
No. 3] Proc. Japan Acad., 75, Ser. A (1999) 39

Exit probability of two-dimensional random walk from the quadrant

By Michio Shimura

Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510

(Communicated by Heisuke Hironaka, m. j. a., March 12, 1999)

1. Introduction and preliminaries. Let

Z0 = 0, Z1 = (X1, Y1), Z2 = (X2, Y2), ...

be a random walk in the two-dimensional integer
lattice Z2. By a random walk we mean a stochas-
tic sequence with stationary independent increments
starting at the origin. Throughout the paper we im-
pose on the random walk the following assumptions.

Assumption 1.1. For every θ = (θ1, θ2)
in R2,

λ(θ) := E(eθ·Z1) <∞,
where θ · z denotes the inner product in R2.

Let Di (i = 1, 2, 3, 4) be the i th quadrant in R2, that
is,

D1 = {(x, y) ∈ R2|x > 0, y > 0},
D2 = {(x, y) ∈ R2|x < 0, y > 0},
D3 = {(x, y) ∈ R2|x < 0, y < 0},

and

D4 = {(x, y) ∈ R2|x > 0, y < 0}.
Assumption 1.2. µ = E(Z1) ∈ D1, and

P (Zn ∈ D4) > 0 for some positive integer n.
Assumption 1.3. The y-coordinate of the

random walk is left-continuous, that is,
P (Y1 ∈ {−1, 0, 1, 2, ...}) = 1.

Let a and b be positive integers. In this paper
we will take a arbitrarily fixed, so we omit a in many
of our statements and notations. Set

Tb := inf{n ≥ 0|(a, b) + Zn /∈ D1}
(inf ∅ =∞). Define

D∗4 := {(x, y)|x > 0, y ≤ 0}
and

rb := P (Tb <∞, (a, b) + ZTb
∈ D∗4).

Since Zn ∼ µn a.s. (n → ∞) by the strong law of
large numbers, we have rb → 0 (b→∞) from the first
condition of Assumption 1.2. The purpose of this pa-
per is to study the decay rate of rb to 0. Our prob-
lem is a two-dimensional extension of the asymptotic

analysis of ruin probability for one dimensional ran-
dom walk with positive drift.

Let Θ denote the contour of the moment gener-
ating function λ(θ) at the level 1, that is, Θ = {θ ∈
R2|λ(θ) = 1}. It is shown from Assumptions 1.1 and
1.2 the following lemma. (See, e.g., Ney et al. [4]).

Lemma 1.1. Θ is a smooth convex curve.
Moreover, it intersects the θ2-axis at two points;
the one is the origin and the other is θ̃ = (0, θ̃2)
with θ̃2 < 0.

Note that, if θ ∈ Θ , then exp(θ·z) is a harmonic
function of the random walk, namely, it satisfies

E(exp{θ · (Z1 + z)}) = exp(θ · z) for all z ∈ R2.

From now on we always take θ as an element of
Θ . We will not indicate it in our statements.
Let F (z) := P (Z1 = z) and introduce a new proba-
bility function on Z2 by

F (θ)(z) := exp(θ · z)F (z).

By P (θ) we denote the probability measure of the
random walk with the one-step probability function
F (θ)(z). By elementary observation we get the fol-
lowing formulas and lemma:

µ(θ) := E(θ)(Z1) = ∇λ(θ).(1.1)

Lemma 1.2. The following two statements are
equivalent :
(i) P (θ)(Tb <∞) = 1. (ii) µ(θ) /∈ D1.

Put

ηb(θ) := 1(Tb <∞, (a, b) + ZTb
∈ D∗4)×(1.2)

exp(−θ · ZTb
),

where 1(A) is the indicator function of an event A,
that is, 1(A) = 1 if A occurs and 1(A) = 0 otherwise.
Then, as is shown in Lehtonen et al. [2], we have

rb = E(θ)(ηb(θ)).(1.3)

As will be discussed in §§ 2 and 3, our key observa-
tion on the problem is the following: ‘To choose the
θfrom Θ which is most preferable to get an asymp-
totic formula for rb (b → ∞) via (1.3)’. The obser-
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vation is related to the Monte Carlo analysis for the
small values of rb by Importance Sampling. See [2].

