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§1 Statement of the result. In our pre-
vious paper [3], a characterization of the quadra-
tic fields whose class numbers are divisible by 3
is given. In this paper, we study a certain type of
imaginary quadratic fields, and give a criterion
for them to have the 3-ranks of the ideal class
groups greater than one.

Our main result is:

Theorem 1. Let D < 0 be a square free inte-
ger which satisfies D = 1 (mod 3). Assume that a
fundamental unit € of the real quadratic field
Q(/— 3D) satisfies the condition:

(1.1) T7qw=sp)/¢ = £ 2 (mod 9),
Z * 2 (mod 81).
Then the 3-vank of the ideal class group of QYD)
is greater than 1 if and only if there exists a pair of
relatively prime integers u and w with the following
three properties :
i) 4w® — 27Du’ is a square ;
(1.2) (i) ¢(2) = Z®— DwZ — D’u
is irreducible over @Q;
(iii) 3|# and w = 1 (mod 3).

There exist infinitely many real quadratic
fields which have fundamental units satisfying
the condition (1.1) with T79w/=55)06 = — 2 (mod
9). To see this, we need

Proposition 1 (Katayama [2]). For every
prime p#5,e=(p+2+Vp(p+4))/2 is a
fundamental unit of k = Q(/p(p + 4)).

Take a prime p so that we have p = 23
(mod 81), and put p = 81p" + 23. Then we have
Triee=p+2=81p'+25=—2(mod9),

# £ 2 (mod 81).

Let D be a square free part of — 3p (p + 4).
Since

—3p(p+4) = —81(81p" +23)(3p" + 1),
we have

D= — (81p' +23)(3p’ + 1) =1 (mod 3).
Hence there exist infinitely many D to which our
criterion of Theorem 1 is applicable.

Let us quote two propositions which we need

for the proof of Theorem 1. For a prime number
p and an integer m, we denote the greatest expo-
nent y of p such that p* | m by V,(m).

Proposition 2 (Llorente and Nart [5]).

pose that the cubic polynomial

AX)=X'—aX—b, a,bE Z,
is irreducible over Q, and that either V,(a) < 2 or
V,(b) < 3 holds for every prime p. Let A = 4a® —
27b% be the discriminant of f(X), and 6 be a root
of f(X) =0.

(i) If a=3 (mod9), b* = a + 1 (mod 27),
V,(4) =6 and A/3°=1 (mod3), then 3 re-
mains prime in Q(6).

(ii) If 3 X a, then 3 splits into three prime
ideals in Q(6) if and only if a = 1 (mod 3) and 3
| 5.

Proposition 3 (Imaoka [1] , Komatsu [4]).
Let D be a square free integer. Every unramified
cyclic cubic extension of QWD) is given by a cubic
equation of the form
AX)=X'—DwX—Du, wu,w<Z, (uw=1
where 4w® — 27Du’ is a square in Z and (3, w)
= 1.

Remark. Proposition 3 is a result of Im-
aoka and Komatsu; they independently improved
a portion of results of [3].

§2 Proof of Theorem 1.
lemmas.

Lemma 1. Let D be a square free integer and
k= QWD). Leta= (a+ b/D)/2(a, b € Z) be
an integer in k whose norm is a cube in Z ; N, o0
=m*(m € Z). Then the polynomial f(X) = X°
— 3mX — a is reducible over Q if and only if & is
a cube in k.

Proof. Assume that « is not a cube in k. By
Cardano’s formula, the roots of f(X) = 0 are of
the form & + & where & and &’ are cube root of
(a+ byD)/2 and (a — byD)/2, respectively,
with &-& = m. Now express

£=c+ d/D,
& =c—d/D

Sup-

First we show two
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with ¢, d € C,d=+yc*— m//D . Then 2¢ is a

root of f(X) = 0. Since

i‘%“/—ﬁ = %= ¢* + 3¢d*D + (3c%d + d°D)yD,
a=WD _ £* = ¢+ 3¢d’D — (3c°d + d°D)VD,
we have a
(2.1) 7= ¢’ + 3cd?,
(2.2) % = 3c’d + d’D = (3c* + d’D)d.

Suppose that 2c¢ is rational; then we see a’ is
also rational by (2.1). Hence d is also rational by
(2.2). This contradicts the assumption that & is
not a cube in k. Therefore f(X) is irreducible
over Q.

