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1. Introduction. Let N ≥ 1 and p > 1. Let
F be a given smooth compact set and Ω be a
bounded open set of RN satisfying F ⊂ Ω ⊂ RN and
F 6= φ. We also set Ω′ = Ω \ ∂F , where ∂F = F \ ◦

F .

Here by
◦
F we denote the interior of F , which may

be empty.
By H1,p(Ω) we denote the space of all functions

on Ω, whose generalized derivatives ∂γu of order ≤ 1
satisfy

||u||1,p =
∑

|γ|≤1

( ∫

Ω

|∂γu(x)|p dx

)1/p

< +∞,(1-1)

and by H1,p
loc (Ω) the local version of H1,p(Ω). For

u ∈ H1,p
loc (Ω′), we define a generalized p-harmonic

operator by

Lpu = − div(A(x)|∇u|p−2∇u),(1-2)

where ∇u = (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xN ), and

A(x) ∈ C1(Ω′) is positive in Ω\F and vanishes in
◦
F .

We shall study the Dirichlet boundary problem for
the genuinely degenerate elliptic operators Lp with
absorption term:

{
Lpu + B(x)Q(u) = f(x), in Ω,

u = 0, on ∂Ω.
(1-3)

Here B(x) is a nonnegative function on Ω, and Q(t) is
a continuous and strictly monotone increasing func-
tion on R. In connection with this problem we
shall treat two topics in the present paper. Namely,
one is concerned with removable singularities of so-
lutions for (1-3) and the other is the unique exis-
tence property of bounded solutions. We note that
if p = 2, then these topics were already treated in
the author’s paper [6] under a similar framework.
By virtue of Kato’s inequality and a maximum prin-
ciple, the unique existence of bounded solutions was
established. Since Kato’s inequality does not work
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effectively in the quasilinear case, we shall employ
in this paper a priori estimates, a comparison prin-
ciple and a weak maximum principle instead. Since
the operators Lp are rather general, we need to mod-
ify them suitably so that they are applicable to our
problems.

2. Preliminaries. In this section we pre-
pare our basic framework and some notations which
are of importance through the present paper.

Let N ≥ 1 and p > 1. Let F and Ω be a non-
empty smooth compact set and bounded open suset
of RN respectively, satisfying F ⊂ Ω, and set Ω′ =
Ω \ ∂F . Here ∂F is defined as ∂F = F \ ◦

F . In the
next we define a distance to ∂F .

Definition 1. By d(x) we denote a distance
function d(x) = dist(x, ∂F ).

Remark. A distance function d(x) is Lips-
chitz continuous and differentiable almost every-
where. Moreover one can approximate it by a smooth
function. Namely there exists a nonnegative smooth
function D(x) ∈ C∞(Ω′) such that

C(0)−1 ≤ D(x)
d(x)

≤ C(0),(2-1)

|∂γD(x)| ≤ C(|γ|)d(x)1−|γ|, x ∈ Ω′,

where γ is an arbitrary multi-index and C(|γ|) is a
positive number depending on |γ|. Therefore one can
assume that d(x) is smooth as well without loss of
generality. (For the construction of D(x), see [9] for
example.)

First we assume the following (H-1) on nonneg-
ative functions A(x) and B(x).
(H-1)





A(x) ∈ C1(Ω′) ∩ L1
loc(Ω),

A(x) = 0 in
◦
F = F \ ∂F,

A(x) > 0 in Ω \ F,

B(x) ∈ L∞loc(Ω
′) ∩ L1

loc(Ω),

B(x) > 0 in Ω′ = Ω \ ∂F.

(2-2)
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Secondly we assume the following (H-2) on the
nonlinear term Q(t).
(H-2)

Q(t) is a monotone increasing and continuous
function such that Q(0) = 0 and t · Q(t) > 0 on
R\{0}. Moreover we assume that there is a positive
number δ0 such that

lim sup
|t|→∞

|t|p−1+δ0

|Q(t)| < +∞.(2-3)

We need more notations.
Definition 2. Let δ0 be a positive number.

