A note on quadratic fields in which a fixed prime number splits completely. III

By Humio Ichimura

Department of Mathematics, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1999)

1. Introduction. Let p be a fixed prime number and $M(p)^{+}$the set of all real quadratic fields in which p splits. For a quadratic field $K \in M(p)^{+}$, denote by $\delta_{p}^{+}(K)$ the order of the ideal class of K containing a prime ideal of K over p. Here, an ideal class is the one in the usual sense. We are concerned with the image of the map

$$
\delta_{p}^{+}: M(p)^{+} \longrightarrow \boldsymbol{N}, \quad K \rightarrow \delta_{p}^{+}(K)
$$

In the previous note [4], we showed that the image $\operatorname{Im} \delta_{p}^{+}$of δ_{p}^{+}contains 2^{n} for all $n \geq 0$ and any p. The purpose of this note is to show the following:

Theorem. Assume that the abc conjecture holds. (i) Then, the complement $\boldsymbol{N} \backslash \operatorname{Im} \delta_{p}^{+}$is a finite set for any prime number p. (ii) Further, $\operatorname{Im} \delta_{p}^{+}$ coincides with \boldsymbol{N} for infinitely many p.

The abc conjecture predicts that for any $\eta>0$, there exists a positive constant $C=C_{\eta}$ depending only on η with which the inequality

$$
\begin{equation*}
\max (|a|,|b|,|c|)<C\left(\prod_{\ell \mid a b c} \ell\right)^{1+\eta} \tag{1}
\end{equation*}
$$

holds for all nonzero integers a, b, c with $a+b=c$ and $(a, b, c)=1$. Here, in the RHS of (1), ℓ runs over the prime numbers dividing $a b c$. For more on the conjecture, confer Vojta [6, Chapter 5].
2. Lemma. Let $d(>1)$ be a square free integer and $m(>1)$ a natural number. Let (u, v) be an integral solution of the diophantine equation

$$
\begin{equation*}
X^{2}-d Y^{2}= \pm 4 m \tag{2}
\end{equation*}
$$

We say that (u, v) is a trivial solution when $m=n^{2}$ is a square and $n|u, n| v$.

Lemma. Let $d(>1)$ be a square free integer. Let $\epsilon=(s+t \sqrt{d}) / 2$ be a nontrivial unit of the real quadratic field $K=\boldsymbol{Q}(\sqrt{d})$ with $\epsilon>1$. For a natural number $m(>1)$, if the equation (2) has a nontrivial integral solution, then we have

[^0]\[

m \geq $$
\begin{cases}s / t^{2}, & \text { for } N(\epsilon)=-1 \\ (s-2) / t^{2}, & \text { for } N(\epsilon)=1\end{cases}
$$
\]

Here, $N(*)$ denotes the norm map.
This lemma was proved in Ankeny, Chowla and Hasse [1] and Hasse [2] when m is not a square. For the general case, see the author [3], and also Yokoi [8], Mollin [5].
3. Proof of Theorem. For a natural number n, we put $K=K_{(p, n)}=\boldsymbol{Q}\left(\sqrt{p^{2 n}+4}\right)$. As is easily seen, $p^{2 n}+4$ is not a square. We see that

$$
\epsilon=\frac{1}{2}\left(p^{n}+\sqrt{p^{2 n}+4}\right)
$$

is a nontrivial unit of the real quadratic field K with $N(\epsilon)=-1$.

First, we show the assertion (i) of the Theorem for the case $p \neq 2$. Let n be a natural number and $K=K_{(p, n)}$. We see that p splits in K, and let \mathfrak{P} be a prime ideal of K over p. Let n_{0} be the order of the ideal class $[\mathfrak{P}]$ of K containing \mathfrak{P}. We put $\alpha=1-\epsilon$. We have $N(\alpha)=-p^{n}$ and $\operatorname{Tr}(\alpha)=2-p^{n}$, where $\operatorname{Tr}(*)$ is the trace map. In particular,

$$
\left(\alpha, \alpha^{\prime}\right) \supseteq\left(p^{n}, 2-p^{n}\right)=1
$$

as $p \neq 2$. Here, α^{\prime} is the conjugate of α. Therefore, we obtain

$$
\begin{equation*}
(\alpha)=\mathfrak{P}^{n} \tag{3}
\end{equation*}
$$

and hence $n_{0} \mid n$. We show, under the abc conjecture, that $n_{0}=n$ when n is sufficiently large.

Write $p^{2 n}+4=f^{2} d$ with d square free. Applying the inequality (1) for $\left(p^{2 n}+4\right)-p^{2 n}=4$, we see that

$$
f^{2} d<c_{1}\left(2 p \prod_{\ell \mid p^{2 n}+4} \ell\right)^{1+\eta} \leq c_{1}(2 p f d)^{1+\eta}
$$

with $\eta=1 / 100$ (say). Here, c_{1} is a constant depending only on η, and ℓ runs over the prime numbers dividing $p^{2 n}+4$. From this, we obtain

$$
f^{1-\eta}<c_{2} p^{1+\eta} d^{\eta}=c_{2} p^{1+\eta}\left(\frac{p^{2 n}+4}{f^{2}}\right)^{\eta}
$$

and hence

$$
f<c_{3} p\left(p^{2 n}+4\right)^{\eta /(1+\eta)}<c_{4} p^{x_{n}}
$$

with

$$
x_{n}=1+(2 \eta /(1+\eta)) n .
$$

Here, c_{2}, c_{3}, c_{4} are constants depending only on $\eta(=$ $1 / 100)$. Therefore, we see that
(4)

$$
\begin{equation*}
f<p^{n / 4} \tag{4}
\end{equation*}
$$

when $n \geq 5$ and $p^{y_{n}}>c_{4}$ with

$$
y_{n}=n / 4-x_{n}=93 n / 404-1 .
$$

In particular, for each $p(\geq 3)$, the inequality (4) holds for all sufficiently large n. Further, when p is sufficiently large, (4) holds for all $n(\geq 5)$.

