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Let K be the quadratic field over Q of a given
discriminant D. We denote the ideal class group of
K by H(D) and the class number of K by h(D). In
this paper, we give explicit representations of some
reduced binary quadratic forms of discriminant 4¢%+
1, which will be applied to obtain some informations
on H(4¢? + 1) and h(4¢® + 1).

1. Notations and preliminaries.
tails on this section, see [3] and [4, Chap. 5].

For de-

To investigate H(D), we consider the binary
quadratic forms aX? +bXY +cY? € Z[X, Y] of dis-
criminant D = b% —4ac. Let F(D) be the set of such

forms. We denote f(X,Y) = aX? + bXY + cY?
simply by f = [a,b,¢]|, or [a,b, | since * is eas-
ily calculated from a, b, and D. We say that two
forms f = [a,b,c] and f' = [d,b,c] in F(D)

are equivalent (denoted by f ~ f’) if there exists
A € SLy(Z) such that f(X,Y) = f'(X',Y’), where

X X'
(v)-2(3)
We define the binary operation o of two forms
Ji = [a1,b1,¢1] and fo = [az, by, c2] in F(D) as fol-

lows:

fl Of2 - [a3vb3ac3]7

a1as
az = 62 )
2(12
b3 = b2 + 7(1)(5 — bg) — U/CQ),
b3 — D
Cy3 = ———
3 40,3 )

where s = (b1 + b2)/2, e = ged(aq,az, s), and u, v,
w € Z satisfy aju + asv 4+ sw = e. The operation o
is well-defined as that on F'(D)/~. And we have the
following Proposition:
Proposition 1. (1) F(D)/~, with o, is iso-
morphic to the ideal class group of Q(v/D) in
the narrow sense. In particular, if D = 4¢% + 1
and D is square-free, then F(D)/~ is isomor-
phic to H(D).
(2) The forms of type [1,%, %] and [*,*,1] belong to

the unit class in F(D)/~.

(3) [a1,b,azc] o [az, b, aic] ~ [araz,b, c].

[a, b, c] of discriminant D is called reduced if 0 <
b<+vDand VD —b < 2|al < VD + b. Every class
has at least one reduced form, and all the reduced
forms in a class make exactly one “cycle” (For details
on cycle, see [3, §3.1]).

2. Explicit representations of reduced bi-
nary quadratic forms. We have
4 +1=(2¢— (21 — 1))* +4((2l — 1)g — (1 = 1))
for any positive integers I. So, for a positive divisor A
of (2l —1)q—1(I—1), let C(g;_1)(\) be an equivalence
class in F(4¢? + 1) including the form [\, 2q — (21 —
1), —u], where p = ((2l — 1)g — (I — 1))/

Using these notations throughout this paper, we
can get the cycles of reduced forms in Ciy_1)(A)
where [ = 1 or 2 as follows.

Theorem 1. In casel =1, put up = q/\.

C1(N) has the following cycle of reduced forms
of period 6 :

[/\7 2q - 17 —,U,] ~ [_Ma b17 cl]
~ [617 b2a _A} ~ [_)" 2q - 17/’(’]
~ [M? bl7 _Cl] ~ [_Cla b2a )\]7
where
b1 =2q+1—2pu,
c1=2¢+1-XA—p,
bg = 2q +1—2\.
Theorem 2. In case | = 2, put p = (3¢ —
2)/A.
(1) When A = 1 (mod 3) and 1 < A < 3¢ — 2,
C3(\) has the following cycle of reduced forms
of period 10 :

[)‘a 2q -3, —,U,] ~ [_Ma b17 01]
~ [e1,ba, —ca] ~ [—ca, b3, 5]
~ [C3a b4a 7>‘} ~ [7A7 2(] - 37 /L}

~ [, b1, —c1] ~ [—c1, ba, 2]



~ [02;b37 _03] ~ [_037b47)\]7

by =2q— (4p—1)/3,
e =1+ (= (A — 1)/9,
by =2¢—1—-2(A=1)(2u+1)/9,
c2=q—A-1)(r-1)/9,
bs =2¢—1—-202A 4+ 1)(p —
c3=14“AN—1)(p—1)/9,
by =2q— (4N —1)/3.

