K-approximations and strongly countable-dimensional spaces

By Yasunao Hattori

Department of Mathematics, Shimane University, 1060 Nishi-Kawatsu-cho, Matsue, Shimane 690-8504 (Communicated by Shigefumi MORI, M. J. A., Sept. 13, 1999)

Key words: Covering dimension; *K*-approximation; strongly countable-dimension.

1. Introduction. Throughout the present paper, by the dimension we mean the covering dimension dim. We shall consider a characterization of a class of infinite dimensional metrizable spaces in terms of K-approximations. In [5], Dydak-Mishra-Shukla introduced a concept of a K-approximation of a mapping to a metric simplicial complex and characterized *n*-dimensional spaces and finitistic spaces in terms of K-approximations. Let X be a space, Ka metric simplicial complex and $f: X \to K$ a continuous mapping. A mapping $g: X \to K$ is said to be a K-approximation of f if for each simplex $\sigma \in K$ and each $x \in X$, $f(x) \in \sigma$ implies $g(x) \in \sigma$. A K-approximation $g: X \to K$ of f is called an ndimensional K-approximation if $g(X) \subset K^{(n)}$ and a finite dimensional K-approximation if $g(X) \subset K^{(m)}$ for some natural number m, where $K^{(m)}$ denotes the m-skelton of K.

The concept of finitistic spaces was introduced by Swan [12] for working in fixed point theory and is applied to the theory of transformation groups by using the cohomological structures (cf. [1]). For a family \mathcal{U} of a space X the order ord \mathcal{U} of \mathcal{U} is defined as follows: $\operatorname{ord}_x \mathcal{U} = |\{U \in \mathcal{U} : x \in U\}|$ for $x \in X$ and $\operatorname{ord} \mathcal{U} = \sup\{\operatorname{ord}_x \mathcal{U} : x \in X\}$. We say a family \mathcal{U} has finite order if $\operatorname{ord} \mathcal{U} = n$ for some natural number n. A space X is said to be finitistic if every open cover of X has an open refinement with finite order. We notice that finitistic spaces are also called boundedly metacompact spaces (cf. [7]). It is obvious that all compact spaces are finitistic spaces. More precisely, we have a useful characterization of finitistic spaces.

Proposition ([5], [8]). A paracompact space X is finitistic if and only if there is a compact subspace

C of X such that dim $F < \infty$ for every closed subspace F with $F \cap C = \emptyset$.

The dimension-theoretic properties of finitistic spaces are investigated by several authors (cf. [3], [4], [5] and [8]). In particular, Dydak-Mishra-Shukla ([5]) proved the following.

Theorem A ([5]). For a paracompact space X the following are equivalent.

- (a) dim $X \leq n$.
- (b) For every metric simplicial complex K and every continuous mapping f : X → K there is an n-dimensional K-approximation g of f.
- (c) For every metric simplicial complex K and every continuous mapping $f : X \to K$ there is an n-dimensional K-approximation g of f such that $g|f^{-1}(K^{(n)}) = f|f^{-1}(K^{(n)})$.

Theorem B ([5]). For a paracompact space X the following are equivalent.

- (a) X is a finitistic space.
- (b) For every metric simplicial complex K and every continuous mapping f : X → K there is a finite dimensional K-approximation g of f.
- (c) For every integer $m \ge -1$, every metric simplicial complex K and every continuous mapping $f: X \to K$ there is a finite dimensional Kapproximation g of f such that $g|f^{-1}(K^{(m)}) =$ $f|f^{-1}(K^{(m)})$.

The purpose of the present note is to extend Theorem A to a class of metrizable spaces that have strong large transfinite dimension.

For a metric space (X, ρ) , a subset A of X and $\varepsilon > 0$ we denote $S_{\varepsilon}(A) = \{x \in X : \rho(x, A) < \varepsilon\}$. We denote the set of natural numbers by ω . We refer the reader to [6] and [11] for basic results in dimension theory.

