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Let K be the quadratic field over Q of a given
discriminant D. We denote the ideal class group of
K by H(D) and the class number of K by h(D). In
this paper, we give explicit representations of some
reduced binary quadratic forms of discriminant 4q2+
1, which will be applied to obtain some informations
on H(4q2 + 1) and h(4q2 + 1).

1. Notations and preliminaries. For de-
tails on this section, see [3] and [4, Chap. 5].

To investigate H(D), we consider the binary
quadratic forms aX2 + bXY + cY 2 ∈ Z[X, Y ] of dis-
criminant D = b2−4ac. Let F (D) be the set of such
forms. We denote f(X, Y ) = aX2 + bXY + cY 2

simply by f = [a, b, c], or [a, b, ∗] since ∗ is eas-
ily calculated from a, b, and D. We say that two
forms f = [a, b, c] and f ′ = [a′, b′, c′] in F (D)
are equivalent (denoted by f ∼ f ′) if there exists
A ∈ SL2(Z) such that f(X, Y ) = f ′(X ′, Y ′), where(

X

Y

)
= A

(
X ′

Y ′

)
.

We define the binary operation ◦ of two forms
f1 = [a1, b1, c1] and f2 = [a2, b2, c2] in F (D) as fol-
lows:

f1 ◦ f2 = [a3, b3, c3],

a3 =
a1a2

e2
,

b3 = b2 +
2a2

e
(v(s− b2)− wc2),

c3 =
b3

2 −D

4a3
,

where s = (b1 + b2)/2, e = gcd(a1, a2, s), and u, v,
w ∈ Z satisfy a1u + a2v + sw = e. The operation ◦
is well-defined as that on F (D)/∼. And we have the
following Proposition:

Proposition 1. (1) F (D)/∼, with ◦, is iso-
morphic to the ideal class group of Q(

√
D) in

the narrow sense. In particular, if D = 4q2 + 1
and D is square-free, then F (D)/∼ is isomor-
phic to H(D).

(2) The forms of type [1, ∗, ∗] and [∗, ∗, 1] belong to

the unit class in F (D)/∼.
(3) [a1, b, a2c] ◦ [a2, b, a1c] ∼ [a1a2, b, c].

[a, b, c] of discriminant D is called reduced if 0 <

b <
√

D and
√

D − b < 2|a| <
√

D + b. Every class
has at least one reduced form, and all the reduced
forms in a class make exactly one “cycle” (For details
on cycle, see [3, §3.1]).

2. Explicit representations of reduced bi-
nary quadratic forms. We have

4q2 + 1 = (2q − (2l − 1))2 + 4((2l − 1)q − l(l − 1))

for any positive integers l. So, for a positive divisor λ

of (2l−1)q− l(l−1), let C(2l−1)(λ) be an equivalence
class in F (4q2 + 1) including the form [λ, 2q − (2l −
1),−µ], where µ = ((2l − 1)q − l(l − 1))/λ.

Using these notations throughout this paper, we
can get the cycles of reduced forms in C(2l−1)(λ)
where l = 1 or 2 as follows.

Theorem 1. In case l = 1, put µ = q/λ.
C1(λ) has the following cycle of reduced forms

of period 6 :

[λ, 2q − 1,−µ] ∼ [−µ, b1, c1]

∼ [c1, b2,−λ] ∼ [−λ, 2q − 1, µ]

∼ [µ, b1,−c1] ∼ [−c1, b2, λ],

where

b1 = 2q + 1− 2µ,

c1 = 2q + 1− λ− µ,

b2 = 2q + 1− 2λ.

Theorem 2. In case l = 2, put µ = (3q −
2)/λ.
(1) When λ ≡ 1 (mod 3) and 1 < λ < 3q − 2,

C3(λ) has the following cycle of reduced forms
of period 10 :

[λ, 2q − 3,−µ] ∼ [−µ, b1, c1]

∼ [c1, b2,−c2] ∼ [−c2, b3, c3]

∼ [c3, b4,−λ] ∼ [−λ, 2q − 3, µ]

∼ [µ, b1,−c1] ∼ [−c1, b2, c2]
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∼ [c2, b3,−c3] ∼ [−c3, b4, λ],

where

b1 = 2q − (4µ− 1)/3,

c1 = 1 + (λ− 1)(4µ− 1)/9,

b2 = 2q − 1− 2(λ− 1)(2µ + 1)/9,

c2 = q − (λ− 1)(µ− 1)/9,

b3 = 2q − 1− 2(2λ + 1)(µ− 1)/9,

c3 = 1 + (4λ− 1)(µ− 1)/9,

b4 = 2q − (4λ− 1)/3.

