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1. Introduction. In the study of stabiliza-
tion of boundary control systems, most fundamental
is the static feedback control scheme: Based on a fi-
nite number of the observed data (outputs), it is the
scheme to feed them back directly into the system
through the boundary. Let Ω denote a bounded do-
main of Rm with the boundary Γ which consists of
a finite number of smooth components of (m − 1)-
dimension. The control system studied here is the
following initial-boundary value problem:

∂u

∂t
+ Lu = 0 in (0,∞)×Ω,

τu =
N∑

k=1

〈u, wk〉Ω hk on (0,∞)× Γ,(1)

u(0, ·) = u0(·) in Ω.

Here, L denotes a uniformly elliptic differential op-
erator of order 2 in Ω defined by

Lu = −
m∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

m∑
i=1

bi(x)
∂u

∂xi
+ c(x)u,

and aij(x) = aji(x) for 1 6 i, j 6 m, x ∈ Ω. The
boundary operator τ associated with L is either τ1
of the Dirichlet type or τ2 of the Robin type:

τ1u = u|Γ ,

τ2u =
∂u

∂ν
+ σ(ξ)u

=
m∑

i,j=1

aij(ξ)νi(ξ)
∂u

∂xj

∣∣∣∣
Γ

+ σ(ξ)u|Γ ,

where (ν1(ξ), . . . , νm(ξ)) denotes the unit outer nor-
mal at ξ ∈ Γ . Necessary regularity on Ω and on Γ

of coefficients of L and τ is assumed tacitly. The in-
ner product and the norm in L2(Ω) are denoted by
〈·, ·〉Ω and ‖ · ‖, respectively. The symbol ‖ · ‖ is also
used for the L(L2(Ω))-norm. In eq. (1), 〈u, wk〉Ω

denote the outputs, where wk ∈ L2(Ω), and hk

the actuators belonging to H3/2(Γ ) in the case of
the Dirichlet boundary condition, or H1/2(Γ ) in the
Robin boundary condition.

Let us define the linear operators Li andMi, i =
1, 2 in L2(Ω) by

Liu = Lu, u ∈ D(Li),

D(Li) = {u ∈ H2(Ω) ; τiu = 0 on Γ}

and

Miu = Lu, u ∈ D(Mi),

D(Mi) =
{
u ∈ H2(Ω) ;

τiu =
N∑

k=1

〈u, wk〉Ω hk on Γ
}
,

respectively. Henceforth L stands for either L1 or L2

when it is distinguished from the context. The same
symbolic convention applies to Mi as well as other
operators. Eq. (1) is then simply rewritten as the
equation in L2(Ω):

du

dt
+Mu = 0, u(0) = u0.(2)

Given a µ > 0, the problem is to find wk’s and
hk’s such that the semigroup exp (−tM) satisfies the
decay estimate

‖e−tM‖ 6 const e−µt, t > 0.(3)

In [4], this estimate was established via the fractional
powers Lω

c , Lc = L + c, c > 0 and the related frac-
tional calculus. In the case of the Robin boundary
condition, for example, we set

x(t) = L−ω
2c u(t),

1
4
< ω <

1
2
,

and, noticing the relation: D(Lω
2c) = H2ω(Ω) for



138 T. Nambu [Vol. 75(A),

0 6 ω < 3/4 [2], turn eq. (2) into

dx

dt
+ L2x =

N∑
k=1

〈Lω
2cx, wk〉Ω L

1−ω
2c ψk,

x(0) = L−ω
2c u0,

where ψk ∈ H2(Ω) satisfy (L + c)ψk = 0, τ2ψk =
hk, 1 6 k 6 N . The problem is then reduced to that
of finding the estimate∥∥∥∥∥exp

{
−t

(
L2 −

N∑
k=1

〈Lω
2c·, wk〉Ω L

1−ω
2c ψk

)}∥∥∥∥∥
6 const e−µt, t > 0.

We propose in this note an alternative alge-
braic approach to the stabilization which requires
no fractional powers of Lc. The common idea is,
however, to turn the problem into another with no
feedback term on Γ . A merit of the present ap-
proach is that the idea is equally applied to a va-
riety of boundary control systems. In fact, the ap-
proach via fractional powers requires exact charac-
terization of D(Lω

c ). This seems in general a difficult
(but challenging) problem when general elliptic op-
erators with more complicated boundary conditions
are studied.

The spectrum σ(L) consists only of eigenvalues
λi, i > 1, lying symmetrically in the interior of a
parabola: {λ = (aτ2 − b) +

√
−1 τ ; τ ∈ R1}, a > 0

[1]. They are labelled according to increasing Reλi.
As usual, Pλi

= 1/(2π
√
−1)

∫
|λ−λi|=ε

(λ−L)−1 dλ is
a projection which maps L2(Ω) onto the generalized
eigenspace for λi, where ε > 0 is small enough. Set
dimPλiL

2(Ω) = mi (< ∞), and let ϕi1, . . . , ϕimi

be the basis for PλiL
2(Ω). As is well known [1], P ∗

λi

maps L2(Ω) onto the generalized eigenspace for λi of
L∗, and dimP ∗

λi
L2(Ω) = mi. The basis for P ∗

λi
L2(Ω)

is denoted by ψi1, . . . , ψimi
.

