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1. Introduction and preliminaries. Let

ZO = O,Zl - (X17Y1)7Z2 = (X27}/2)7“'

be a random walk in the two-dimensional integer
lattice Z%. By a random walk we mean a stochas-
tic sequence with stationary independent increments
starting at the origin. Throughout the paper we im-
pose on the random walk the following assumptions.
Assumption 1.1. For every 8 = (61,05)
in R?,
A0) := E(e?71) < oo,
where 0 - z denotes the inner product in R
Let D; (i = 1,2,3,4) be the i th quadrant in R*, that
is,
Dy = {(z,y) € R?|z > 0,y > 0},
Dy = {(z,y) € R*|z < 0,y > 0},
D5 = {(z,y) € R*|z < 0,y < 0},
and
Dy = {(z,y) € R*|z > 0,y < 0}.
Assumption 1.2. pu = E(Z;) € Dy, and
P(Z, € Dy) >0 for some positive integer n.
Assumption 1.3. The y-coordinate of the
random walk is left-continuous, that is,
P(Y; €{-1,0,1,2,..}) = 1.
Let a and b be positive integers. In this paper

we will take a arbitrarily fixed, so we omit a in many
of our statements and notations. Set

T, := inf{n > 0|(a,b) + Z,, ¢ D1}
(inf ) = 00). Define
Dy :=A{(z,y)lz >0, y <0}
and
rp := P(Tp < 00, (a,b) + Zp, € D}).

Since Z, ~ pn a.s. (n — o) by the strong law of
large numbers, we have r, — 0 (b — 00) from the first
condition of Assumption 1.2. The purpose of this pa-
per is to study the decay rate of r, to 0. Our prob-
lem is a two-dimensional extension of the asymptotic

analysis of ruin probability for one dimensional ran-
dom walk with positive drift.

Let © denote the contour of the moment gener-
ating function A\(@) at the level 1, that is, © = {0 €
R?*|\(0) = 1}. Tt is shown from Assumptions 1.1 and
1.2 the following lemma. (See, e.g., Ney et al. [4]).
O is a smooth convexr curve.
Moreover, it intersects the Oz-axis at two points;
the one is the origin and the other is 8 = (0,0s)
with 62 < 0.

Note that, if @ € O, then exp(0-z) is a harmonic
function of the random walk, namely, it satisfies

E(exp{0-(Z,+ 2)}) = exp(@-2) for all z € R*.

Lemma 1.1.

From now on we always take @ as an element of
©. We will not indicate it in our statements.
Let F(z) := P(Z, = z) and introduce a new proba-
bility function on Z2 by

FO(2):=exp(@-2)F(z).

By P® we denote the probability measure of the
random walk with the one-step probability function
F©®)(2). By elementary observation we get the fol-
lowing formulas and lemma:

(1.1) p® = E® (7)) = vA@®).

Lemma 1.2. The following two statements are
equivalent:

(i) PO(T}, < o00) = 1.

Put

(1.2) np(0) := 1(T < o0, (a,b) + Zp, € D)) X
exp(—0 - Zr,),

(i) p® ¢ Dy

where 1(A) is the indicator function of an event A,
that is, 1(A) = 1 if A occurs and 1(A) = 0 otherwise.
Then, as is shown in Lehtonen et al. [2], we have

(1.3) ry = E© (n,()).

As will be discussed in §§ 2 and 3, our key observa-
tion on the problem is the following: ‘To choose the
0 from © which is most preferable to get an asymp-
totic formula for vy (b — o0) wvia (1.3)’. The obser-



40 M. SHIMURA

vation is related to the Monte Carlo analysis for the
small values of r, by Importance Sampling. See [2].
2. Classification and results. By Lemma
1.1 we have the tangent of the contour © at 5, which
we denote by L. We will observe that the asymptotic
formulas may take quite different form if the slope
of L (simply say the slope) is positive, zero or neg-
ative. Before giving our main results we show some
examples with positive and nonpositive slopes.
Example 2.1. The following are
walks with the positive slope.
(i) Random walk with mutually independent x- and
y-components.
(ii) Random walk with jumps of size (1,0), (-1,0),
(0,1) or (0,-1) (nearest neighbour random walk).

random

Example 2.2. Consider a random walk with
jumps of size (1,2),(-1,1) and (0,-1) with positive
probabilities p, g and r=1—p—q, respectively. Then
Assumption 1.2 is equivalent to p > ¢, 3p + 2¢ >
1 and r > 0. Let Assumption 1.2 be satisfied.
Then, the slope is positive, zero, or negative accord-
ing as p — ¢® — (p + q)? is positive, zero, or negative.
For example, if we take p = 0.6, ¢ = 0.3, r = 0.1, the
slope is negative. Note that this example satisfies
Assumption 2.2 given below.