(2) When A =2 (mod 3) and 2 < A < (3¢ — 2)/2,

C3(\) has the following cycle of reduced forms

1)/9,

of period 6 :
[/\a 2(] - 37 _:u] ~ [_/’La bla Cl]
~ [Cla b2a _A} ~ [_A’ 2q - 37 H]
~ [/u’v bl, _Cl] ~ [_Cla b23 )‘]a

where

ca=qg—A+1)(p+1)/9,
by = 2¢ — (2A —1)/3.
(3) When A € {1,2,(3¢—2)/2,3q — 2}, C3(\) coin-
cides with Cy(*) as follows:
Cs(1) = C3(3¢ — 2) = C1(1),
C5(2) = Ci(q/2),
C3((3q —2)/2) = C1(2).
We can also get the cycle in case [ = 3, i.e. in
C5()), as follows.
Theorem 3. Putpu = (5¢—6)/\.
(1) When A =1 (mod 5) and 1 < A < (5q — 6)/4,
C5(\) has the following cycle of period 10 :

(A 2q =5, —p] ~ [, b1, c1]
~ [e1,ba, —ca] ~ [—ca, b3, 3]
~ leg, by, —=A] ~ [=A,2¢ — 5, ]
~ [ b1, —c1] ~ [=c1, b2, 2]

~ [ea, b3, —c3] ~ [—c3, b4, A],

where

by =2q— (4p —1)/5,

¢ =1+ (A—1)(4p—1)/25,

by = 2g — 1 — 4(A — 1)(uu+ 1)/25,
co =1+ (41 +1)(u + 1)/25,
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by =2¢—2— (4N +1)(2u — 3)/25,
3 =q+A=1)(n—9)/25,
by = 2q — (6 — 1)/5.

(2) When A =2 (mod 5) and 2 < A < (5bqg — 6)/2,
Cs5(A\) has the following cycle of period 10 :

(A 2q =5, —p] ~ [—p, by, c1]

~ [e1, b2, —ca] ~ [—c2, b3, c3]
~ [e3,ba, =A] ~ [=A, 2 — 5, 4]
~ [p, b1, —c1] ~ [—c1, b2, ]

~ [c2, b3, —c3] ~ [—c3, b4, A],

where

br =2q+ (1 —8u)/5,

e =2+ (A 2)(8— 1)/25,

by = 2¢—1—2(A—2)(2u+1)/25,
o = (2Mp + A+ p+ 13)/25,

by =2q— 1 — 22\ + 1)(p — 2)/25,
cg =2+ (8N—1)(n—2)/25,

by = 2+ (1 — 8)\)/5.

(3) When XA = 3 (mod 5), Cs5(\) has the following
cycle of period 6 :

(A2 =5, —p] ~ [=p, b1, c1]

~ [e1, b2, =A] ~ [=A, 2 — 5, 4]

~ [, b1, —c1] ~ [—e1, b2, Al
where

by = 2+ (1 — 20)/5,

1= 2\ — X —p+13)/25,

by =2q+ (1 —2X)/5.

(4) When XA = 4 (mod 5), Cs5(\) has the following
cycle of period 10 :

(A 2q =5, —p] ~ [—p, b1, c1]

~ [e1, b2, —ca] ~ [—c2, b3, c3]
~ [e3,ba, =A] ~ [=A,2q — 5, 4]
~ [, b1, —c1] ~ [—c1, b2, ]

~ [c2, b3, —c3] ~ [—c3, b4, A],

where
by =2q — (6p —1)/5,

e =q+(A=9)(p—1)/25,
by = 2¢ — 2 — (2\ — 3)(4p + 1) /25,
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co=1+N+1)(4p+1)/25,
by = 2¢ — 1 — 4(\ + 1)(u — 1)/25,
c3=1+(4N—1)(p—1)/25,
by = 2q — (4\ — 1)/5.
(5) When X € {1,2,4,(5¢—6)/4, (5¢—6)/2,5¢—6},
Cs5(N\) coincides with Cy(x) or Cs(x) as follows:

C5(1) = C5(5¢ — 6) = C1(1),
C5(2) = C1(2),
C5((5¢ — 6)/2) = C1(q/2),
C5(4) = C3((3¢ — 2)/4),
C5((5¢ — 6)/4) = Cs(4).