For a given µ > 0, suppose that

Reλ1 6 · · · 6 ReλK 6 µ < ReλK+1.

Set P = Pλ1 + · · ·+ PλK
. In view of the expression:

Lϕij = λiϕij +
∑

k<j α
i
jkϕik, 1 6 j 6 mi, the re-

striction of L onto the invariant subspace PL2(Ω) is
bounded and similar to the upper triangular matrix
Λ, the diagonal elements of which are λ1, . . . , λ1︸ ︷︷ ︸

m1

, . . . ,

λK , . . . , λK︸ ︷︷ ︸
mK

. If λ is in ρ(Li), the boundary value

problem:

(λ− L)ψk = 0, τiψk = hk,

1 6 k 6 N, i = 1, 2

admits a unique solution ψk [3] which is denoted by
Ni(λ)hk,where

N1(λ) ∈ L(H3/2(Γ ); H2(Ω)),

N2(λ) ∈ L(H1/2(Γ ); H2(Ω)).

The operators Ni(λ) are simply rewritten as N(λ).

2. Main result. Our first result is

Theorem 2.1.
(i) The operator M is densely defined. The prob-

lem (2) is well posed, and the semigroup e−tM

is analytic in t > 0.
(ii) The adjoint M∗ is given by

M∗
1u = L∗u+

N∑
k=1

〈
∂u

∂ν
, hk

〉
Γ

wk,

u ∈ D(M∗
1 ) = H2(Ω) ∩H1

0 (Ω),

M∗
2u = L∗u−

N∑
k=1

〈u, hk〉Γwk,

u ∈ D(M∗
2 ) = {u ∈ H2(Ω); τ∗u = 0 on Γ},

where (L∗, τ∗) denotes the formal adjoint of
(L, τ).
For notational convenience, let us introduce the

symbol [u] as

[u] =



∂u

∂ν
, in the case of the Dirichlet boundary

condition,

u, in the case of the Robin boundary

condition.

Then M∗
i are simply rewritten as

M∗
i u = L∗u− (−1)i

N∑
k=1

〈[u], hk〉Γwk, i = 1, 2.

For a large c > 0 with −c ∈ ρ(L), set PN(−c)hk =∑
i6K, j ζ

k
ijϕij . It is well known -via Green’s formula-

that there is an S×S nonsingular matrix A such that
(S = m1 + · · ·+mK) ζk

11
...

ζk
KmK

 = A

 〈hk, [ψ11]〉Γ
...

〈hk, [ψKmK
]〉Γ

 .
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We define the S×S matrix Λ̃ and the S×N matrix
H as

Λ̃ = A−1ΛA,(4)

and

H =(
〈hk, [ψij ]〉Γ ;

k → 1, . . . , N
(i, j) ↓ (1, 1), . . . , (K,mK)

)
,

(5)

respectively.
Based on Theorem 2.1, our main result is stated

as follows:
Theorem 2.2. Suppose that (Λ̃, H) is a con-

trollable pair, i.e.,

rank (H Λ̃H Λ̃2H . . . Λ̃S−1H) = S.(6)

Then there is a set of wk’s ∈ P ∗L2(Ω) such that the
estimate (3) holds.

Outline of the proof. The proof of Theorem
2.1, (i) is almost the same as in [5, Theorem 2.3]:
There exists a sectorΣα = {λ − α ∈ C; θ0 6 | arg λ|
6 π}, 0 < θ0 < π/2, α ∈ R1, such that

(λ−M)−1f = (λ− L)−1f(7)

+[N(λ)h1 . . . N(λ)hN ](1− Φ(λ))−1 ·
〈(λ− L)−1f, w〉Ω , λ ∈Σα,

where 〈·, w〉Ω denotes the transpose of a vector:

(〈·, w1〉Ω . . . 〈·, wN 〉Ω ),

and

Φ(λ) =
(
〈N(λ)hk, wj〉Ω ;

k → 1, . . . , N
j ↓ 1, . . . , N

)
→ 0, |λ| → ∞, λ ∈Σα,

uniformly. Thus the estimate:

‖(λ−M)−1‖ 6
const
1 + |λ|

, λ ∈Σα

holds, and e−tM is analytic in t > 0.
The expression of the adjoint M∗

1 is found in [5,
Proposition 2.4], and M∗

2 is obtained in almost the
same manner as M∗

1 .
As to the proof of Theorem 2.2, the main feature

is to propose an approach entirely different from and
simpler than in [4]. Let us define the operator T by

v = Tu = u−
N∑

k=1

〈u, wk〉Ω N(−c)hk.(8)

Here the vectors wj ’s are to be determined later in re-
lation to c > 0 and the associated finite-dimensional

stabilization problem (12a). The operator T belongs
to L(L2(Ω))∩L(D(M); D(L)). The bounded inverse
T−1 exists, and is given by

u = T−1v = v + [N(−c)h1 . . . N(−c)hN ]·
(1− Φ(−c))−1〈v, w〉Ω .

