"Hasse principle" for $G L_{2}(D)$

By Takashi Ono
Department of Mathematics, The Johns Hopkins University, Baltimore, MD 21218, U.S.A.
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 13, 1999)

1. Statement of a theorem. Let D be a Euclidean domain and $G=G L_{2}(D)$, the group of invertible 2×2 matrices over $D .{ }^{0}$) We shall prove that
(1.1) Theorem. $\amalg(G)=1$, i.e., G enjoys the "Hasse principle". ${ }^{1)}$
(1.2) Remark. Thanks to an excellent idea of M. Mazur, to prove (1.1) it is enough to verify that

$$
\begin{equation*}
\operatorname{End}_{c}(G)=\operatorname{Inn}(G) \tag{1.3}
\end{equation*}
$$

where the left hand side is the set of all endomorphisms of G preserving conjugacy classes of G. ${ }^{1)}$ Thus for each $F \in \operatorname{End}_{c}(G)$, and $A \in G$, we have

$$
\begin{gather*}
F(A) \sim A, \quad \text { i.e. } \quad F(A)=P A P^{-1} \tag{1.4}\\
P \text { depending on } A .
\end{gather*}
$$

Given an $F \in \operatorname{End}_{c}(G)$ we connect two elements A, B of G by a string according to the rule:

$$
\begin{align*}
A-B & \Longleftrightarrow \exists P \in G \text { so that } \tag{1.5}\\
F(A) & =P A P^{-1} \text { and } F(B)=P B P^{-1}
\end{align*}
$$

Note that $A-B$ is not, a priori, an equivalence relation defined on $G .{ }^{2)}$ Even so, this relation is very useful to prove the Hasse principle $\amalg(G)=1$. Note also that the relation (1.5) depends only on F modulo $\operatorname{Inn}(G)$.
2. Generators for \boldsymbol{G}. Before proving (1.1), let us gather some basic facts on $G=G L_{2}(D), D$ being a Euclidean domain. Denote by D^{*} the group of invertible elements of D. Let $N, M_{\lambda}(\lambda \in D$, $\lambda \neq 0), D_{\mu}\left(\mu \in D^{*}, \mu \neq 1\right)$ be elements of G defined by
(2.1) $\quad N=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad M_{\lambda}=\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right), \quad D_{\mu}=\left(\begin{array}{ll}1 & 0 \\ 0 & \mu\end{array}\right)$.

[^0]It is well-known and easy to prove that
(2.2) $\quad G$ is generated by N, M_{λ}, D_{μ} :

$$
G=\left\langle N, M_{\lambda}, D_{\mu}\right\rangle
$$

We will use repeatedly the following equalities on $P=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right) \in G$.
(2.3) $P N P^{-1}=(\operatorname{det} P)^{-1}\left(\begin{array}{ll}y t-x z & x^{2}-y^{2} \\ t^{2}-z^{2} & x z-y t\end{array}\right)$,
(2.4) $\quad M_{\lambda} P N P^{-1}=(\operatorname{det} P)^{-1}$

$$
\times\left(\begin{array}{cc}
y t-x z+\lambda\left(t^{2}-z^{2}\right) & x^{2}-y^{2}+\lambda(x z-y t) \\
t^{2}-z^{2} & x z-y t
\end{array}\right)
$$

$$
\begin{align*}
& D_{\mu} P N P^{-1} \tag{2.5}\\
& \quad=(\operatorname{det} P)^{-1}\left(\begin{array}{cc}
y t-x z & x^{2}-y^{2} \\
\mu\left(t^{2}-z^{2}\right) & \mu(x z-y t)
\end{array}\right) .
\end{align*}
$$

3. Proof of the theorem.

Step (I). To prove that $N-M_{\lambda}$. Since we can adjust a given F in $\operatorname{End}_{c}(G)$ by elements of $\operatorname{Inn}(G)$, We may assume that

$$
\left\{\begin{array}{l}
F\left(M_{\lambda}\right)=M_{\lambda}, \tag{3.1}\\
F(N)=P N P^{-1}, \quad P \in G
\end{array}\right.
$$