Let us state our main results.

Theorem 2.1. Consider a random walk with
the positive slope. Then the following formula holds.

(2.1) 1y ~ Ky exp(fb) (b — o0,

where Ky s the positive constant given by Ky =
P®)(a +inf,>0X, > 0).

Next we consider a random walk with the non-
positive slope. Put

QQ = inf{ﬁg\(ﬁl,ﬁg) S @} > —00.

For a random walk with the zero slope, note that
0y =0,.

Theorem 2.2. For a random walk with the
zero slope, we have the following formula.

(2.2) ry ~ Kob™ Y2 exp(0,b) (b — o0),

where Ko 1s a positive constant depending only on F
and a.

To deal with a random walk with the negative
slope, we assume the following in addition to As-
sumptions 1.1 - 1.3.

Assumption 2.1. 6, > —oc.

Theorem 2.3. Consider a random walk with
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the negative slope which satisfies Assumption 2.1 in
addition to Assumptions 1.1 - 1.3. Then we have the
following upper bound:

(2.3) ry = O(b~%% exp(8,b)) (b — 00).

Next we consider a lower bound corresponding
to (2.3) for the random walk in Example 2.2. Put

vy :=inf{n > 1|Y,, < —b} (inf § = o).

We make the following
Assumption 2.2.

V= E(Q)(z/l) =

[e9)
exp{z n POy, > 0)} <6.
1

Theorem 2.4. Consider the random walk in
Ezxample 2.2 with the negative slope. Assume that
it satisfies Assumption 2.2. Then we have

(2.4) b3/ exp(B,0) = O(ry) (b — o).

We obtain the following from Theorems 2.3 and 2.4.
Theorem 2.5. For the random walk in Theo-
rem 2.4,

(2.5) = b3/ exp(B,h) (b — 0).

3. Proofs of theorems. To prove Theorem
2.1, we apply (1.3) by putting 8 = . Then the result
follows immediately from (1.1) and from the strong
law of large numbers.

Write P@ (resp. E®) as P (resp. E) for sim-
plicity. Consider the decreasing ladder walk

2" = ()?naﬁL) = Zyn (Tl = O, 1,2, )

(Note that Z, is defined P a.s.. Indeed, E(Y;) < 0
implies v, < oo P a.s..) Put

p(0) = E("), $(0) = E(e"™),

3(0) == E(e’1) and v(0) := B(e")

(6 € R). We need the following lemma.
Lemma 3.1.

hold.

(i) Let ¢ :=min{y(#), 6 € R}. Then 0 < c <1, and

the equation p(20) = ¢~ has the unique positive root

d4+ and the unique negative root d_.

(ii) @(0) is finite on the interval (d—,dy), and the

following identity holds.

(3.1) () = (p(0) — 1) x

The following four statements
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exp{) k™' E(1(Y), > 0) exp(0Xy))} + 1.
k=1
(iii) E(|X1|") < oo for all n > 1.
E(X)) =0.
v(0) is finite for 0 < —logc, and satisfies

v(@)=1-

Especially,

iv)
3.2)
(1—e”)exp{D>_k'e"P(Y}, > 0)}.

k=1
The identities (3.1) and (3.2) follow from the
(half-plain) factorization identity. (Spitzer [9] and
Mogul’skii et al. [3]. See also Shimura [7].) The

proofs of the remaining assertions are elementary.
Proof of Theorem 2.2. By (1.3) we have

(383) = exp(B)E(L(T, < o,
(a,b) + Z1, € D)) exp(—6,Xn,)).
Let

po = inf{n > 1] a + X,, < 0}.
for a > 0. Since 6, = 0, we have

ry = exp(050)P(pa > Up).

We get from (3.2) a large deviation type estimate on
the distribution of v, to yield the following:

1 > exp(0ob){P(pa > (v +6)b) + O(e™""))}
and

1 < exp(80){P(pa > (v~ 8)b) + O(e™"™)}

for every positive §, where x is a positive constant
which may depend on §. Hence the formula (2.2)
follows from the well-known formula P(p, > b) ~
K3b=Y/2 (b — o0), where K3 is a positive constant
depending only on F' and a.

Outline of the Proof of Theorem 2.3. Note
that

E(1(Ty < 00, (a,b) + Zr, € D})exp(—0XT,))
< E(1(pa > b) exp(—0X3)),

where p, := inf{n > 1| a + Xn < 0}. Therefore,
Theorem 2.3 follows from the following lemma.
Lemma 3.2. Let 6 > 0. Then we have
E(1(pg > b)exp(—60X,)) < b=3/% as b — oo.
Outline of Proof of Lemma 3.2. We per-
mute the increments of the random walk to obtain
the following:

BE(1(py > b)exp(—0X,)) =
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b
(3.4) > P(max{X;,1 < j <k} <0,
k=0

Xy, > —a)E(1(po > b — k) exp(—0Xp_)).
As is shown in Shimura [6], we have
B(max{)?j,l <j<k} <O,
X > —a) < k™32 (k — o0).