2. Classification and results. By Lemma
1.1 we have the tangent of the contour Θ at θ̃, which
we denote by L̃. We will observe that the asymptotic
formulas may take quite different form if the slope
of L̃ (simply say the slope) is positive, zero or neg-
ative. Before giving our main results we show some
examples with positive and nonpositive slopes.

Example 2.1. The following are random
walks with the positive slope.
(i) Random walk with mutually independent x- and
y-components.
(ii) Random walk with jumps of size (1,0), (-1,0),
(0,1) or (0,-1) (nearest neighbour random walk).

Example 2.2. Consider a random walk with
jumps of size (1,2),(-1,1) and (0,-1) with positive
probabilities p, q and r=1−p−q, respectively. Then
Assumption 1.2 is equivalent to p > q, 3p + 2q >
1 and r > 0. Let Assumption 1.2 be satisfied.
Then, the slope is positive, zero, or negative accord-
ing as p− q2 − (p+ q)2 is positive, zero, or negative.
For example, if we take p = 0.6, q = 0.3, r = 0.1, the
slope is negative. Note that this example satisfies
Assumption 2.2 given below.

Let us state our main results.
Theorem 2.1. Consider a random walk with

the positive slope. Then the following formula holds.

rb ∼ K1 exp(θ̃2b) (b→∞),(2.1)

where K1 is the positive constant given by K1 =
P (eθ)(a+ infn≥0Xn > 0).

Next we consider a random walk with the non-
positive slope. Put

θ2 := inf{θ2|(θ1, θ2) ∈ Θ} ≥ −∞.
For a random walk with the zero slope, note that
θ̃2 = θ2.

Theorem 2.2. For a random walk with the
zero slope, we have the following formula.

rb ∼ K2b
−1/2 exp(θ2b) (b→∞),(2.2)

where K2 is a positive constant depending only on F
and a.

To deal with a random walk with the negative
slope, we assume the following in addition to As-
sumptions 1.1 - 1.3.

Assumption 2.1. θ2 > −∞.
Theorem 2.3. Consider a random walk with

the negative slope which satisfies Assumption 2.1 in
addition to Assumptions 1.1 - 1.3. Then we have the
following upper bound :

rb = O(b−3/2 exp(θ2b)) (b→∞).(2.3)

Next we consider a lower bound corresponding
to (2.3) for the random walk in Example 2.2. Put

νb := inf{n ≥ 1|Yn ≤ −b} (inf ∅ =∞).

We make the following
Assumption 2.2.

ν := E(θ)(ν1) =

exp{
∞∑
1

n−1P (θ)(Yn ≥ 0)} < 6.

Theorem 2.4. Consider the random walk in
Example 2.2 with the negative slope. Assume that
it satisfies Assumption 2.2. Then we have

b−3/2 exp(θ2b) = O(rb) (b→∞).(2.4)

We obtain the following from Theorems 2.3 and 2.4.
Theorem 2.5. For the random walk in Theo-

rem 2.4,

rb ³ b−3/2 exp(θ2b) (b→∞).(2.5)

3. Proofs of theorems. To prove Theorem
2.1, we apply (1.3) by putting θ = θ̃. Then the result
follows immediately from (1.1) and from the strong
law of large numbers.

Write P (θ) (resp. E(θ)) as P (resp. E) for sim-
plicity. Consider the decreasing ladder walk

Ẑn = (X̂n, Ŷn) := Zνn (n = 0, 1, 2, ...).

(Note that Ẑn is defined P a.s.. Indeed, E(Y1) < 0
implies νn <∞ P a.s..) Put

ϕ(θ) := E(eθX1), ψ(θ) := E(eθY1),

ϕ̂(θ) := E(eθ bX1) and υ(θ) := E(eθν1)

(θ ∈ R). We need the following lemma.
Lemma 3.1. The following four statements

hold.
(i) Let c := min{ψ(θ), θ ∈ R}. Then 0 < c < 1, and
the equation ϕ(2θ) = c−1 has the unique positive root
d+ and the unique negative root d−.
(ii) ϕ̂(θ) is finite on the interval (d−, d+), and the
following identity holds.