Our problem is to find $P_{0} \in G$ so that

$$
\left\{\begin{array}{l}
F\left(M_{\lambda}\right)=M_{\lambda}=P_{0} M_{\lambda} P_{0}^{-1} \tag{3.2}\\
F(N)=P N P^{-1}=P_{0} N P_{0}^{-1}
\end{array}\right.
$$

Put

$$
P=\left(\begin{array}{cc}
x & y \tag{3.3}\\
z & t
\end{array}\right), \quad P_{0}=\left(\begin{array}{cc}
1 & y_{0} \\
0 & 1
\end{array}\right)
$$

Clearly P_{0}, with any $y_{0} \in D$, meets the first equality of (3.2). As for the second equality of (3.2), in view of (2.3) for P and P_{0} we are forced to set $y_{0}=(y t-$ $x z) /(x t-y z)$ and then we should verify the equality (3.2) which boils down to a single equality:

$$
\begin{equation*}
\operatorname{det}(P)=x t-y z=t^{2}-z^{2} \tag{3.4}
\end{equation*}
$$

as a little calculation shows. To get (3.4), we must use seriously the assumption that F is a homomor-
phism: $F\left(M_{\lambda} N\right)=F\left(M_{\lambda}\right) F(N)$. In other words, we have

$$
\begin{align*}
& Q\left(M_{\lambda} N\right) Q^{-1}=M_{\lambda} P N P^{-1} \tag{3.5}\\
& \text { with some } Q \in G
\end{align*}
$$

Take the trace of both sides of (3.5) and use (2.4). Then (3.4) follows miraculously.

Step (II). To Prove that $N-D_{\mu}$. As in Step (I), we may assume that

$$
\left\{\begin{array}{l}
F\left(D_{\mu}\right)=D_{\mu} \tag{3.6}\\
F(N)=P N P^{-1}, \quad P \in G
\end{array}\right.
$$

Again we must find $P_{0} \in G$ so that

$$
\left\{\begin{array}{l}
F\left(D_{\mu}\right)=D_{\mu}=P_{0} D_{\mu} P_{0}^{-1} \tag{3.7}\\
F(N)=P N P^{-1}=P_{0} N P_{0}^{-1}
\end{array}\right.
$$

Put

$$
P=\left(\begin{array}{cc}
x & y \tag{3.8}\\
z & t
\end{array}\right), \quad P_{0}=\left(\begin{array}{cc}
x_{0} & 0 \\
0 & 1
\end{array}\right)
$$

Clearly P_{0}, with any $x_{0} \in D^{*}$, meets the first equality of (3.7). As for the second equality of (3.7), in view of (2.3) for p and p_{0} we are forced to set $x_{0}=$ $\left(x^{2}-y^{2}\right) /(x t-y z)$ and then we should verify the equality (3.7) which boils down to a single equality:

$$
\begin{equation*}
x z-y t=0 \tag{3.9}
\end{equation*}
$$

as a little calculation shows. To get (3.9), we must use again the property $F\left(D_{\mu} N\right)=F\left(D_{\mu}\right) F(N)$. We have then

$$
\begin{equation*}
Q\left(D_{\mu} N\right) Q^{-1}=D_{\mu} P N P^{-1}, \quad Q \in G \tag{3.10}
\end{equation*}
$$

Take the trace of both sides of (3.10) and use (2.5). Then (3.9) follows again.

Step (III). Combining (I), (II), we found, for any $F \in \operatorname{End}_{c}(G), \lambda(\neq 0) \in D, \mu(\neq 1) \in D^{*}$, matrices P, Q in G so that

$$
\left\{\begin{array}{l}
F(N)=P N P^{-1}=Q N Q^{-1} \tag{3.11}\\
F\left(M_{\lambda}\right)=P M_{\lambda} P^{-1} \\
F\left(D_{\mu}\right)=Q D_{\mu} Q^{-1}
\end{array}\right.
$$