Here we have assumed with no loss of generality that
(1−Φ(−c))−1 exists. In fact, consider the case where
det (1 − Φ(−c)) = 0. We then replace wj ’s by (1 +
ε)wj ’s for a sufficiently small ε. The function det (1−
(1 + ε)Φ(−c)) in ε is a polynomial of degree at most
N ; not a constant; and analytic. Thus det (1− (1 +
ε)Φ(−c)) 6= 0 for some small ε 6= 0. As far as ε is
small enough, this does not affect the stabilization
problem under consideration. The other properties
of T are easily examined.

For a solution u ∈ D(M) to the problem (2), set

v(t) = Tu(t), t > 0.(9)

Then v(t) ∈ D(L) satisfies the equation

dv

dt
+ TMcT

−1v = cv, t > 0, v(0) = Tu0,

where Mc = M + c. We calculate as

TMcT
−1v = TLc

(
v + [N(−c)h1 . . . N(−c)hN ]·

(1− Φ(−c))−1〈v, w〉Ω
)

= TLcv = TLcv

= Lcv −
N∑

k=1

〈Lcv, wk〉Ω N(−c)hk.

We assume that wk’s belong to P ∗L2(Ω) ⊂ D(L∗).
Then the equation for v is rewritten as

dv

dt
+ Lv −

N∑
k=1

〈v, L∗
cwk〉Ω N(−c)hk = 0,

t > 0, v(0) = Tu0.

(10)

The problem (10) generates an analytic semigroup.
Thus the problem (2) also generates an analytic
semigroup exp (−tM), and

exp (−tM) = T−1·(11)

exp

{
−t

(
L−

N∑
k=1

〈·, L∗
cwk〉Ω N(−c)hk

)}
· T,

t > 0.

In view of the relation (11), we have to estab-
lish a stabilization result for the problem (10). At
this stage, the problem is simple since wk’s belong
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to P ∗L2(Ω). The restrictions of L onto the invari-
ant subspaces PL2(Ω) and (1−P )L2(Ω)∩D(L) are
denoted by L1 and L2 respectively. Then, by setting

v1 = Pv, v2 = (1− P )v,

eq. (10) is decomposed into

(12a)
dv1
dt

+ L1v1

−
N∑

k=1

〈v1, L∗
cwk〉Ω PN(−c)hk = 0,

(12b)
dv2
dt

+ L2v2

−
N∑

k=1

〈v1, L∗
cwk〉Ω (1− P )N(−c)hk = 0.

In (12a), replace L∗
cwk by yk=

∑
i,j (i6K) y

k
ijψij .

Then (12a) is equivalent to the equation in CS :

dv
dt

+ (Λ− ZY Π)v = 0,

where

Z =
(
ζk
ij ;

k → 1, . . . , N
(i, j) ↓ (1, 1), . . . , (K,mK)

)
= AH,

Y =
(
yk

ij ;
k ↓ 1, . . . , N

(i, j) → (1, 1), . . . , (K,mK)

)
, and

Π =
(
〈ϕij , ψpq〉Ω ;

(i, j) → (1, 1), . . . , (K,mK)
(p, q) ↓ (1, 1), . . . , (K,mK)

)
.

Note that Π is nonsingular and 〈ϕij , ψpq〉Ω = 0
when i 6= p. According to the assumption (6), (Λ, Z)
is a controllable pair, i.e.,

rank (Z ΛZ Λ2Z . . . ΛS−1Z) = S.

Thus the well known pole assignment argument of
finite dimension [6] implies that there exists an N×S

matrix Y or wk’s in P ∗L2(Ω) such that

‖e−t(Λ−ZY Π)‖ 6 const e−µt, t > 0.

By recalling that ‖e−tL2‖ 6 const e−µ′t, t > 0,
µ < µ′ < ReλK+1, (12b) immediately gives the de-
sired estimate for v. Note that µ′ cannot be gen-
erally replaced by ReλK+1, due to the algebraic
multiplicities of the eigenvalues on the vertical line:
Reλ = ReλK+1.

As a concluding remark, another algebraic ap-
proach to Theorem 2.2 is possible via Theorem 2.1,
(ii). In view of the relation

‖e−tM‖ = ‖(e−tM )∗‖ = ‖e−tM∗
‖,

the problem is reduced to the one with M∗, and
the assumption (6) ensures suitable vectors wk’s in
P ∗L2(Ω).
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