ϕ̂(θ) = (ϕ(θ)− 1)×(3.1)
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exp{
∞∑

k=1

k−1E(1(Yk ≥ 0) exp(θXk))}+ 1.

(iii) Ê(|X̂1|n) < ∞ for all n ≥ 1. Especially,
E(X̂1) = 0.
(iv) υ(θ) is finite for θ < − log c, and satisfies

υ(θ) = 1−(3.2)

(1− eθ) exp{
∞∑

k=1

k−1ekθP (Yk ≥ 0)}.

The identities (3.1) and (3.2) follow from the
(half-plain) factorization identity. (Spitzer [9] and
Mogul’skii et al. [3]. See also Shimura [7].) The
proofs of the remaining assertions are elementary.

Proof of Theorem 2.2. By (1.3) we have

rb = exp(θ2b)E(1(Tb <∞,(3.3)

(a, b) + ZTb
∈ D∗4) exp(−θ1XTb

)).

Let

ρa := inf{n ≥ 1| a+Xn ≤ 0}.
for a ≥ 0. Since θ1 = 0, we have

rb = exp(θ2b)P (ρa > νb).

We get from (3.2) a large deviation type estimate on
the distribution of νb to yield the following:

rb ≥ exp(θ2b){P (ρa > (ν + δ)b) +O(e−κb))}
and

rb ≤ exp(θ2b){P (ρa > (ν − δ)b) +O(e−κb)}
for every positive δ, where κ is a positive constant
which may depend on δ. Hence the formula (2.2)
follows from the well-known formula P (ρa > b) ∼
K3b

−1/2 (b → ∞), where K3 is a positive constant
depending only on F and a.

Outline of the Proof of Theorem 2.3. Note
that

E(1(Tb <∞, (a, b) + ZTb
∈ D∗4) exp(−θXTb

))

≤ E(1(ρ̂a > b) exp(−θX̂b)),

where ρ̂a := inf{n ≥ 1| a + X̂n ≤ 0}. Therefore,
Theorem 2.3 follows from the following lemma.

Lemma 3.2. Let θ > 0. Then we have
E(1(ρ̂a > b) exp(−θX̂b)) ³ b−3/2 as b→∞.

Outline of Proof of Lemma 3.2. We per-
mute the increments of the random walk to obtain
the following:

E(1(ρ̂a > b) exp(−θX̂b)) ³

b∑

k=0

P (max{X̂j , 1 ≤ j ≤ k} < 0,(3.4)

X̂k > −a)E(1(ρ̂0 > b− k) exp(−θX̂b−k)).

As is shown in Shimura [6], we have

P (max{X̂j , 1 ≤ j ≤ k} < 0,(3.5)

X̂k > −a) ³ k−3/2 (k →∞).

We apply a Tauberian argument to one of the fac-
torization identities (Spitzer [9]) to get

E(1(ρ̂0 > k) exp(−θX̂k)) ³ k−3/2(3.6)

(k →∞). Putting (3.5) and (3.6) on the right-hand
side of (3.4) together, we conclude the desired asser-
tion.

To prove Theorem 2.4 we show the following
lemma.

Lemma 3.3. As b→∞ we have

b−3/2 = O(P (νb < ρ1, X̂b = 0))

Proof of Lemma 3.3. Take a positive δ <

ν − 1. Then

P (νb < ρ1, X̂b = 0) >∑
n:|n−νb|≤δb

P (ρ1 > n|νb = n,(3.7)

X̂b = 0)P (νb = n, X̂b = 0).

By the local limit theorem (see, e.g., Ibragimov et
al. [1]) we have

∑
n:|n−νb|≤δb

P (νb = n, X̂b = 0) =(3.8)

P (X̂b = 0) +O(e−κb) ³ b−1/2 (b→∞).

