A criterion for a certain type of imaginary quadratic fields to have 3-ranks of the ideal class groups greater than one

By Yasuhiro KISHI

Department of Mathematics, Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, Tokyo 192-0397 (Communicated by Shokichi IYANAGA, M. J. A., June 23, 1998)

§1 Statement of the result. In our previous paper [3], a characterization of the quadratic fields whose class numbers are divisible by 3 is given. In this paper, we study a certain type of imaginary quadratic fields, and give a criterion for them to have the 3-ranks of the ideal class groups greater than one.

Our main result is:

Theorem 1. Let D < 0 be a square free integer which satisfies $D \equiv 1 \pmod{3}$. Assume that a fundamental unit ε of the real quadratic field $Q(\sqrt{-3D})$ satisfies the condition:

(1.1)
$$Tr_{Q(\sqrt{-3D})/Q}\varepsilon \equiv \pm 2 \pmod{9},$$

 $\not\equiv \pm 2 \pmod{81}.$

Then the 3-rank of the ideal class group of $Q(\sqrt{D})$ is greater than 1 if and only if there exists a pair of relatively prime integers u and w with the following three properties:

(i)
$$4w^3 - 27Du^2$$
 is a square;
(1.2) (ii) $g(Z) = Z^3 - DwZ - D^2u$

(1.2) (ii)
$$g(Z) = Z^3 - DwZ - D^2u$$

is irreducible over Q;

(iii) $3 \mid u \text{ and } w \equiv 1 \pmod{3}$.

There exist infinitely many real quadratic fields which have fundamental units satisfying the condition (1.1) with $Tr_{Q(\sqrt{-3D})/Q}\varepsilon \equiv -2$ (mod 9). To see this, we need

Proposition 1 (Katayama [2]). For every prime $p \neq 5$, $\varepsilon = (p + 2 + \sqrt{p(p+4)})/2$ is a fundamental unit of $k = Q(\sqrt{p(p+4)})$.

Take a prime p so that we have $p \equiv 23$ (mod 81), and put p = 81p' + 23. Then we have $Tr_{k/Q}\varepsilon = p + 2 = 81p' + 25 \equiv -2 \pmod{9}$, $\not\equiv \pm 2 \pmod{81}$.

Let D be a square free part of -3p(p+4). Since

$$-3p(p+4) = -81(81p'+23)(3p'+1),$$
 we have

 $D \equiv -(81p' + 23)(3p' + 1) \equiv 1 \pmod{3}.$ Hence there exist infinitely many D to which our criterion of Theorem 1 is applicable.

Let us quote two propositions which we need

for the proof of Theorem 1. For a prime number p and an integer m, we denote the greatest exponent μ of p such that $p^{\mu} \mid m$ by $V_{\mu}(m)$.

Proposition 2 (Llorente and Nart [5]). pose that the cubic polynomial

 $f(X) = X^{3} - aX - b, \quad a, b \in \mathbf{Z},$ is irreducible over Q, and that either $V_{\mathfrak{p}}(a) < 2$ or $V_{b}(b) < 3$ holds for every prime p. Let $\Delta = 4a^{3}$ $27b^2$ be the discriminant of f(X), and θ be a root of f(X) = 0.

(i) If $a \equiv 3 \pmod{9}$, $b^2 \equiv a + 1 \pmod{27}$, $V_3(\Delta) = 6$ and $\Delta/3^6 \equiv 1 \pmod{3}$, then 3 remains prime in $\mathbf{Q}(\theta)$.

(ii) If 3 × a, then 3 splits into three prime ideals in $Q(\theta)$ if and only if $a \equiv 1 \pmod{3}$ and 3

Proposition 3 (Imaoka [1], Komatsu [4]). Let D be a square free integer. Every unramified cyclic cubic extension of $Q(\sqrt{D})$ is given by a cubic equation of the form

 $f(X) = X^3 - DwX - D^2u, \quad u, w \in \mathbb{Z}, \quad (u, w) = 1$ where $4w^3 - 27Du^2$ is a square in **Z** and (3, w)= 1.

Remark. Proposition 3 is a result of Imaoka and Komatsu; they independently improved a portion of results of [3].