(2) When λ ≡ 2 (mod 3) and 2 < λ < (3q − 2)/2,
C3(λ) has the following cycle of reduced forms
of period 6 :

[λ, 2q − 3,−µ] ∼ [−µ, b1, c1]

∼ [c1, b2,−λ] ∼ [−λ, 2q − 3, µ]

∼ [µ, b1,−c1] ∼ [−c1, b2, λ],

where

b1 = 2q − (2µ− 1)/3,

c1 = q − (λ + 1)(µ + 1)/9,

b2 = 2q − (2λ− 1)/3.

(3) When λ ∈ {1, 2, (3q− 2)/2, 3q− 2}, C3(λ) coin-
cides with C1(∗) as follows:

C3(1) = C3(3q − 2) = C1(1),

C3(2) = C1(q/2),

C3((3q − 2)/2) = C1(2).

We can also get the cycle in case l = 3, i.e. in
C5(λ), as follows.

Theorem 3. Put µ = (5q − 6)/λ.
(1) When λ ≡ 1 (mod 5) and 1 < λ < (5q − 6)/4,

C5(λ) has the following cycle of period 10 :

[λ, 2q − 5,−µ] ∼ [−µ, b1, c1]

∼ [c1, b2,−c2] ∼ [−c2, b3, c3]

∼ [c3, b4,−λ] ∼ [−λ, 2q − 5, µ]

∼ [µ, b1,−c1] ∼ [−c1, b2, c2]

∼ [c2, b3,−c3] ∼ [−c3, b4, λ],

where

b1 = 2q − (4µ− 1)/5,

c1 = 1 + (λ− 1)(4µ− 1)/25,

b2 = 2q − 1− 4(λ− 1)(µ + 1)/25,

c2 = 1 + (4λ + 1)(µ + 1)/25,

b3 = 2q − 2− (4λ + 1)(2µ− 3)/25,

c3 = q + (λ− 1)(µ− 9)/25,

b4 = 2q − (6λ− 1)/5.

(2) When λ ≡ 2 (mod 5) and 2 < λ < (5q − 6)/2,
C5(λ) has the following cycle of period 10 :

[λ, 2q − 5,−µ] ∼ [−µ, b1, c1]

∼ [c1, b2,−c2] ∼ [−c2, b3, c3]

∼ [c3, b4,−λ] ∼ [−λ, 2q − 5, µ]

∼ [µ, b1,−c1] ∼ [−c1, b2, c2]

∼ [c2, b3,−c3] ∼ [−c3, b4, λ],

where

b1 = 2q + (1− 8µ)/5,

c1 = 2 + (λ− 2)(8µ− 1)/25,

b2 = 2q − 1− 2(λ− 2)(2µ + 1)/25,

c2 = (2λµ + λ + µ + 13)/25,

b3 = 2q − 1− 2(2λ + 1)(µ− 2)/25,

c3 = 2 + (8λ− 1)(µ− 2)/25,

b4 = 2q + (1− 8λ)/5.

(3) When λ ≡ 3 (mod 5), C5(λ) has the following
cycle of period 6 :

[λ, 2q − 5,−µ] ∼ [−µ, b1, c1]

∼ [c1, b2,−λ] ∼ [−λ, 2q − 5, µ]

∼ [µ, b1,−c1] ∼ [−c1, b2, λ],

where

b1 = 2q + (1− 2µ)/5,

c1 = (2λµ− λ− µ + 13)/25,

b2 = 2q + (1− 2λ)/5.

(4) When λ ≡ 4 (mod 5), C5(λ) has the following
cycle of period 10 :

[λ, 2q − 5,−µ] ∼ [−µ, b1, c1]

∼ [c1, b2,−c2] ∼ [−c2, b3, c3]

∼ [c3, b4,−λ] ∼ [−λ, 2q − 5, µ]

∼ [µ, b1,−c1] ∼ [−c1, b2, c2]

∼ [c2, b3,−c3] ∼ [−c3, b4, λ],

where

b1 = 2q − (6µ− 1)/5,

c1 = q + (λ− 9)(µ− 1)/25,

b2 = 2q − 2− (2λ− 3)(4µ + 1)/25,
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c2 = 1 + (λ + 1)(4µ + 1)/25,

b3 = 2q − 1− 4(λ + 1)(µ− 1)/25,

c3 = 1 + (4λ− 1)(µ− 1)/25,

b4 = 2q − (4λ− 1)/5.