Hence we have the lemma if we show the following:
For every n and b with |n− νb| ≤ δb

b−1 = O(P (ρ1 > n|νb = n, X̂b = 0))(3.9)

(b→∞).
Proof of (3.9). Put Γn = {a, b, c}n, n =

1, 2, .... For γ = (γ1, ..., γn) ∈ Γn, x ∈ {a, b, c} set
Nx

0 (γ) = 0 and

Nx
k (γ) = ]{1 ≤ j ≤ k|γj = x} (k = 1, ..., n),

where ]A denotes the cardinality of a set A. Set

Xk(γ) = Na
k (γ)−N b

k(γ),

Y0
k(γ) = 2Na

k (γ) +N b
k(γ)−N c

k(γ),

Y1
k(γ) = Na

k (γ) +N b
k(γ)−N c

k(γ),

Y2
k(γ) = 2Na

k (γ) + 2N b
k(γ)−N c

k(γ),
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X k(γ) = min
0≤j≤k

Xj(γ)

and

Yi
k(γ) = min

0≤j≤k
Yi

j(γ) (i = 0, 1, 2).

Put

Λn,b = {γ ∈ Γn|Xn(γ) = 0,Y0
n(γ) = −b}

and

Λi
n,b = {γ ∈ Λn,b|Yi

n−1 > Yi
n(γ)}

(i = 0, 1, 2). We have

Λ2
n,b ⊆ Λ0

n,b ⊆ Λ1
n,b,

and for γ ∈ Λn,b

Na
n(γ) = N b

n(γ) = (n− b)/5(3.10)

and

N c
n(γ) = (3n+ 2b)/5.

Let Qn,b and Qi
n,b (i = 0, 1, 2) denote the uniform

probability distributions on Λn,b and Λi
n,b, respec-

tively. Then we have from (3.10)

P (ρ1 > n|νb = n, X̂b = 0) =

Q0
n,b(Xn(γ) = 0) ≥ Qn,b(Λ2

n,k)×(3.11)

Qn,b(Xn(γ) = 0|Λ2
n,b).

Let bac denote the integral part of a. We need the
following

Lemma 3.4. Let δ be any fixed positive num-
ber. Put n = b(1 + δ)bc. Then we have
(i) Qn,b(Xn = 0|Λ2

n,b) ³ b−1 (b→∞).
(ii) Assume further δ < 5. Then

Qn,k(Λ2
n,b) ³ 1 (b→∞).

This lemma establishes (3.9). Indeed, we just apply
it to the right-hand side of (3.11) by putting δ = ν−1
(Recall δ < 5 from Assumption 2.2).

Proof of Lemma 3.4. (i) We equip Γn

with the eqivalence relation ∼e defined as follows:
γ ∼e γ′ iff

Na
n(γ) = Na

n(γ′), N b
n(γ) = N b

n(γ′),

and

{1 ≤ j ≤ n|γj = a or b} =

{1 ≤ j ≤ n|γ′j = a or b}.
By the local limit theorem

]Λ2
n,b ³ ]{Λ2

n,b/ ∼e} ×(3.12)

(n− b)−1/2 22(n−b)/5 (n− b→∞).

Moreover, it follows from the estimate similar to
(3.5)

]{Λ2
n,b ∩ {Xn = 0}} ³(3.13)

]{Λ2
n,b/ ∼e}(n− b)−3/2 22(n−b)/5

(n− b→∞).

Hence we have

Qn,b(Xn = 0|Λ2
n,b) =

]{Λ2
n,b ∩ {Xn = 0}}/]Λ2

n,b ³(3.14)

(n− b)−1 ³ b−1 (b→∞).

(ii) Put b′ = (6b − n)/5. Consider the reversed ran-
dom walk

Y2∗
j = Y2

n−j + b′, j = 0, 1, ..., n.

Since Y2
n(γ) = −b′ for γ ∈ Λn,b, with respect to

the measure Qn,b Y2∗
j , j = 0, 1, ..., n, is the pinned

random walk which starts from 0 and stops at b′ at
time n. Note that

Λ2
n,b = {γ ∈ Λn,b| min

1≤j≤n
Y2∗

j > 0}

and that the mean drift of the pinned random walk
b′/n ∼ (5− δ)/5(1 + δ) > 0 (n→∞). Then we may
apply coupling (see, e.g., [5]) to show that Qn,k(Λ2

n,b)
is bounded from below by the probability that an ap-
propriately chosen random walk with positive drift
never hits (−∞, 0]. Hence we have the desired asser-
tion. (See [8] for more the detail).
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