2. Results. We begin with the definition of strong small transfinite dimension introduced by Borst [2]. A normal space X is said to have strong small transfinite dimension if for every non-empty

¹⁹⁹¹ Mathematics Subject Classification. Primary 54
F45 ; Secondary 54E35.

This research was supported by Grant-in-Aid for Scientific Research (No.09640108), Ministry of Education, Science, Sports and Culture of Japan.

closed set F of X there is an open normal subspace U of F such that dim $\overline{U} < \infty$. (We notice that spaces that have strong small transfinite dimension are called *shallow spaces* in [6].) Recall from [10] that a normal space X has strong large transfinite dimension if X has both large transfinite dimension and strong small transfinite dimension. We use the following characterization of spaces that have strong large transfinite dimension. A normal space X is said to be strongly countable-dimensional if X is a union of countably many finite dimensional closed subsets.

Lemma 1 ([9, Proposition 2.2 and 2.3]). Let X be a metrizable space. Then X has strong large transfinite dimension if and only if X is finitistic and strongly countable-dimensional.

The following is a main result of the paper. For a space X we denote $\mathcal{D}(X) = \{D : D \text{ is a closed discrete subset of } X\}.$

Theorem. For a metrizable space X the following are equivalent.

- (a) X has strong large transfinite dimension.
- (b) There is a function φ : D(X) → ω such that for every metric simplicial complex K and every continuous mapping f : X → K there is a Kapproximation g of f such that g(D) ⊂ K^{(φ(D))} for each D ∈ D(X).
- (c) For every integer $m \geq -1$ there is a function $\psi : \mathcal{D}(X) \to \omega$ such that for every metric simplicial complex K and every continuous mapping $f : X \to K$ there is a finite dimensional K-approximation g of f such that $g(D) \subset$ $K^{(\psi(D))}$ for each $D \in \mathcal{D}(X)$ and $g|f^{-1}(K^{(m)}) =$ $f|f^{-1}(K^{(m)})$.

Proof. (a) \Rightarrow (b): By Lemma 1 and Proposition, there is a compact subset C of X such that dim $F < \infty$ for each closed set F of X with $F \cap C = \emptyset$. For each $i \in \omega$ we put $H_i = X \setminus S_{1/i}(C)$ and dim $H_i =$ $m_i < \infty$. Since C is strongly countable-dimensional, there is a countable closed cover $\{C_i : i \in \omega\}$ of C such that $C_i \subset C_{i+1}$ and dim $C_i = n_i < \infty$ for each *i*. Let $D \in \mathcal{D}(X)$. Since C is compact, there is *i* such that $C \cap D \subset C_i$. On the other hand, there is j such that $j \ge i$ and $D \setminus C \subset H_j$. Then we put $\varphi(D) = \sum_{k=1}^{j} (n_k + m_k) + 2j$. Let K be a metric simplicial complex and $f: X \to K$ a continuous mapping. For each vertex v of K let St(v, K) be the union of geometric interiors of all simplexes of Kcontaining v as a vertex. Then $\{\operatorname{St}(v, K) : v \in K^{(0)}\}$ is an open cover of K. It follows from an argument

similar to [9, Theorem 3.6] that there are locally finite families of open sets \mathcal{U}_k and \mathcal{V}_k , $k \in \omega$, of X (\mathcal{U}_k and \mathcal{V}_k need not cover X) which satisfy the following conditions:

- (1) $C_k \setminus \bigcup \{C_l : l < k\} \subset \bigcup \mathcal{U}_k \subset X \setminus (H_k \cup (\bigcup \{C_l : l < k\})).$
- (2) $H_k \setminus \bigcup \{H_l : l < k\} \subset \bigcup \mathcal{V}_k \subset X \setminus (\overline{S_{1/k}(C)} \cup (\bigcup \{H_l : l < k\})).$
- (3) ord $\mathcal{U}_k \leq n_1 + n_2 + \dots + n_k + k$.
- (4) ord $\mathcal{V}_k \leq m_1 + m_2 + \dots + m_k + k$.
- (5) \mathcal{U}_k and \mathcal{V}_k are refinements of $\{f^{-1}(\operatorname{St}(v, K)) : v \in K^{(0)}\}$.