(5) When λ ∈ {1, 2, 4, (5q−6)/4, (5q−6)/2, 5q−6},
C5(λ) coincides with C1(∗) or C3(∗) as follows:

C5(1) = C5(5q − 6) = C1(1),

C5(2) = C1(2),

C5((5q − 6)/2) = C1(q/2),

C5(4) = C3((3q − 2)/4),

C5((5q − 6)/4) = C3(4).

In comparing these reduced forms, we obtain the fol-
lowing results.

Theorem 4. (1) C1(λ) 6= C1(λ′) for λ 6= λ′,
except that C1(1) = C1(q).

(2) C3(λ) 6= C3(λ′) for λ 6= λ′, except for C3(1) =
C3(3q − 2) and C3(5) = C3((3q − 2)/5).

(3) C5(λ) 6= C5(λ′) for λ 6= λ′, except for C5(1) =
C5(5q − 6) and C5(13) = C5((5q − 6)/13).
Theorem 5. (1) C3(∗) does not coincide
with C1(∗), except for

C3(1) = C3(3q − 2) = C1(1),

C3(2) = C1(q/2),

C3((3q − 2)/2) = C1(2).

(2) C5(∗) coincides with neither C1(∗) nor C3(∗),
except for

C5(1) = C5(5q − 6) = C1(1),

C5(2) = C1(2),

C5((5q − 6)/2) = C1(q/2),

C5(3) = C1(q/3),

C5((5q − 6)/3) = C1(3),

C5(4) = C3((3q − 2)/4),

C5((5q − 6)/4) = C3(4),

C5(8) = C3((3q − 2)/8),

C5((5q − 6)/8) = C3(8).

3. Subgroups of H(4q2 + 1). The forego-
ing results have the following corollaries:

Corollary 1. Let q be a positive integer. As-
sume that 4q2 + 1 is square-free.
(1) Assume that q > 1. If q is an n-th power of

some integer (n ≥ 2), then H(4q2 + 1) has a
cyclic subgroup of order n.

(2) Assume that q > 2. If 3q − 2 is an n-th power
of some integer (n ≥ 2), then H(4q2 + 1) has a
cyclic subgroup of order n.

(3) Assume that q > 3. If 5q − 6 is an n-th power
of some integer (n ≥ 2), then H(4q2 + 1) has a
cyclic subgroup of order n.
To prove Corollary 1 (1), put q = mn. C1(mi) =

C1(m)i holds by Proposition 1 (3). And C1(m)n =
C1(q) is a unit in F (4q2 +1)/∼ by Proposition 1 (2).
Moreover, C1(mi) 6= C1(mj) for 0 ≤ i < j < n by
Theorem 4 (1). From Proposition 1 (1), Corollary 1
(1) is proved. Corollaries 1 (2) and 1 (3) are proved
likewise.

Note: Corollary 1 (1) is a special case of the
fact in [6], which says that H(a2n+4b2n) has a cyclic
subgroup of order n, where a2n+4b2n is a square-free
positive integer.

4. Lower bounds of h(4q2 + 1).
Corollary 2. Let q be a positive integer such

that 4q2 + 1 is square-free. Assume that q is big
enough (say, q ≥ 30). Then we have

h(4q2 + 1) ≥ (τ(q)− 1)

+(τ(3q − 2)− c3)

+(τ(5q − 6)− c5),

where

c3 = 2 + 2δ2(3q − 2) + δ5(3q − 2),

c5 = 2 + 2δ2(5q − 6)

+2δ4(5q − 6) + 2δ8(5q − 6)

+2δ3(5q − 6) + δ13(5q − 6),

τ(q) is the divisor function of q, and

δn(Q) = 1 if n | Q; 0 if n - Q.

Corollary 2 follows easily from Theorems 4 and
5.

Corollary 2 is concerned with Chowla’s conjec-
ture, which says that there exist exactly 6 q’s such
that h(4q2 +1) = 1. In particular, the last inequality
gives a better lower bound than the formulas given
in [5] and [2].

5. Remark. One can obtain the same re-
sults as in this paper also using Amara’s method in
[1].
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