Let us set for any t > 0 and any x ∈ Ω′ = Ω \ ∂F ,




Ã(x) = A(x) + d(x)|∇A(x)|,
M(x) = ess-sup{y∈Ω:1/4<d(y)/d(x)<3}

Ã(y)
B(y)

,

K(x, t) = 1 + (M(x) · tp)p−1/δ0 .

(2-4)

The following assumption is crucial in the present
work.
[H-3]

For the same positive number δ0>0 as in [H-2],
it holds that

(2-5)

lim inf
ε↓0

1
εp

∫

ε/2<d(x)<ε

A(x)K
(

x,
1

d(x)

)
dx < +∞.

Remark. Originally the definition of the ker-
nel K(x, t) comes from the pointwise estimate of the
supersolutions of the equation (1-3) under some ad-
ditional assumptions (see Lemma 7-1). More pre-
cisely, we can show that every solution u of (1-3) in
H1,p

loc (Ω′)∩L∞loc(Ω
′) is dominated by K(x, 1/d)1/(p−1)

up to multiplication by constants. Roughly speak-
ing, the condition (H-3) guarantees the integrabil-
ity of the term B·Q(u) near ∂F with u being the
solution of (1-3), and then we can finally show the
boundedness of the solution, which is one of the main
purpose in the present paper. It is very interesting
that we can reconstruct the kernel without making
use of the explicit supersolutions. Roughly speaking,
the kernel K(x, t) is equivalent to the conjugate func-
tion of the nonlinear term Q, if it is strictly convex.
For the further information see [8].

3. Removable singularities. Let D be an
open subset of RN . By D′(D) we denote the space
of all distributions on D.

Theorem 1 (Removable singularities).
Assume (H-1), (H-2) and (H-3). Assume that

C(x) ∈ L∞loc(Ω
′) ∩ L1

loc(Ω) satisfies for some positive
number C

0 ≤ C(x) ≤ C ·B(x), for almost all x ∈ Ω.(3-1)

Assume that u ∈ H1,p
loc (Ω′) ∩ L∞loc(Ω

′) satisfies Lpu ∈
L1

loc(Ω
′) in the distribution sense. Moreover we as-

sume that for almost all x ∈ {x ∈ Ω′; u(x) ≥ 0},
Lpu + B(x)Q(u) ≤ C(x).(3-2)

Then we have u+∈L∞loc(Ω), where u+=max(u,0).
As a corollary, we have

Theorem 2. Assume (H-1), (H-2) and (H-
3). Assume that f(x) ∈ L∞loc(Ω

′) ∩ L1
loc(Ω) satisfies

for some positive number C

|f(x)| ≤ C ·B(x), for almost all x ∈ Ω.(3-3)

Assume that u ∈ H1,p
loc (Ω′) ∩ L∞loc(Ω

′) satisfies

Lpu + B(x)Q(u) = f, in D′(Ω′).(3-4)

Then there exists a function v ∈ L∞loc(Ω) such that
{

Lpv + B(x)Q(v) = f, in D′(Ω)

v
∣∣
Ω′ = u.

(3-5)

Proof . This is a direct consequence of Theo-
rem 1. In fact from Theorem 1 we have u+ ∈ L∞loc(Ω).
And similarly u− ∈ L∞loc(Ω). Thus u ∈ L∞loc(Ω).
Here we note that since A(x) = 0 on F \ ∂F ,
u(x) = v(x) = Q−1(f(x)/B(x))) on F \ ∂F . Then u

can be extended as a solution of the same equation
in whole Ω. Here we note that the uniqueness of so-
lutions in L∞loc(Ω) follows from the same argument in
the proof of Theorem 3.

4. Existence and uniqueness of solutions
for Dirichlet problem.

Theorem 3 (Dirichlet problem). Assume
(H-1), (H-2) and (H-3). Assume that f(x) ∈
L∞(Ω) satisfies for some positive number C

|f(x)| ≤ C ·B(x), for almost all x ∈ Ω.(4-1)

Moreover we assume that A(x), B(x) ∈ C0(Ω). Then
there exists a unique function

u ∈ L∞(Ω) ∩H1,p
loc (Ω \ F )(4-2)

which satisfies (1-3) in the distribution sense and sat-
isfies ∫

Ω

[A(x)|∇u|p + B(x)Q(u)u] dx(4-3)

≤ C ′[||f/B||λ∞ + ||f ||∞].

