A note on algebraic aspects of boundary feedback control systems of parabolic type

By Takao NAMBu
Department of Applied Mathematics, Faculty of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 13, 1999)

1. Introduction. In the study of stabilization of boundary control systems, most fundamental is the static feedback control scheme: Based on a finite number of the observed data (outputs), it is the scheme to feed them back directly into the system through the boundary. Let Ω denote a bounded domain of \mathbb{R}^{m} with the boundary Γ which consists of a finite number of smooth components of $(m-1)$ dimension. The control system studied here is the following initial-boundary value problem:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\mathcal{L} u=0 \quad \text { in } \quad(0, \infty) \times \Omega \\
& \tau u=\sum_{k=1}^{N}\left\langle u, w_{k}\right\rangle_{\Omega} h_{k} \quad \text { on }(0, \infty) \times \Gamma \tag{1}\\
& u(0, \cdot)=u_{0}(\cdot) \text { in } \Omega
\end{align*}
$$

Here, \mathcal{L} denotes a uniformly elliptic differential operator of order 2 in Ω defined by

$$
\begin{aligned}
\mathcal{L} u= & -\sum_{i, j=1}^{m} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right) \\
& +\sum_{i=1}^{m} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u
\end{aligned}
$$

and $a_{i j}(x)=a_{j i}(x)$ for $1 \leqslant i, j \leqslant m, \quad x \in \bar{\Omega}$. The boundary operator τ associated with \mathcal{L} is either τ_{1} of the Dirichlet type or τ_{2} of the Robin type:

$$
\begin{aligned}
\tau_{1} u & =\left.u\right|_{\Gamma} \\
\tau_{2} u & =\frac{\partial u}{\partial \nu}+\sigma(\xi) u \\
& =\left.\sum_{i, j=1}^{m} a_{i j}(\xi) \nu_{i}(\xi) \frac{\partial u}{\partial x_{j}}\right|_{\Gamma}+\left.\sigma(\xi) u\right|_{\Gamma}
\end{aligned}
$$

where $\left(\nu_{1}(\xi), \ldots, \nu_{m}(\xi)\right)$ denotes the unit outer normal at $\xi \in \Gamma$. Necessary regularity on $\bar{\Omega}$ and on Γ of coefficients of \mathcal{L} and τ is assumed tacitly. The inner product and the norm in $L^{2}(\Omega)$ are denoted by $\langle\cdot, \cdot\rangle_{\Omega}$ and $\|\cdot\|$, respectively. The symbol $\|\cdot\|$ is also used for the $\mathcal{L}\left(L^{2}(\Omega)\right)$-norm. In eq. (1), $\left\langle u, w_{k}\right\rangle_{\Omega}$
denote the outputs, where $w_{k} \in L^{2}(\Omega)$, and h_{k} the actuators belonging to $H^{3 / 2}(\Gamma)$ in the case of the Dirichlet boundary condition, or $H^{1 / 2}(\Gamma)$ in the Robin boundary condition.

Let us define the linear operators L_{i} and $M_{i}, i=$ 1,2 in $L^{2}(\Omega)$ by

$$
\begin{aligned}
& L_{i} u=\mathcal{L} u, \quad u \in \mathcal{D}\left(L_{i}\right) \\
& \mathcal{D}\left(L_{i}\right)=\left\{u \in H^{2}(\Omega) ; \tau_{i} u=0 \text { on } \Gamma\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{i} u= & \mathcal{L} u, \quad u \in \mathcal{D}\left(M_{i}\right), \\
\mathcal{D}\left(M_{i}\right)= & \left\{u \in H^{2}(\Omega) ;\right. \\
& \left.\tau_{i} u=\sum_{k=1}^{N}\left\langle u, w_{k}\right\rangle_{\Omega} h_{k} \text { on } \Gamma\right\},
\end{aligned}
$$

respectively. Henceforth L stands for either L_{1} or L_{2} when it is distinguished from the context. The same symbolic convention applies to M_{i} as well as other operators. Eq. (1) is then simply rewritten as the equation in $L^{2}(\Omega)$:

$$
\begin{equation*}
\frac{d u}{d t}+M u=0, \quad u(0)=u_{0} \tag{2}
\end{equation*}
$$