(3.5)

We apply a Tauberian argument to one of the fac-
torization identities (Spitzer [9]) to get
(3.6)  E(1(py > k) exp(—0X})) = k3/2
(k — o0). Putting (3.5) and (3.6) on the right-hand
side of (3.4) together, we conclude the desired asser-
tion.

To prove Theorem 2.4 we show the following

lemma.
Lemma 3.3. As b— oo we have

b=3/2 = O(P(vy < p1, Xp =0))

Proof of Lemma 3.3. Take a positive § <
v — 1. Then

P(vy < p1, Xy = 0) >
Zn:|n—gb|§5b2(p1 > nly = n,
)?b = O)B(Vb =n, )?b = O)

(3.7)

By the local limit theorem (see, e.g., Ibragimov et
al. [1]) we have

(3.8) Zn:|n—ub\<5b£(yb =n, X, =0)=
P(Xy=0)+0(e") < b~12 (b - o0).

Hence we have the lemma if we show the following:
For every n and b with |n — vb| < 0b

(3.9) b '=0(P(p1 > nlw, =n, X, =0))
(b — 0).

Proof of (3.9). Put I';, = {a,b,c}",n =
1,2,.... For v = (71,..y) € Ty @ € {a,b,c} set
N§(v) =0 and

Ni(y) =#{1 <j <kly =2} (k=1,...,n),
where A denotes the cardinality of a set A. Set

Xi(y) = NE(v) = N2 (),

V() = 2Ni(v) + MY () — N (),

Vi(y) = NE() + N2 () — Ni (),
(7) = 2N (v) + 2N () — Ni(),
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0<j<k
and
ik('Y) = 0r<njl£k yj('Y) (i=0,1,2).
Put
App = {velL|X(v) = 0,372('7) = —b}
and

oy =Y € AnplYs, > V(7))
(1=0,1,2). We have
A2y, CAD L, CAL,,
and for v € Ay
(3.10) N ()

and

= NY(3) = (n - )3
NE(~) = (3n + 2b) /5.
Let @, and Qfﬂ; (¢ = 0,1,2) denote the uniform

probability distributions on A, and A?
tively. Then we have from (3.10)

n.be I€spec-

P(py > nluyy =n, X, =0) =

b (X (1) =0) > Qnp(A ) X
Qup(X,,(7) = 0|AT ).
Let |a| denote the integral part of a. We need the
following

Lemma 3.4. Let § be any fized positive num-

ber. Putn = [(1+ 6)b]. Then we have
(i) Qna(X, =0[A7 ;) < b~" (b— o0).
(ii) Assume further § < 5. Then

Qn,ku\i,b) =1
This lemma establishes (3.9). Indeed, we just apply
it to the right-hand side of (3.11) by putting 6 = v—1
(Recall 6§ < 5 from Assumption 2.2).

Proof of Lemma 3.4. (i) We equip T,
with the eqivalence relation ~. defined as follows:
Y e 7, iff

N ()

(3.11)

(b — 0).

= Ni(v"), Ni(v) = No(v"),

and

{1<j<nhy;=aorb}=

{1<j<nh;=aorb}
By the local limit theorem
(3.12)  #A%, < #{A] /) ~e} X

(n—b)~1/2 22<“*b>/5 (n—b— o).
Moreover,
(3.5)

it follows from the estimate similar to
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(3.13) ﬁ{A »N {X,=0}} <

A/ ~eH(n—b)~3/2 22(n=0/5
(n —b— 00).

Hence we have

Qnp(X, = 0|A7 ;) =

(3.14)  #{AZ ,n{X, =0}}/8A2 , <
(n—0)"'=<b"1 (b= o).

(i) Put b = (6b — n)/5. Consider the reversed ran-

dom walk

VE=Y 4V, j=01..n
Since Y2(v) = =V for v € A,p, with respect to
the measure Qs yf*, j=0,1,...,n, is the pinned
random walk which starts from 0 and stops at b’ at
time n. Note that

nb {’)’EAnb| mln .)72* >0}

and that the mean drift of the plnned random walk
b /n~(5-105)/5(1+6) >0 (n— oo). Then we may
apply coupling (see, e.g., [5]) to show that Qp (A2 ;)
is bounded from below by the probability that an ap-
propriately chosen random walk with positive drift
never hits (—oo, 0]. Hence we have the desired asser-
tion. (See [8] for more the detail).
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