Here λ = (p + δ0)/(p − 1 + δ0) and C ′ is a positive
number independent of each function f .
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Remark. If Q is uniformly Lipschitz continu-
ous, then u ∈ H2,p

loc (Ω \ F ) as well. For the proof
of this Theorem 3 we shall regularize the problem.
By virtue of Theorems 1 and 2, we shall prove that
the unique solutions of these approximating nonlin-
ear elliptic equations converge to the unique bounded
solution of the original equation. Here we note that
the operator Lp itself is not ε-regularizable, because
it may be degenerate infinitely on ∂F .

Remark. If we assume that ∂F is smooth,
then we can also establish the Hölder continuity of
the gradient|∇u| of the solution u under some ad-
ditional contitions. More precisely, in the coming
paper we shall show |∇u| belongs to the weighted
Schauder space if A(x) is of class Muckenhoupt’s Ap

class and A(x) is a power of the distance to ∂F .
5. Example. In this section we construct ex-

amples to illustrate Theorem 1. Let F be either the
origin 0 or an m−dimensional C∞ compact subman-
ifolds in RN with 0 < m ≤ N − 1, and let d(x) be
a distance function defined by (2-1). If F consists of
the origin 0, then we put d(x) = |x|. For p > 1 and
q > p− 1, we set

Pu = −div(d(x)pα|∇u|p−2∇u)(5-1)

+b(x) · d(x)pβ · |u|q−1u,

where b(x) is a positive continuous function. Then
the condition (H-1) is equivalent to the following
(h-1).

min(α, β) > −N −m

p
.(h-1)

Let us set for 0 ≤ m ≤ N − 1

p∗m =





(p− 1) ·
(

1 + p
1− α + β

N + pα− p−m

)
,

if α < β + 1,

p− 1, if α ≥ β + 1.

(5-2)

Here we note that (H-2) is satisfied automatically
for δ0 = q − p + 1 > 0. Then (H-3) is equivalent to
(h-2).





q ≥ p∗m, if α < β + 1,

q > p∗m = p− 1, if α ≥ β + 1,

α > −N −m− p

p
.

(h-2)

Remark. For this operator P one can show a
sharper result than Theorem 1. In fact, it is not
difficult to see that the condition (h-2) is necessary

for the validity of Theorem 1 under the assumptions
(h-1) and q > p − 1. For the precise result, see [7]
and [8].

6. Auxiliary lemmas. In this section we
shall describe auxiliary lemmas concerning basic es-
timates for weak solutions of the equation, which
will be needed to establish Theorems stated in §3
and §4. Without loss of generality we assume that
{x : d(x) < 3} ⊂ Ω.

Lemma 6-1 (A priori inequality 1).
Assume (H-1) and (H-2). Assume that f(x) ∈
L∞loc(Ω

′) ∩L1
loc(Ω) satisfies for some positive number

C

|f(x)| ≤ C ·B(x), for almost all x ∈ Ω.(6-1)

Assume that u ∈ H1,p
loc (Ω′) ∩ L∞(Ω′) satisfies

Lpu + B(x) ·Q(u) = f, in D′(Ω′).(6-2)

Then we have, for any number q > 0 and any func-
tion η ∈ C∞0 (Ω \ F ),

∫

Ω

A(x)|∇(u− µ)+|p(u− µ)q−1
+ ηp dx ≤(6-3)

≤
(

p

q

)p ∫

Ω

A(x)|∇η|p(u− µ)p+q−1
+ dx

Here µ is an arbitrary positive number satisfying

Q(µ) ≥ max
[

sup
x∈Ω

f(x)
B(x)

, sup
2/3<d(x)<1

|u|
]
.(6-4)

Lemma 6-2 (A priori inequality 2).
Assume the same assumptions as in Lemma 6-1.