Given a $\mu>0$, the problem is to find w_{k} 's and h_{k} 's such that the semigroup $\exp (-t M)$ satisfies the decay estimate

$$
\begin{equation*}
\left\|e^{-t M}\right\| \leqslant \text { const } e^{-\mu t}, \quad t \geqslant 0 \tag{3}
\end{equation*}
$$

In [4], this estimate was established via the fractional powers $L_{c}^{\omega}, L_{c}=L+c, c>0$ and the related fractional calculus. In the case of the Robin boundary condition, for example, we set

$$
x(t)=L_{2 c}^{-\omega} u(t), \quad \frac{1}{4}<\omega<\frac{1}{2}
$$

and, noticing the relation: $\mathcal{D}\left(L_{2 c}^{\omega}\right)=H^{2 \omega}(\Omega)$ for
$0 \leqslant \omega<3 / 4$ [2], turn eq. (2) into

$$
\begin{gathered}
\frac{d x}{d t}+L_{2} x=\sum_{k=1}^{N}\left\langle L_{2 c}^{\omega} x, w_{k}\right\rangle_{\Omega} L_{2 c}^{1-\omega} \psi_{k} \\
x(0)=L_{2 c}^{-\omega} u_{0},
\end{gathered}
$$

where $\psi_{k} \in H^{2}(\Omega)$ satisfy $(\mathcal{L}+c) \psi_{k}=0, \quad \tau_{2} \psi_{k}=$ $h_{k}, 1 \leqslant k \leqslant N$. The problem is then reduced to that of finding the estimate

$$
\begin{aligned}
& \left\|\exp \left\{-t\left(L_{2}-\sum_{k=1}^{N}\left\langle L_{2 c}^{\omega} \cdot, w_{k}\right\rangle_{\Omega} L_{2 c}^{1-\omega} \psi_{k}\right)\right\}\right\| \\
& \leqslant \operatorname{const} e^{-\mu t}, \quad t \geqslant 0
\end{aligned}
$$

We propose in this note an alternative algebraic approach to the stabilization which requires no fractional powers of L_{c}. The common idea is, however, to turn the problem into another with no feedback term on Γ. A merit of the present approach is that the idea is equally applied to a variety of boundary control systems. In fact, the approach via fractional powers requires exact characterization of $\mathcal{D}\left(L_{c}^{\omega}\right)$. This seems in general a difficult (but challenging) problem when general elliptic operators with more complicated boundary conditions are studied.

The spectrum $\sigma(L)$ consists only of eigenvalues $\lambda_{i}, i \geqslant 1$, lying symmetrically in the interior of a parabola: $\left\{\lambda=\left(a \tau^{2}-b\right)+\sqrt{-1} \tau ; \tau \in \mathbb{R}^{1}\right\}, a>0$ [1]. They are labelled according to increasing $\operatorname{Re} \lambda_{i}$. As usual, $P_{\lambda_{i}}=1 /(2 \pi \sqrt{-1}) \int_{\left|\lambda-\lambda_{i}\right|=\varepsilon}(\lambda-L)^{-1} d \lambda$ is a projection which maps $L^{2}(\Omega)$ onto the generalized eigenspace for λ_{i}, where $\varepsilon>0$ is small enough. Set $\operatorname{dim} P_{\lambda_{i}} L^{2}(\Omega)=m_{i}(<\infty)$, and let $\varphi_{i 1}, \ldots, \varphi_{i m_{i}}$ be the basis for $P_{\lambda_{i}} L^{2}(\Omega)$. As is well known [1], $P_{\lambda_{i}}^{*}$ maps $L^{2}(\Omega)$ onto the generalized eigenspace for $\overline{\lambda_{i}}$ of L^{*}, and $\operatorname{dim} P_{\lambda_{i}}^{*} L^{2}(\Omega)=m_{i}$. The basis for $P_{\lambda_{i}}^{*} L^{2}(\Omega)$ is denoted by $\psi_{i 1}, \ldots, \psi_{i m_{i}}$.