§2 Proof of Theorem 1. First we show two lemmas.

Lemma 1. Let D be a square free integer and $k = \mathbf{Q}(\sqrt{D})$. Let $\alpha = (a + b\sqrt{D})/2(a, b \in \mathbf{Z})$ be an integer in k whose norm is a cube in Z; $N_{k/Q}\alpha$ $= m^3 (m \in \mathbf{Z})$. Then the polynomial $f(X) = X^3$ -3mX - a is reducible over **Q** if and only if α is a cube in k.

Proof. Assume that α is not a cube in k. By Cardano's formula, the roots of f(X) = 0 are of the form $\xi + \xi'$ where ξ and ξ' are cube root of $(\alpha + b\sqrt{D})/2$ and $(a - b\sqrt{D})/2$, respectively, with $\xi \cdot \xi' = m$. Now express

$$\xi = c + d\sqrt{D},$$

$$\xi' = c - d\sqrt{D}$$

with c, $d \in C$, $d = \sqrt{c^2 - m} / \sqrt{D}$. Then 2c is a root of f(X) = 0. Since

$$\frac{a+b\sqrt{D}}{2}=\xi^3=c^3+3cd^2D+(3c^2d+d^3D)\sqrt{D},$$

$$\frac{a - b\sqrt{D}}{2} = \xi^{3} = c^{3} + 3cd^{2}D - (3c^{2}d + d^{3}D)\sqrt{D},$$
we have

(2.1)
$$\frac{a}{2} = c^3 + 3cd^2,$$

(2.2)
$$\frac{b}{2} = 3c^2d + d^3D = (3c^2 + d^2D)d$$
.

Suppose that 2c is rational; then we see d^2 is also rational by (2.1). Hence d is also rational by (2.2). This contradicts the assumption that α is not a cube in k. Therefore f(X) is irreducible over Q.

Conversely, assume that α is a cube in k, and take $\beta=c+d\sqrt{D}$ $(c,d\in \mathbf{Q})$ in k so that we have $\alpha=\beta^3$. Then we have $m=c^2-d^2D$ and $a=2(c^3+3cd^2D)$ because $\alpha=\beta^3=c^3+3cd^2D+(3c^2d+d^3D)\sqrt{D}$. Therefore

$$f(X) = X^{3} - 3(c^{2} - d^{2}D)X - 2(c^{3} + 3cd^{2}D)$$

= $(X - 2c)(X^{2} + 2cX + c^{2} + 3d^{2}D)$,

that is, f(X) is reducible over Q.

Lemma 2. Let $D \le 0$ be a square free integer which is not divisible by 3, and put

$$f(X) = X^3 - 3X - s$$

where s is the trace of a fundamental unit $\varepsilon = (s + t\sqrt{-3D})/2$ of $\mathbf{Q}(\sqrt{-3D})$. If $s \equiv \pm 2 \pmod{9}$, then the roots of f(X) = 0 generate an unramified cyclic cubic extension K of $\mathbf{Q}(\sqrt{D})$. Furthermore if $D \equiv 1 \pmod{3}$ and $s \not\equiv \pm 2 \pmod{81}$, then the prime 3 splits into two prime ideals in K.

Proof. We apply Main Theorem of [3] to the case $u = s^2$, w = 3. Then we have $g(Z) = Z^3 - 3s^2Z - s^4$. Note that $g(sX) = s^3X^3 - 3s^3X - s^4 = s^3f(X)$, and the discriminants of g(Z) and f(Z) have the same square free part D. Now we see (2.3) $uw = 3s^2 \equiv 3 \pmod{9}$.

Suppose that $s \equiv \pm 2 \pmod{9}$. Since $N_{Q(\sqrt{-3D})/Q} \varepsilon = (s^2 + 3t^2D)/4 = 1$, we have $3t^2D = 4 - s^2 \equiv 0 \pmod{9}$, and hence $3 \mid t$. Therefore $s^2 \equiv 4 \pmod{27}$. Then we have

(2.4) $u = s^2 \equiv 4 = w + 1 \pmod{27}$.

By Lemma 1, f(X) is irreducible over Q. Hence by the Main Theorem of [3], (2.3) and (2.4) imply that K is an unramified cyclic cubic extension of $Q(\sqrt{D})$.

