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1. Statement of a theorem. Let D be a
Euclidean domain and G = GL2(D), the group of
invertible 2 × 2 matrices over D.0) We shall prove
that

(1.1) Theorem. X(G) = 1, i.e., G enjoys the
“Hasse principle”.1)

(1.2) Remark. Thanks to an excellent idea of
M. Mazur, to prove (1.1) it is enough to verify that

Endc(G) = Inn(G),(1.3)

where the left hand side is the set of all endomor-
phisms of G preserving conjugacy classes of G.1)

Thus for each F ∈ Endc(G), and A ∈ G, we have

F (A) ∼ A, i.e., F (A) = PAP−1,(1.4)

P depending on A.

Given an F ∈ Endc(G) we connect two elements A,
B of G by a string according to the rule:

A — B ⇐⇒ ∃P ∈ G so that(1.5)

F (A) = PAP−1 and F (B) = PBP−1.

Note that A — B is not, a priori, an equivalence re-
lation defined on G.2) Even so, this relation is very
useful to prove the Hasse principle X(G) = 1. Note
also that the relation (1.5) depends only on F mod-
ulo Inn(G).

2. Generators for G. Before proving (1.1),
let us gather some basic facts on G = GL2(D), D

being a Euclidean domain. Denote by D∗ the group
of invertible elements of D. Let N , Mλ (λ ∈ D,
λ 6= 0), Dµ (µ ∈ D∗, µ 6= 1) be elements of G defined
by

N =
(

0 1
1 0

)
, Mλ =

(
1 λ

0 1

)
, Dµ =

(
1 0
0 µ

)
.(2.1)

0) Needless to say, D may be any commutative field.
1) As for unexplained notation and facts in this paper, see

[1].
2) This reminds me somehow a children’s string game

CAT’S CRADLE, or AYATORI in Japanese. One can play
this game on any group G once an endomorphism F ∈
Endc(G) is chosen.

It is well-known and easy to prove that

G is generated by N , Mλ, Dµ:(2.2)

G = 〈N,Mλ, Dµ〉,

We will use repeatedly the following equalities on

P =
(

x y

z t

)
∈ G.

PNP−1 = (det P )−1

(
yt− xz x2 − y2

t2 − z2 xz − yt

)
,(2.3)

MλPNP−1 = (det P )−1(2.4)

×
(

yt− xz + λ(t2 − z2) x2 − y2 + λ(xz − yt)
t2 − z2 xz − yt

)
,

DµPNP−1(2.5)

= (det P )−1

(
yt− xz x2 − y2

µ(t2 − z2) µ(xz − yt)

)
.

3. Proof of the theorem.
Step (I). To prove that N — Mλ. Since we

can adjust a given F in Endc(G) by elements of
Inn(G), We may assume that{

F (Mλ) = Mλ,

F (N) = PNP−1, P ∈ G.
(3.1)

Our problem is to find P0 ∈ G so that{
F (Mλ) = Mλ = P0MλP0

−1,

F (N) = PNP−1 = P0NP0
−1.

(3.2)

Put

P =
(

x y

z t

)
, P0 =

(
1 y0

0 1

)
.(3.3)

Clearly P0, with any y0 ∈ D, meets the first equality
of (3.2). As for the second equality of (3.2), in view
of (2.3) for P and P0 we are forced to set y0 = (yt−
xz)/(xt− yz) and then we should verify the equality
(3.2) which boils down to a single equality:

det(P ) = xt− yz = t2 − z2(3.4)

as a little calculation shows. To get (3.4), we must
use seriously the assumption that F is a homomor-
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phism: F (MλN) = F (Mλ)F (N). In other words,
we have

Q(MλN)Q−1 = MλPNP−1,(3.5)

with some Q ∈ G.

Take the trace of both sides of (3.5) and use (2.4).
Then (3.4) follows miraculously.

Step (II). To Prove that N — Dµ. As in Step
(I), we may assume that{

F (Dµ) = Dµ,

F (N) = PNP−1, P ∈ G.
(3.6)

Again we must find P0 ∈ G so that{
F (Dµ) = Dµ = P0DµP0

−1

F (N) = PNP−1 = P0NP0
−1.

(3.7)

Put

P =
(

x y

z t

)
, P0 =

(
x0 0
0 1

)
.(3.8)

Clearly P0, with any x0 ∈ D∗, meets the first equali-
ty of (3.7). As for the second equality of (3.7), in
view of (2.3) for p and p0 we are forced to set x0 =
(x2 − y2)/(xt − yz) and then we should verify the
equality (3.7) which boils down to a single equality:

xz − yt = 0(3.9)

as a little calculation shows. To get (3.9), we must
use again the property F (DµN) = F (Dµ)F (N). We
have then

Q(DµN)Q−1 = DµPNP−1, Q ∈ G.(3.10)

Take the trace of both sides of (3.10) and use (2.5).
Then (3.9) follows again.

Step (III). Combining (I), (II), we found, for
any F ∈ Endc(G), λ(6= 0) ∈ D, µ(6= 1) ∈ D∗, matri-
ces P , Q in G so that

F (N) = PNP−1 = QNQ−1,

F (Mλ) = PMλP−1,

F (Dµ) = QDµQ−1.

(3.11)

Here it is important to note that the matrix Q above
does not depend on µ up to scalars. In fact, let X =
Qµ

−1Qµ′ , with F (N) = QµNQµ
−1 = Qµ′NQµ′

−1,
F (Dµ) = QµDµQµ

−1, F (Dµ′) = Qµ′Dµ′Qµ′
−1.

Then

X =
(

x y

y x

)
, x2 − y2 ∈ D∗.

Then by comparing the traces of both sides of
F (Dµµ′) = F (Dµ)F (Dµ′), one verifies that X = xI,
and so one can assume that Qµ = Qµ′ = Q.

From the first line of (3.11), we infer that

R = Q−1P =
(

a b

b a

)
.(3.12)

Adjusting F modulo Inn(G), the last two lines of
(3.11) imply that{

F (Mλ) = RMλR−1,

F (Dµ) = Dµ.
(3.13)

Taking the traces of both sides of F (DµMλ) =
F (Dµ)F (Mλ), we get, after a little calculation us-
ing λ 6= 0, µ 6= 1 and a2 − b2 6= 0,

ab = 0.(3.14)

In other words,

R = aI or bN, I =
(

1 0
0 1

)
.(3.15)

So from (3.11), (3,13), (3.15), we may assume that
either 

F (N) = N = tN,

F (Mλ) = NMλN−1 = tMλ, a = 0,

F (Dµ) = Dµ = tDµ.

(3.16)

or 
F (N) = N,

F (Mλ) = Mλ, b = 0,

F (Dµ) = Dµ.

(3.17)

If (3.16) was the case, we would have NMλDµ ∼
F (NMλDµ) = F (N)F (Mλ)F (Dµ) = N tMλDµ =
t(DµMλN) and, on taking the traces, we get λµ =λ,
or λ(µ− 1) = 0, contradicting our assumption on λ,
µ. So (3.17) shows that our original F is an inner
automorphism, i.e., the Hasse principle X(G) = 1
holds.
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