For a given $\mu>0$, suppose that

$$
\operatorname{Re} \lambda_{1} \leqslant \cdots \leqslant \operatorname{Re} \lambda_{K} \leqslant \mu<\operatorname{Re} \lambda_{K+1}
$$

Set $P=P_{\lambda_{1}}+\cdots+P_{\lambda_{K}}$. In view of the expression: $L \varphi_{i j}=\lambda_{i} \varphi_{i j}+\sum_{k<j} \alpha_{j k}^{i} \varphi_{i k}, 1 \leqslant j \leqslant m_{i}$, the restriction of L onto the invariant subspace $P L^{2}(\Omega)$ is bounded and similar to the upper triangular matrix Λ, the diagonal elements of which are $\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{m_{1}}, \ldots$, $\underbrace{\lambda_{K}, \ldots, \lambda_{K}}_{m_{K}}$. If λ is in $\rho\left(L_{i}\right)$, the boundary value
problem:

$$
\begin{gathered}
(\lambda-\mathcal{L}) \psi_{k}=0, \quad \tau_{i} \psi_{k}=h_{k}, \\
1 \leqslant k \leqslant N, \quad i=1,2
\end{gathered}
$$

admits a unique solution $\psi_{k}[3]$ which is denoted by $N_{i}(\lambda) h_{k}$, where

$$
\begin{aligned}
& N_{1}(\lambda) \in \mathcal{L}\left(H^{3 / 2}(\Gamma) ; H^{2}(\Omega)\right), \\
& N_{2}(\lambda) \in \mathcal{L}\left(H^{1 / 2}(\Gamma) ; H^{2}(\Omega)\right) .
\end{aligned}
$$

The operators $N_{i}(\lambda)$ are simply rewritten as $N(\lambda)$.
2. Main result. Our first result is

Theorem 2.1.

(i) The operator M is densely defined. The problem (2) is well posed, and the semigroup $e^{-t M}$ is analytic in $t>0$.
(ii) The adjoint M^{*} is given by

$$
\begin{aligned}
M_{1}^{*} u & =\mathcal{L}^{*} u+\sum_{k=1}^{N}\left\langle\frac{\partial u}{\partial \nu}, h_{k}\right\rangle_{\Gamma} w_{k} \\
u & \in \mathcal{D}\left(M_{1}^{*}\right)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
M_{2}^{*} u & =\mathcal{L}^{*} u-\sum_{k=1}^{N}\left\langle u, h_{k}\right\rangle_{\Gamma} w_{k} \\
u & \in \mathcal{D}\left(M_{2}^{*}\right)=\left\{u \in H^{2}(\Omega) ; \tau^{*} u=0 \text { on } \Gamma\right\}
\end{aligned}
$$

where $\left(\mathcal{L}^{*}, \tau^{*}\right)$ denotes the formal adjoint of (\mathcal{L}, τ).
For notational convenience, let us introduce the symbol $[u]$ as
$[u]= \begin{cases}\frac{\partial u}{\partial \nu}, & \text { in the case of the Dirichlet boundary } \\ & \text { condition, } \\ u, & \text { in the case of the Robin boundary } \\ & \text { condition. }\end{cases}$
Then M_{i}^{*} are simply rewritten as

$$
M_{i}^{*} u=\mathcal{L}^{*} u-(-1)^{i} \sum_{k=1}^{N}\left\langle[u], h_{k}\right\rangle_{\Gamma} w_{k}, \quad i=1,2 .
$$

For a large $c>0$ with $-c \in \rho(L)$, set $P N(-c) h_{k}=$ $\sum_{i \leqslant K, j} \zeta_{i j}^{k} \varphi_{i j}$. It is well known -via Green's formulathat there is an $S \times S$ nonsingular matrix A such that $\left(S=m_{1}+\cdots+m_{K}\right)$

$$
\left(\begin{array}{c}
\zeta_{11}^{k} \\
\vdots \\
\zeta_{K m_{K}}^{k}
\end{array}\right)=A\left(\begin{array}{c}
\left\langle h_{k},\left[\psi_{11}\right]\right\rangle_{\Gamma} \\
\vdots \\
\left\langle h_{k},\left[\psi_{K m_{K}}\right]\right\rangle_{\Gamma}
\end{array}\right) .
$$