Suppose $D \equiv 1 \pmod{3}$ and $s \not\equiv \pm 2 \pmod{81}$. It follows immediately from the former condition that 3 splits in $Q(\sqrt{D})$. Since $s \not\equiv \pm 2$

(mod 81), we see $3^2 \ \ t$. Hence 3 remains prime in $Q(\theta)$ because of Proposition 2 (i). Therefore 3 splits into two prime ideals in K. \square

If $D \equiv 1 \pmod 3$ and (1.1) holds, then there exists an unramified cyclic cubic extension K_1 of $Q(\sqrt{D})$ and 3 splits into two prime ideals in K_1 by Lemma 2.

Suppose that the 3-rank is greater than 1. Then there exists another unramified cyclic cubic extension K_2 of $Q(\sqrt{D})$. Put $K:=K_1\cdot K_2$. Then \pmb{K} is normal over \pmb{Q} of degree 18 and the Galois group of $K/Q(\sqrt{D})$ is bicyclic bicubic. Now we consider of prime decomposition of 3 in K. Let Tand Z denote the inertial group and the decomposition group, respectively, of an ideal $\mathfrak{P} \mid 3$ in K. Put G := Gal(K/Q). Let f and g denote order of the quotient group Z/T and G/Z, respectively. Then $f \cdot g = 18$ because 3 is not ramified in K. Since 3 splits in $Q(\sqrt{D})$ and does not split completely in K_1 , we have f = 3 or 9. Since the quotient group \mathbb{Z}/T must be cyclic, we see f= 3 and q = 6. Hence 3 splits into six prime ideals in K. There is, therefore, an unramified cyclic cubic extension $K' \subseteq K$ of Q (\sqrt{D}) in which 3 splits into six prime ideals, and then 3 splits into three prime ideals in a cubic subfield of K'. By Proposition 3, there is a pair (u, w)for $K'/Q(\sqrt{D})$ with the conditions (i) and (ii) of (1.2). It follows from (ii) of Proposition 2 that the pair (u, w) must satisfy (iii) of (1.2).

Conversely, suppose that there exist relatively prime integers u and w satisfying the condition (1.2). Then by (ii) of Proposition 2 there is an unramified cyclic cubic extension K'' of $\mathbf{Q}(\sqrt{D})$ in which the prime 3 splits into six prime ideals. Since K'' is different from K_1 , the 3-rank of the ideal class group $\mathbf{Q}(\sqrt{D})$ is greater than 1. Theorem 1 is completely proved.

Remark. Let α be an integer in a quadratic field k whose norm is a cube in \mathbf{Z} ; $N_{k/Q}\alpha = m^3 (m \in \mathbf{Z})$. Put

$$f_{\alpha}(X) = X^3 - 3mX - Tr_{k/Q}\alpha.$$

In Lemma 2, we showed that α is a cube in k if and only if $f_{\alpha}(X)$ is reducible over Q. Suppose that α is not a cube in k. For an integer β in k, we define

 $f_{\alpha\beta^3}(X) = X^3 - 3mnX - Tr_{k/Q}(\alpha\beta^3)$, where $N_{k/Q}\beta = n$. By modifying Lemma II.4 in [4], we can verify that the minimal splitting field of $f_{\alpha\beta^3}(X)$ coincides with the minimal splitting

field of $f_{\alpha}(X)$. We see furthermore that $f_{\alpha}(X)$ and $f_{\alpha^2}(X)$ give the same splitting field. Indeed, if we put $\alpha=(a+b\sqrt{D})/2$, then we have

if we put
$$\alpha=(a+b\sqrt{D})/2$$
, then we have
$$f_{\alpha}(X)=X^3-3mX-a,$$

$$f_{\alpha^2}(X)=X^3-3m^2X-\frac{a^2+b^2D}{2},$$
 and by a simple calculation
$$f_{\alpha^2}(X+m)=-\frac{X^3}{a}f_{\alpha}(\frac{a}{X}).$$

§ 3 Table. There are 175 square free negative integers D with $D \equiv 1 \pmod{3}$ greater than -10^6 for which the imaginary quadratic field $Q(\sqrt{D})$ has the 3-rank greater than 1. (All of the 3-ranks are equal to 2.) The real quadratic field $Q(\sqrt{-3D})$ has a fundamental unit satisfying the condition (1.1) in 115 cases out of the 175 cases. We list D of all 175 cases and u, w in these 115 cases.