Then we have, for any number q > 0 and any
function η ∈ C∞0 (Ω \ F ),

∫

Ω

[B(x)Q(u)− f(x)](u− µ)q
+ ηp dx ≤(6-5)

pp

qp−1

∫

Ω

A(x)|∇η|p(u− µ)p+q−1
+ dx,

∫

{x;u≥µ}
[B(x)Q(u)− f(x)] ηp dx ≤(6-6)

pp

( ∫

Ω

A(x)|∇η|p(u− µ)p
+ dx

)(p−1)/p

×
( ∫

Ω

A(x)|∇η|p dx

)1/p

.

Here µ is an arbitrary positive number satisfying (6-
4).

7. A sketch of the proof of Theorem 1.
First we show an a priori bound for weak solutions
of (1.3).
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Lemma 7-1 (Supersolution). Assume that
u ∈ H1,p

loc (Ω′) ∩ L∞loc(Ω
′) satisfies Lpu ∈ L1

loc(Ω
′)

in the distribution sense. Assume that (H-1) and
(H-2), and assume that C(x) ∈ L∞loc(Ω

′) ∩ L1
loc(Ω)

satisfies for some positive number C

0 ≤ C(x) ≤ C ·B(x), for almost all x ∈ Ω.(7-1)

Moreover we assume that for almost all x ∈ {x ∈ Ω;
u(x) ≥ 0}

Lpu + B(x)Q(u) ≤ C(x).(7-2)

Then we have, for some positive numbers C1 and ε0,

u(x) ≤ C1 ·K
(

1,
1

d(x)

)1/(p−1)

,(7-3)

for any x with 0 < d(x) ≤ ε0.
In this stage, the weak solution u of the inequal-

ity (3-1) may still have singularities on ∂F . Combin-
ing this weak result with Lemma 6-2 and the condi-
tion (H-3), we are able to show that u is bounded
in Ω. For the detailed proof see [8].

8. A sketch of the proof of Theorem 3.
Uniqueness. Since the operator Lp and the

nonlinear term Q are monotone, the uniqueness of
solutions is easy to see in the space

(8-1)

T (Ω) = {u ∈ L∞(Ω) ∩H1,p
loc (Ω \ F ); u = 0 on ∂Ω}.

Existence. First we shall regularize the prob-
lem by approximating the operator Lp by uniformly
elliptic operators {L(ε)

p }ε>0 in the following way. Let
us set for ε > 0

L(ε)
p u = − div[(ε + A(x))|∇u|p−2∇u],(8-2)

for u ∈ H1,p
0 (Ω), and consider the Dirichlet problem:
{

L
(ε)
p u + B(x)Q(u) = f, in Ω,

u = 0, on ∂Ω.
(8-3)

Then we can show the existence and regular-
ity of solutions of (8-3). By uε we denote the
solutions to (8-3). We see uε ∈ H1,p

0 (Ω) and
BQ(uε)uε ∈ H1,p

0 (Ω). It follows from Young’s
inequality and (H-2) that uε satisfies (4-3) uni-
formly in ε > 0. By the method of a priori estimate
and compactness, we can derive a subsequence
{uεj}∞j=1 from {uε}ε>0 which converges weakly
to some element u ∈ H1,p

loc (Ω \ F ) and {uεj}
converges to u a.e. in Ω \ F . We also see that
{Buεj Q(uεj )} converges to BuQ(u) in L1

loc(Ω \ F )
by Fatou’s lemma and a weakly lower semiconti-

nuity of Lp-norm. Then u satisfies (1-3) in Ω \ F in
the sense of distribution. Now we define

u(x) =
{

u(x), if x ∈ Ω \ F,

Q−1(f(x)/B(x)), if x ∈ F \ ∂F.
(8-4)

Then u clearly satisfies (1-3) in Ω\∂F in the sense of
distribution. Hence it follows from Theorem 1 that u

is bounded in Ω. From Theorem 2 we see that there
exists a unique function v ∈ L∞loc(Ω) which satisfies
(1-3). Since v = u in Ω\∂F , we see that v ∈ T (Ω) is
the unique solution to (1-3) in D′(Ω). For the precise
proof see [7] and [8].
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