Here it is important to note that the matrix Q above does not depend on μ up to scalars. In fact, let $X=$ $Q_{\mu}^{-1} Q_{\mu^{\prime}}$, with $F(N)=Q_{\mu} N Q_{\mu}^{-1}=Q_{\mu^{\prime}} N Q_{\mu^{\prime}}{ }^{-1}$, $F\left(D_{\mu}\right)=Q_{\mu} D_{\mu} Q_{\mu}^{-1}, F\left(D_{\mu^{\prime}}\right)=Q_{\mu^{\prime}} D_{\mu^{\prime}} Q_{\mu^{\prime}}{ }^{-1}$. Then

$$
X=\left(\begin{array}{ll}
x & y \\
y & x
\end{array}\right), x^{2}-y^{2} \in D^{*}
$$

Then by comparing the traces of both sides of $F\left(D_{\mu \mu^{\prime}}\right)=F\left(D_{\mu}\right) F\left(D_{\mu^{\prime}}\right)$, one verifies that $X=x I$, and so one can assume that $Q_{\mu}=Q_{\mu^{\prime}}=Q$.

From the first line of (3.11), we infer that

$$
R=Q^{-1} P=\left(\begin{array}{ll}
a & b \tag{3.12}\\
b & a
\end{array}\right)
$$

Adjusting F modulo $\operatorname{Inn}(G)$, the last two lines of (3.11) imply that

$$
\left\{\begin{array}{l}
F\left(M_{\lambda}\right)=R M_{\lambda} R^{-1} \tag{3.13}\\
F\left(D_{\mu}\right)=D_{\mu}
\end{array}\right.
$$

Taking the traces of both sides of $F\left(D_{\mu} M_{\lambda}\right)=$ $F\left(D_{\mu}\right) F\left(M_{\lambda}\right)$, we get, after a little calculation using $\lambda \neq 0, \mu \neq 1$ and $a^{2}-b^{2} \neq 0$,

$$
\begin{equation*}
a b=0 . \tag{3.14}
\end{equation*}
$$

In other words,

$$
R=a I \quad \text { or } b N, \quad I=\left(\begin{array}{ll}
1 & 0 \tag{3.15}\\
0 & 1
\end{array}\right)
$$

So from (3.11), (3,13), (3.15), we may assume that either

$$
\left\{\begin{array}{l}
F(N)=N={ }^{t} N \tag{3.16}\\
F\left(M_{\lambda}\right)=N M_{\lambda} N^{-1}={ }^{t} M_{\lambda}, a=0 \\
F\left(D_{\mu}\right)=D_{\mu}={ }^{t} D_{\mu}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
F(N)=N, \tag{3.17}\\
F\left(M_{\lambda}\right)=M_{\lambda}, \quad b=0, \\
F\left(D_{\mu}\right)=D_{\mu}
\end{array}\right.
$$

If (3.16) was the case, we would have $N M_{\lambda} D_{\mu} \sim$ $F\left(N M_{\lambda} D_{\mu}\right)=F(N) F\left(M_{\lambda}\right) F\left(D_{\mu}\right)=N^{t} M_{\lambda} D_{\mu}=$ ${ }^{t}\left(D_{\mu} M_{\lambda} N\right)$ and, on taking the traces, we get $\lambda \mu=\lambda$, or $\lambda(\mu-1)=0$, contradicting our assumption on λ, μ. So (3.17) shows that our original F is an inner automorphism, i.e., the Hasse principle $\amalg(G)=1$ holds.

References

[1] T. Ono: "Shafarevich-Tate sets" for profinite groups. Proc. Japan Acad., 75A, 97-98 (1999).
[2] H. Wada: "Hasse principle" for $S L_{n}(D)$. Proc. Japan Acad., 75A, 67-69 (1999).

[^0]: ${ }^{0}$) Needless to say, D may be any commutative field.

 1) As for unexplained notation and facts in this paper, see [1].
 2) This reminds me somehow a children's string game CAT'S CRADLE, or AYATORI in Japanese. One can play this game on any group G once an endomorphism $F \in$ $\operatorname{End}_{c}(G)$ is chosen.