Then $\mathcal{W} = \bigcup_{k=1}^{\infty} \mathcal{U}_k \cup \bigcup_{k=1}^{\infty} \mathcal{V}_k$ is an open cover of X such that $\sup\{\operatorname{ord}_x \mathcal{W} : x \in D\} \leq \varphi(D)$ for each $D \in \mathcal{D}(X)$. For each $W \in \mathcal{W}$ there is $v(W) \in$ $K^{(0)}$ such that $W \subset f^{-1}(\operatorname{St}(v(W), K))$. Let \mathcal{P} be a locally finite open refinement of \mathcal{W} . For each $P \in \mathcal{P}$ there is $W(P) \in \mathcal{W}$ such that $P \subset W(P)$. Put v(P) = v(W(P)) for each $P \in \mathcal{P}$. For each $v \in K^{(0)}$ we put $Q_v = \bigcup \{ P \in \mathcal{P} : v(P) = v \}$, and $\mathcal{Q} =$ $\{Q_v : v \in K^{(0)}\}$. Then \mathcal{Q} is a locally finite open cover of X such that $Q_v \subset f^{-1}(\operatorname{St}(v, K))$ for each $v \in K^{(0)}$ and $\sup\{\operatorname{ord}_x \mathcal{Q} : x \in D\} \leq \varphi(D)$ for each $D \in \mathcal{D}(X)$. Let $\{\kappa_v : v \in K^{(0)}\}$ be a partition of unity subordinated to \mathcal{Q} . We define $g: X \to K$ as $g(x) = \sum_{v \in K^{(0)}} \kappa_v(x) \cdot v, x \in X$. It is easy to see that g is a K-approximation of f and $g(D) \subset K^{(\varphi(D))}$ for each $D \in \mathcal{D}(X)$.

(b) \Rightarrow (a): For each $x \in X$ let $\varphi(x) = \varphi(\{x\})$. To show that X is strongly countable-dimensional, let \mathcal{U} be an open cover of X. By an argument similar to [5, Theorem 2.1], we have an open refinement \mathcal{V} of \mathcal{U} such that $\operatorname{ord}_x \mathcal{V} \leq \varphi(x) + 1$ for each $x \in X$. For each n we put $A_n = \{x \in X : \varphi(x) \le n\}$ and $X_n = \overline{A_n}$. It follows that $X = \bigcup_{n=1}^{\infty} X_n$ and each X_n is closed subset of X with dim $X_n \leq n$ (cf. [6, Theorem 5.1.10]). Next, we suppose that X is not finitistic. Then there is an open cover \mathcal{U} of X such that for every open refinement \mathcal{V} of \mathcal{U} sup{ord}_{x_n} \mathcal{V}: $n \in \omega$ = ∞ for some sequence $A = \{x_n : n \in \omega\}$ in X. By an argument similar to [5, Theorem 2.1], it follows that there is a locally finite open refinement \mathcal{W} of \mathcal{U} such that $\sup\{\operatorname{ord}_x \mathcal{W} : x \in D\} \leq \varphi(D)$ for each $D \in \mathcal{D}(X)$. Hence A is not closed discrete in X and hence A has an accumulation point x_0 . Then $\operatorname{ord}_{x_0} \mathcal{W} = \infty$. This contradicts the local finiteness of \mathcal{W} . Therefore, X is a finitistic space and hence, by Lemma 1, X has strong large transfinite dimension.

To show the implication (a) \Rightarrow (c), we need the

No. 7]

following.