Assume that the inequality (4) holds for a given pair (p, n) with $n \geq 5$. We show that $n_{0}=n$. We have $\epsilon=\left(p^{n}+f \sqrt{d}\right) / 2$ and $N(\epsilon)=-1$. Since n_{0} is the order of the ideal class $[\mathfrak{P}]$, there exists a nontrivial solution for the equation (2) with $m=p^{n_{0}}$. Therefore, from the Lemma, we see that

$$
p^{n_{0}} \geq p^{n} / f^{2}>p^{n / 2}
$$

Then, as $n_{0} \mid n$, we obtain $n_{0}=n$. The desired assertion follows from this. Moreover, from the above argument, we also obtain the following:

Proposition. Assume that the abc conjecture holds. When p is sufficiently large, $\operatorname{Im} \delta_{p}^{+}$contains all natural numbers n with $n \geq 5$.

Next, we show the assertion (ii). It suffices to show that $\operatorname{Im} \delta_{p}^{+}$contains 3 for infinitely many p because of the Proposition and the assertion of [4] recalled in Section 1. We use the same notation as above. Let $n=3$. We assume that $p \equiv \pm 2 \bmod 5$ and $p>3$. Then, by Weinberger [7, Lemma 4], ϵ is a fundamental unit of $K=K_{(p, 3)}$. We show that $n_{0}=3$ when p further satisfies

$$
p \equiv 1 \bmod 3 \quad \text { and } \quad 2 \bmod p \notin(\boldsymbol{Z} / p \boldsymbol{Z})^{\times 3} .
$$

We easily see that there are infinitely many p satisfying these conditions. Assume, on the contrary, that $n_{0} \neq 3$. Then, as $n_{0} \mid n=3$, we have $n_{0}=1$, i.e., \mathfrak{P} is principal. Hence, by (3),

$$
\begin{equation*}
\alpha= \pm \epsilon^{a} x^{3} \tag{5}
\end{equation*}
$$

for some integer a and some $x \in K^{\times}$. Let \mathfrak{P}^{\prime} be the conjugate of \mathfrak{P}. We see from $\mathfrak{P}^{\prime 3}=\left(\alpha^{\prime}\right)$ that $\sqrt{p^{6}+4} \equiv-2 \bmod \mathfrak{P}^{\prime}$, and hence

$$
\epsilon \equiv-1 \bmod \mathfrak{P}^{\prime} \quad \text { and } \quad \alpha \equiv 2 \bmod \mathfrak{P}^{\prime} .
$$

Therefore, (5) is impossible since $2 \bmod p$ is not a cube. Hence, we obtain $n_{0}=3$.

Finally, we show the assertion (i) for the case $p=2$. Let $p=2, n \geq 3, m=n-2$ and $K=K_{(2, n)}$. Then, $\left(p^{2 n}+4\right) / 4$ is an integer congruent to 1 modulo 8. Hence, p splits in K. Let \mathfrak{P} be a prime ideal of K over p, and m_{0} the order of the ideal class [\mathfrak{P}]. Define an integer α of K by

$$
\alpha=\frac{1}{2}\left(2^{n-1}+1+\sqrt{2^{2 n-2}+1}\right) .
$$

Since $N(\alpha)=2^{m}$ and $\operatorname{Tr}(\alpha)=2^{n-1}+1$, we see that $(\alpha)=\mathfrak{P}^{m}$, and hence $m_{0} \mid m$. We can show, under the abc conjecture, that $m_{0}=m$ for sufficiently large n by an argument similar to the case $p \neq 2$.

References

[1] N. Ankeny, S. Chowla, and H. Hasse: On the class number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math., 217, 217-220 (1965).
[2] H. Hasse: Über die mehrklassige, aber einegeschlechtige reell-quadratishe Zahlkörper. Elem. Math., 20, 49-59 (1965).
[3] H. Ichimura: A note on quadratic fields in which a fixed prime number splits completely. Nagoya Math. J., 99, 63-71 (1985).
[4] H. Ichimura: A note on quadratic fields in which a fixed prime number splits completely, II. Proc. Japan Acad., 75A, 150-151 (1999).
[5] R. Mollin: On the insolubility of a class of diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type. Nagoya Math. J., 105, 3947 (1987).
[6] P. Vojta: Diophantine Approximations and Value Distribution Theory. Lecture Notes in Math., vol. 1239, Springer, New York, pp. 1-132 (1987).
[7] P. Weinberger: Real quadratic fields with class numbers divisible by n. J. Number Theory, 5, 237-241 (1973).
[8] H. Yokoi: Some relations among new invariants of prime number p congruent to $1 \bmod 4$. in Investigation in Number Theory (ed. T. Kubota). Adv. Stud. Pure Math., vol. 13, Kinokuniya, Tokyo, pp. 493-501 (1988).

[^0]: Partially supported by Grant-in-Aid for Scientific Research (C), (No. 11640041), the Ministry of Education, Science, Sports and Culture of Japan.