We define the $S \times S$ matrix $\tilde{\Lambda}$ and the $S \times N$ matrix H as

$$
\begin{equation*}
\tilde{\Lambda}=A^{-1} \Lambda A \tag{4}
\end{equation*}
$$

and

$$
\begin{aligned}
& H= \\
& \text { (5) } \quad\left(\left\langle h_{k},\left[\psi_{i j}\right]\right\rangle_{\Gamma} ; \begin{array}{c}
k \rightarrow 1, \ldots, N \\
(i, j) \downarrow(1,1), \ldots,\left(K, m_{K}\right)
\end{array}\right)
\end{aligned}
$$ respectively.

Based on Theorem 2.1, our main result is stated as follows:

Theorem 2.2. Suppose that $(\tilde{\Lambda}, H)$ is a controllable pair, i.e.,
(6) $\quad \operatorname{rank}\left(H \tilde{\Lambda} H \tilde{\Lambda}^{2} H \ldots \tilde{\Lambda}^{S-1} H\right)=S$.

Then there is a set of w_{k} 's $\in P^{*} L^{2}(\Omega)$ such that the estimate (3) holds.

Outline of the proof. The proof of Theorem 2.1, (i) is almost the same as in [5, Theorem 2.3]: There exists a sector $\bar{\Sigma}_{\alpha}=\left\{\lambda-\alpha \in \mathbb{C} ; \theta_{0} \leqslant|\arg \lambda|\right.$ $\leqslant \pi\}, 0<\theta_{0}<\pi / 2, \alpha \in \mathbb{R}^{1}$, such that

$$
\begin{align*}
&(\lambda-M)^{-1} f=(\lambda-L)^{-1} f \tag{7}\\
&+ {\left[N(\lambda) h_{1} \ldots N(\lambda) h_{N}\right](1-\Phi(\lambda))^{-1} } \\
&\left\langle(\lambda-L)^{-1} f, \boldsymbol{w}\right\rangle_{\Omega}, \quad \lambda \in \Sigma_{\alpha}
\end{align*}
$$

where $\langle\cdot, \boldsymbol{w}\rangle_{\Omega}$ denotes the transpose of a vector:

$$
\left(\left\langle\cdot, w_{1}\right\rangle_{\Omega} \ldots\left\langle\cdot, w_{N}\right\rangle_{\Omega}\right)
$$

and

$$
\begin{aligned}
\Phi(\lambda)= & \left(\left\langle N(\lambda) h_{k}, w_{j}\right\rangle_{\Omega} ; \begin{array}{l}
k \rightarrow 1, \ldots, N \\
j \downarrow 1, \ldots, N
\end{array}\right) \\
& \rightarrow 0, \quad|\lambda| \rightarrow \infty, \lambda \in \bar{\Sigma}_{\alpha}
\end{aligned}
$$

uniformly. Thus the estimate:

$$
\left\|(\lambda-M)^{-1}\right\| \leqslant \frac{\text { const }}{1+|\lambda|}, \quad \lambda \in \bar{\Sigma}_{\alpha}
$$

holds, and $e^{-t M}$ is analytic in $t>0$.
The expression of the adjoint M_{1}^{*} is found in [5, Proposition 2.4], and M_{2}^{*} is obtained in almost the same manner as M_{1}^{*}.