Lemma 2 ([5, Corollary 1.7]). Let $f : X \to K$ be a continuous mapping of a normal space X to a metric simplicial complex K, A is a subset of X, n a non-negative integer such that $f(A) \subset K^{(n)}$. Then, there are an open set U of X and a K-approximation g of f such that $A \subset U$, g|A = f|A and g|U is an n-dimensional K-approximation of f|U.

(a) \Rightarrow (c): Let $\varphi : \mathcal{D}(X) \to \omega$ be as in (b). We put $\psi(D) = \max\{m, \varphi(D)\}$ for each $D \in \mathcal{D}(X)$. Let K be a metric simplicial complex and $f: X \to K$ a continuous mapping. By Lemma 2, there are an open set U of X and a K-approximation g_1 of f such that $f^{-1}(K^{(m)}) \subset U, g_1|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$ and $g_1|U$ is an *m*-dimensional *K*-approximation of f|U. Then, by (b), there is a K-approximation g_2 of g_1 such that $g_2(D) \subset K^{(\varphi(D))}$ for each $D \in \mathcal{D}(X)$. Since X is finitistic, it follows from Theorem B that there is a finite dimensional K-approximation g_3 of g_2 . Then $g_3(D) \subset K^{(\varphi(D))}$ for each $D \in \mathcal{D}(X)$. Let $\kappa: X \to [0,1]$ be a continuous mapping such that $\kappa(f^{-1}(K^{(m)})) = 1$ and $\kappa(X \setminus U) = 0$. We define $g(x) = \kappa(x) \cdot g_1(x) + (1 - \kappa(x)) \cdot g_3(x)$ for each $x \in X$. It is easy to see that q is desired.

(c) \Rightarrow (b) is obvious. This completes the proof.

By the proof of the theorem, we have the following.

Corollary. For a paracompact space X the following are equivalent.

- (a) X is a strongly countable-dimensional space.
- (b) There is a function φ : X → ω such that for every metric simplicial complex K and every continuous mapping f : X → K there is a Kapproximation g of f such that g(x) ∈ K^{(φ(x))} for each x ∈ X.
- (c) For every integer $m \geq -1$ there is a function

 $\psi: X \to \omega$ such that for every metric simplicial complex K and every continuous mapping $f: X \to K$ there is a K-approximation g of f such that $g(x) \in K^{(\psi(x))}$ for each $x \in X$ and $g|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)}).$

We do not know whether the theorem holds for paracompact spaces.

References

- C. Allday and V. Puppe: Cohomological Methods in Transformation Groups. Cambridge Univ. Press, Cambridge, pp. 1–470 (1993).
- [2] P. Borst: Infinite dimension theory, Part II (1981) (manuscript).
- [3] S. Deo and A. R. Pears: A completely finitistic space is finite-dimensional. Bull. London Math. Soc., 17, 49–51 (1985).
- [4] S. Deo and H. S. Tripathi: Compact Lie group acting on finitistic spaces. Topology, 21, 393–399 (1982).
- [5] J. Dydak, S. N. Mishra, and R. A. Shukla: On finitistic spaces (preprint).
- [6] R. Engelking: Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Berlin, pp. 1–401 (1995).
- [7] P. Fletcher, R. A. McCoy, and R. E. Slover: On boundedly metacompact and boundedly paracompact spaces. Proc. Amer. Math. Soc., 25, 335–342 (1970).
- [8] Y. Hattori: A note on finitistic spaces. Questions Answers Gen. Topology, 3, 47–55 (1985).
- [9] Y. Hattori: Characterizations of certain classes of infinite dimensinal metrizable spaces. Topology Appl., 20, 97–106 (1985).
- [10] Y. Hattori: On characterizations of metrizable spaces that have transfinite dimension. Fund. Math., **128**, 37–46 (1987).
- [11] J. Nagata: Modern Dimension Theory. Heldermann Verlag, Berlin, pp. 1–284 (1983).
- [12] R. G. Swan: A new method in fixed point theory. Comm. Math. Helv., 34, 1–16 (1960).