Conversely, assume that a is a cube in k,
and take 8= ¢+ dyVD (¢, d € Q) in k so that
we have a = B°. Then we have m = ¢ — d’D
and @ = 2 (c® + 3¢d’D) because a = B° =’ +
3¢d’D + (3¢’d + d’D)VD. Therefore
AX) =X°—3(*— d’D)X — 2(c’+ 3¢d°D)

= (X — 20) (X* + 2¢X + ¢* + 3d°D),
that is, f(X) is reducible over Q. []

Lemma 2. Let D < 0 be a square free integer
which is not divisible by 3, and put

AX)=X’—3X—5s
where s is the trace of a fundamental hnit ¢ = (s
+t/—3D)/2 of Q(W—3D). If s= £ 2 (mod
9), then the roots of f(X) = 0 generate an unrami-
fied cyclic cubic extension K of Q(/D). Furthermore
if D=1 (mod3) and s # + 2 (mod 81), then
the prime 3 splits into two prime ideals n K.

Proof. We apply Main Theorem of [3] to the
case # = s>, w = 3. Then we have g(Z) = Z° —
3s’°Z — s* Note that g(sX) = s°X° — 3s°x — &*
= $’f(X), and the discriminants of g(Z) and f(2)
have the same square free part D. Now we see
(2.3) uw = 3s* = 3 (mod 9).

Suppose that s = * 2 (mod 9). Since NQ(@WE
= (s*+ 3tD)/4 =1, we have 3tD—4—s

=0 (mod 9), and hence 3|t Therefore s’ =4

(mod 27). Then we have

(24) wu=s"=4=w+ 1 (mod27).

By Lemma 1, f( X) is irreducible over @. Hence

by the Main Theorem of [3], (2.3) and (2.4) im-

ply that K is an unramified cyclic cubic exten-

sion of Q(/D).

Suppose D =1 (mod 3) and s # £ 2 (mod
81). It follows immediately from the former con-
dition that 3 splits in @ (/D). Since s & £ 2
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(mod 81), we see 3° ¥ £ Hence 3 remains prime
in Q(6) because of Proposition 2 (i). Therefore 3
splits into two prime ideals in K. []

If D=1 (mod 3) and (1.1) holds, then there
exists an unramified cyclic cubic extension K; of
Q (/D) and 3 splits into two prime ideals in K;
by Lemma 2.

Suppose that the 3-rank is greater than 1.
Then there exists another unramified cyclic cubic
extension K, of Q(/D). Put K : = K, K,. Then
K is normal over @ of degree 18 and the Galois
group of K/Q (/D) is bicyclic bicubic. Now we
consider of prime decomposition of 3 in K. Let T
and Z denote the inertial group and the decom-
position group, respectively, of an ideal B |3 in
K Put G: = Gal (K/Q). Let f and g denote
order of the quotient group Z/T and G/Z, re-
spectively. Then f-g = 18 because 3 is not rami-
fied in K. Since 3 splits in Q (/D) and does not
split completely in K;, we have f= 3 or 9. Since
the quotient group Z/ T must be cyclic, we see f
= 3 and g = 6. Hence 3 splits into six prime
ideals in K. There is, therefore, an unramified
cyclic cubic extension K’ K of Q (/D) in
which 3 splits into six prime ideals, and then 3
splits into three prime ideals in a cubic subfield
of K’. By Proposition 3, there is a pair (u, w)
for K’/Q (/D) with the conditions (i) and (ii) of
(1.2). It follows from (ii) of Proposition 2 that the
pair (#, w) must satisfy (iii) of (1.2).

Conversely, suppose that there exist re-
latively prime integers # and w satisfying the
condition (1.2). Then by (ii) of Proposition 2
there is an unramified cyclic cubic extension K”
of Q (/D) in which the prime 3 splits into six
prime ideals. Since K” is different from K, the
3-rank of the ideal class group Q(/D) is greater
than 1. Theorem 1 is completely proved.

Remark. Let a be an integer in a quadratic
field k whose norm is a cube in Z; N, =
m’(m € Z). Put

f(X) = X% = 3mX — Tr, .
In Lemma 2, we showed that « is a cube in k if
and only if f, (X) is reducible over Q. Suppose
that « is not a cube in k. For an integer B in k,
we define

fags(X) = X° = 3mnX — Tr,,,(aB),
where N, o8 = n. By modifying Lemma II.4 in
[4], we can verify that the minimal splitting field
of f,e (X) coincides with the minimal splitting
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field of f, (X). We see furthermore that f, (X) § 3 Table. There are 175 square free

and f,2 (X) give the same splitting field. Indeed, negative integers D with D = 1 (mod 3) greater

if we put @ = (@ + b/D)/2, then we have than — 10° for which the imaginary quadratic

fo(X) =X - 3mX — a, , field Q (YD) has the 3-rank greater than 1. (All

o3 2 a +bD of the 3-ranks are equal to 2.) The real quadra-

f"‘z(fX) =X - 3m X——7% tic field Q(Y— 3D) has a fundamental unit satis-

and by a simple calculation . o .
x° a fying the condition (1.1) in 115 cases out of the
f(X+m) = — Tfa(y). 175 cases. We list D of all 175 cases and #, w
in these 115 cases.
Table
D u w D u w