As to the proof of Theorem 2.2, the main feature is to propose an approach entirely different from and simpler than in [4]. Let us define the operator T by

$$
\begin{equation*}
v=T u=u-\sum_{k=1}^{N}\left\langle u, w_{k}\right\rangle_{\Omega} N(-c) h_{k} . \tag{8}
\end{equation*}
$$

Here the vectors w_{j} 's are to be determined later in relation to $c>0$ and the associated finite-dimensional
stabilization problem (12a). The operator T belongs to $\mathcal{L}\left(L^{2}(\Omega)\right) \cap \mathcal{L}(\mathcal{D}(M) ; \mathcal{D}(L))$. The bounded inverse T^{-1} exists, and is given by

$$
\begin{aligned}
u=T^{-1} v=v+ & {\left[N(-c) h_{1} \ldots N(-c) h_{N}\right] . } \\
& (1-\Phi(-c))^{-1}\langle v, \boldsymbol{w}\rangle_{\Omega}
\end{aligned}
$$

Here we have assumed with no loss of generality that $(1-\Phi(-c))^{-1}$ exists. In fact, consider the case where $\operatorname{det}(1-\Phi(-c))=0$. We then replace w_{j} 's by $(1+$ $\varepsilon) w_{j}$'s for a sufficiently small ε. The function $\operatorname{det}(1-$ $(1+\varepsilon) \Phi(-c))$ in ε is a polynomial of degree at most N; not a constant; and analytic. Thus $\operatorname{det}(1-(1+$ $\varepsilon) \Phi(-c)) \neq 0$ for some small $\varepsilon \neq 0$. As far as ε is small enough, this does not affect the stabilization problem under consideration. The other properties of T are easily examined.

For a solution $u \in \mathcal{D}(M)$ to the problem (2), set

$$
\begin{equation*}
v(t)=T u(t), \quad t \geqslant 0 \tag{9}
\end{equation*}
$$

Then $v(t) \in \mathcal{D}(L)$ satisfies the equation

$$
\frac{d v}{d t}+T M_{c} T^{-1} v=c v, \quad t>0, \quad v(0)=T u_{0}
$$

where $M_{c}=M+c$. We calculate as

$$
\begin{aligned}
T M_{c} T^{-1} v= & T \mathcal{L}_{c}\left(v+\left[N(-c) h_{1} \ldots N(-c) h_{N}\right]\right. \\
& \left.\quad(1-\Phi(-c))^{-1}\langle v, \boldsymbol{w}\rangle_{\Omega}\right) \\
= & T \mathcal{L}_{c} v=T L_{c} v \\
= & L_{c} v-\sum_{k=1}^{N}\left\langle L_{c} v, w_{k}\right\rangle_{\Omega} N(-c) h_{k}
\end{aligned}
$$

We assume that w_{k} 's belong to $P^{*} L^{2}(\Omega) \subset \mathcal{D}\left(L^{*}\right)$. Then the equation for v is rewritten as

$$
\begin{gather*}
\frac{d v}{d t}+L v-\sum_{k=1}^{N}\left\langle v, L_{c}^{*} w_{k}\right\rangle_{\Omega} N(-c) h_{k}=0 \tag{10}\\
t \geqslant 0, \quad v(0)=T u_{0}
\end{gather*}
$$

The problem (10) generates an analytic semigroup. Thus the problem (2) also generates an analytic semigroup $\exp (-t M)$, and
(11) $\exp (-t M)=T^{-1}$.

$$
\begin{gathered}
\exp \left\{-t\left(L-\sum_{k=1}^{N}\left\langle\cdot, L_{c}^{*} w_{k}\right\rangle_{\Omega} N(-c) h_{k}\right)\right\} \cdot T \\
t \geqslant 0
\end{gathered}
$$

In view of the relation (11), we have to establish a stabilization result for the problem (10). At this stage, the problem is simple since w_{k} 's belong
to $P^{*} L^{2}(\Omega)$. The restrictions of L onto the invariant subspaces $P L^{2}(\Omega)$ and $(1-P) L^{2}(\Omega) \cap \mathcal{D}(L)$ are denoted by L^{1} and L^{2} respectively. Then, by setting

$$
v_{1}=P v, \quad v_{2}=(1-P) v
$$

eq. (10) is decomposed into

$$
\begin{align*}
& \frac{d v_{1}}{d t}+L^{1} v_{1} \tag{12a}\\
& -\sum_{k=1}^{N}\left\langle v_{1}, L_{c}^{*} w_{k}\right\rangle_{\Omega} P N(-c) h_{k}=0, \\
& \frac{d v_{2}}{d t}+L^{2} v_{2} \tag{12b}\\
& -\sum_{k=1}^{N}\left\langle v_{1}, L_{c}^{*} w_{k}\right\rangle_{\Omega}(1-P) N(-c) h_{k}=0 .
\end{align*}
$$

