu} \tilde{M}_{\mu}\right) A$ for
some $A \in \mathcal{S}$. But from this equation we have $\tilde{M}_{\mu}^{-1} T_{\mu} \tilde{M}_{\mu}=0$, a contradiction. If $\tilde{M}_{\mu} S=-S \tilde{M}_{\mu}$, we have $g\left(T_{\mu}\right)=T_{\mu}^{-1}$. In the same way we have $g\left(T_{1+\mu}\right)=T_{1+\mu}$ or $T_{1+\mu}^{-1}$. But $g\left(T_{1+\mu}\right)=g\left(T T_{\mu}\right)=$ $T g\left(T_{\mu}\right)$. So $g\left(T_{\mu}\right)$ must be T_{μ}. Therefore $P S L_{n}(D)$ enjoys the Hasse principle.

Acknowledgement. The author thanks Prof. T. Ono for showing him a proof for the case $n=2$.

References

[1] L. K. Hua: Introduction to Number Theory. Springer-Verlag, New York (1982).
[2] T. Ono: "Hasse principle" for $P S L_{2}(\mathbf{Z})$ and $P S L_{2}\left(\mathbf{F}_{p}\right)$. Proc. Japan Acad., 74A, 130-131 (1998).
[3] T. Ono and H. Wada: "Hasse principle" for free groups. Proc. Japan Acad., 75A, 1-2 (1999).
[4] T. Ono and H. Wada: "Hasse principle" for symmetric and alternating groups. Proc. Japan Acad., 75A, 61-62 (1999).
[5] M. Mazur: An E-mail to T. Ono (Feb. 6, 1999).