—974 — — —30161 8-3 97
—3299 4-3 61 —30341 30-3 529
—5069 8-3 73 —31214 22-3 103
—5306 2:3 67 —31271 2-3 31
—5417 8:3 385 —31430 2-3 991
—6221 10-3 61 —32522 — —
—6914 14-3 211 —32561 — —
— 8522 4-3 553 —33065 6-3 769
—9497 — — —33437 — —
—11651 — — —34742 24-3 25
—12131 1-3 4 —35813 — —
—13829 2-3 193 —36713 36-3 925
—14033 — — —37649 2-3 193
—16049 22-3 553 —38738 26-3 547
—16238 — — —39113 — —
—16301 4-3 469 —39626 — —
—17282 2-3 187 —40934 — —
—17399 1-3 73 —41015 — —
—17561 — — —41063 — —
—17723 — — —41186 34-3 763
—18362 30-3 451 —41354 2-3 763
—18458 6-3 427 —42158 8-3 313
—19187 — — — 42866 — —
—19286 8-3 241 —43121 8-3 841
—19427 4-3 853 —43190 8-3 1969
—19679 — — —43307 1-3 70
—19919 1-3 103 —43763 4-3 85
—20129 — — —43847 2-3 307
—21449 16-3 97 —44318 26-3 367
—22481 6:3 13 —45131 — —
—23165 4-3 61 —45557 4-3 205
—26234 8:3 289 — 45887 15-3 169
—26789 — — —48770 8-3 1129
—27635 10-3 91 —50855 3-3 529
—27773 6-3 157 —51995 4-3 301
—28031 — —52541 — —
* —29399 — —53843 17-3 256
—29957 — —54071 — —
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D u D w
—54251 2-3 —76070 121
—54695 — — 76667 82
—54707 11-3 — 77594 619
—55247 — —177705 3121
—55271 1-3 — 77897 —
—55598 — — 78362 —
—56510 84-3 — 78482 25
—56666 — —79163 100
—56981 — —79418 —
—57185 18-3 —79865 829
—59105 2-3 —81002 —
—59198 — —81137 —
—59609 — — 82493 337
—59690 58-3 —83081 517
—60290 80-3 —83381 157
—60974 6-3 —83522 —
—62201 — — 83585 181
—64067 — —83723 100
—64478 26-3 —85199 271
—64571 21-3 — 86597 841
—64814 6:3 —87401 157
—65051 3-3 —87503 211
—65657 — —88001 433
—65813 2-3 —88223 991
—66377 2-3 —88310 271
—66494 2-3 — 88970 361
—67010 12-3 —90461 —
—67142 20-3 —90545 121
—67157 — —90686 631
—67385 — —91190 841
—68006 2:3 —91241 577
—68021 2-3 —91643 112
—68321 — —92657 457
—68351 1-3 —92798 1135
—69758 8:3 —93629 —
—170226 — —93989 4537
—71411 1-3 —94022 —
—71423 1-3 —94673 —
—71585 2:3 —95558 —
—71621 18:3 —95585 589
—71849 — —96254 —
—72494 10-3 —96551 211
—72815 1-3 —96827 379
—73007 1-3 —97502 385
—73694 6-3 —97583 —
—74117 — —97649 —
—74615 — —97799 841
—74957 8:3 —98390 1159




No. 6] A criterion for a certain type 97
D u w D u w
—98678 — — —99707 — —
—98795 1-3 376
In this table, there is only one case, D= [2] S. Katayama: On Fundamental Units of Real
— 29399, for which the quadratic field Quadratic Fields with Norm + 1. Proc. Japan

Q (/— 3D) is of the type of Proposition 1. The
largest D of the type of Proposition 1 which
satisfies not only the assumptions of Theorem 1
but also the condition (1.2) is D =.— 699863.
(Then we have u = 27 -3, w = 955.) There are
about 41.7% of 115 cases of D for which we
have T7y/=35)/06 = + 2 (mod 9).
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