In (12a), replace $L_{c}^{*} w_{k}$ by $y_{k}=\sum_{i, j(i \leqslant K)} y_{i j}^{k} \psi_{i j}$. Then (12a) is equivalent to the equation in \mathbb{C}^{S} :

$$
\frac{d \mathrm{v}}{d t}+(\Lambda-Z \bar{Y} \Pi) \mathrm{v}=0
$$

where

$$
\begin{aligned}
Z & =\left(\zeta_{i j}^{k} ; \begin{array}{c}
k \rightarrow 1, \ldots, N \\
(i, j) \downarrow(1,1), \ldots,\left(K, m_{K}\right)
\end{array}\right)=A H, \\
Y & =\left(y_{i j}^{k} ; \begin{array}{c}
k \downarrow 1, \ldots, N \\
(i, j) \rightarrow(1,1), \ldots,\left(K, m_{K}\right)
\end{array}\right), \quad \text { and } \\
\Pi & =\left(\left\langle\varphi_{i j}, \psi_{p q}\right\rangle_{\Omega} ; \begin{array}{c}
(i, j) \rightarrow(1,1), \ldots,\left(K, m_{K}\right) \\
(p, q) \downarrow(1,1), \ldots,\left(K, m_{K}\right)
\end{array}\right) .
\end{aligned}
$$

Note that Π is nonsingular and $\left\langle\varphi_{i j}, \psi_{p q}\right\rangle_{\Omega}=0$ when $i \neq p$. According to the assumption (6), (Λ, Z) is a controllable pair, i.e.,

$$
\operatorname{rank}\left(Z \Lambda Z \Lambda^{2} Z \ldots \Lambda^{S-1} Z\right)=S
$$

Thus the well known pole assignment argument of finite dimension [6] implies that there exists an $N \times S$
matrix Y or w_{k} 's in $P^{*} L^{2}(\Omega)$ such that

$$
\left\|e^{-t(\Lambda-Z \bar{Y} \Pi)}\right\| \leqslant \text { const } e^{-\mu t}, \quad t \geqslant 0
$$

By recalling that $\left\|e^{-t L^{2}}\right\| \leqslant$ const $e^{-\mu^{\prime} t}, t \geqslant 0$, $\mu<\mu^{\prime}<\operatorname{Re} \lambda_{K+1}$, (12b) immediately gives the desired estimate for v. Note that μ^{\prime} cannot be generally replaced by $\operatorname{Re} \lambda_{K+1}$, due to the algebraic multiplicities of the eigenvalues on the vertical line: $\operatorname{Re} \lambda=\operatorname{Re} \lambda_{K+1}$.

As a concluding remark, another algebraic approach to Theorem 2.2 is possible via Theorem 2.1, (ii). In view of the relation

$$
\left\|e^{-t M}\right\|=\left\|\left(e^{-t M}\right)^{*}\right\|=\left\|e^{-t M^{*}}\right\|
$$

the problem is reduced to the one with M^{*}, and the assumption (6) ensures suitable vectors w_{k} 's in $P^{*} L^{2}(\Omega)$.

References

[1] S. Agmon: Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton (1965).
[2] D. Fujiwara: Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad., 43, 82-86 (1967).
[3] J. L. Lions and E. Magenes: Non-Homogeneous Boundary Value Problems and Applications. vol. 1, Springer-Verlag, New York (1972).
[4] T. Nambu: Feedback stabilization for distributed parameter systems of parabolic type, III. Rend. Circ. Mat. Palermo (2), 31, 41-67 (1982).
[5] T. Nambu: Characterization of the domain of fractional powers of a class of elliptic differential operators with feedback boundary conditions. J. Differential Equations, 136, 294-324 (1997).
[6] W. M. Wonham: On pole assignment in multiinput controllable linear systems, IEEE Trans. Automat. Control, AC-12, 660-665 (1967).