In comparing these reduced forms, we obtain the fol-

lowing results.

Theorem 4. (1) Ci(\) # Ci(XN) for X #£ N,
except that C1(1) = C1(q).

(2) C5(A) # C5(X) for X # X, except for Cs(1) =
C5(3q — 2) and C3(5) = 03((3q —2)/5).

(3) Cs(X\) # C5(N) for X £ XN, except for Cs5(1) =
C5(5q — 6) and C5(13) = C5((5g — 6)/13).
Theorem 5. (1) C3(x) does not coincide
with Cy(x), except for

03(1) = 03(3(] — 2) = 01(1),
C3(2) = C1(q/2),
Cy((30 - 2)/2) = 12).
(2) C5(x) coincides with neither Cy(x) nor Cs(x),

except for
Cs(1) = C5(5¢ — 6) = C1 (1),

C5(2) = C1(2),
C5((5¢ — 6)/2) = C1(q/2),

C5(3) = C1(q/3),
Cs((5¢ = 6)/3) = C1(3),
C5(4) = Cs((3¢ — 2)/4),
C5((5¢ — 6)/4) = Cs(4),
Cs(8) = Cs((3¢ — 2)/8),
C5((5¢ — 6)/8) = C5(3).

3. Subgroups of H(4q? + 1).
ing results have the following corollaries:
Corollary 1. Let g be a positive integer. As-
sume that 4¢% + 1 is square-free.
(1) Assume that ¢ > 1. If q is an n-th power of
some integer (n > 2), then H(4q¢®> + 1) has a
cyclic subgroup of order n.

The forego-
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(2) Assume that ¢ > 2. If 3¢ — 2 is an n-th power
of some integer (n > 2), then H(4¢*> + 1) has a
cyclic subgroup of order n.

(3) Assume that ¢ > 3. If 5q — 6 is an n-th power
of some integer (n > 2), then H(4¢*> + 1) has a
cyclic subgroup of order n.

To prove Corollary 1 (1), put ¢ = m™. Cy(m?) =
C1(m)* holds by Proposition 1 (3). And Ci(m)" =
C1(q) is a unit in F(4¢%>+1)/~ by Proposition 1 (2).
Moreover, Cq(m?) # C1(m?) for 0 < i < j < n by
Theorem 4 (1). From Proposition 1 (1), Corollary 1
(1) is proved. Corollaries 1 (2) and 1 (3) are proved
likewise.

Note: Corollary 1 (1) is a special case of the
fact in [6], which says that H (a®" +4b%") has a cyclic
subgroup of order n, where a®®+4b%" is a square-free
positive integer.

4. Lower bounds of h(4q® + 1).

Corollary 2. Let q be a positive integer such
that 4q®> + 1 is square-free. Assume that q is big
enough (say, ¢ > 30). Then we have

h(4g? +1) > (m(q) = 1)
+(7(3¢ —2) —c3)
+(7(5¢ — 6) — c5),
where
c3 =24 262(3q — 2) + 65(3¢ — 2),
cs = 2+ 205(5¢ — 6)
+264(5g — 6) + 20s(5g — 6)
+203(59 — 6) + d13(5¢ — 6),

7(q) is the divisor function of q, and
n(@Q)=14n|Q;0in Q.

Corollary 2 follows easily from Theorems 4 and

Corollary 2 is concerned with Chowla’s conjec-
ture, which says that there exist exactly 6 ¢’s such
that h(4¢>+1) = 1. In particular, the last inequality
gives a better lower bound than the formulas given
in [5] and [2].

5. Remark. One can obtain the same re-
sults as in this paper also using Amara’s method in

[1].
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