Table

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-19427 $4 \cdot 3$ 853 -43190 $8 \cdot 3$ 1969
-19679 $ -43307$ $1\cdot 3$ 70
-19919 1·3 103 -43763 4·3 85
-20129 $ -43847$ $2 \cdot 3$ 307
-21449 $16\cdot 3$ 97 -44318 $26\cdot 3$ 367
-22481 6·3 13 -45131 — —
-23165 $4 \cdot 3$ 61 -45557 $4 \cdot 3$ 205
-26234 8·3 289 -45887 15·3 169
-26789 $ -48770$ 8.3 1129
-27635 $10\cdot 3$ 91 -50855 $3\cdot 3$ 529
-27773 6·3 157 -51995 4·3 301
-28031 $ -52541$ $ -$
*-2939953843 17·3 256
-29957 $ -54071$ $ -$

D	u	w	D	u	w
-54251	2.3	271	-76070	36.3	121
-54695			-76667	$13 \cdot 3$	82
-54707	11.3	790	-77594	$2 \cdot 3$	619
-55247	-	-	-77705	10.3	3121
-55271	1.3	7	-77897		
-55598			-78362		
-56510	$84 \cdot 3$	1369	-78482	36.3	25
-56666	_		-79163	3.3	100
-56981			-79418	_	_
-57185	18.3	2869	-79865	$2 \cdot 3$	829
-59105	$2 \cdot 3$	1429	-81002		—
-59198	2 3	1423	-81137		
-59609	****		-82493	6.3	337
-59690	58.3	451	-83081	38.3	517
-59690 -60290	80.3			36·3 4·3	
		1561	-83381	4.9	157
-60974	6.3	391	-83522		101
-62201			-83585	66.3	181
-64067			-83723	19.3	100
-64478	26.3	607	-85199	19.3	271
-64571	21.3	484	-86597	64 · 3	841
-64814	6.3	487	-87401	12.3	157
-65051	$3 \cdot 3$	466	-87503	5.3	211
-65657			-88001	8.3	433
-65813	$2 \cdot 3$	493	-88223	13.3	991
-66377	$2 \cdot 3$	265	-88310	$38 \cdot 3$	271
-66494	$2 \cdot 3$	1039	-88970	$12 \cdot 3$	361
-67010	$12 \cdot 3$	241	-90461		
-67142	$20 \cdot 3$	889	-90545	$16 \cdot 3$	121
-67157			-90686	$42 \cdot 3$	631
-67385			-91190	$48 \cdot 3$	841
-68006	$2 \cdot 3$	223	-91241	$6 \cdot 3$	577
-68021	$2 \cdot 3$	577	-91643	1.3	112
-68321			-92657	8.3	457
-68351	1.3	703	-92798	$18 \cdot 3$	1135
-69758	8.3	985	-93629		
-70226			-93989	$6 \cdot 3$	4537
-71411	1.3	94	-94022		
-71423	1.3	169	-94673		
-71585	$2 \cdot 3$	529	-95558		
-71621	18.3	817	-95585	$12 \cdot 3$	589
-71849	_		-96254		
-72494	10.3	439	-96551	$2 \cdot 3$	211
-72815	1.3	61	-96827	$2 \cdot 3$	379
-73007	1.3	265	-97502	$24 \cdot 3$	385
-73694	$6 \cdot 3$	1663	-97583		_
-74117			-97649	_	
-74615		-	-97799	1.3	841
-74957	8.3	817	-98390	$22 \cdot 3$	1159

D	и	w	D	u	\overline{w}
-98678			-99707		
-98795	$1 \cdot 3$	376			

In this table, there is only one case, D=-29399, for which the quadratic field $Q(\sqrt{-3D})$ is of the type of Proposition 1. The largest D of the type of Proposition 1 which satisfies not only the assumptions of Theorem 1 but also the condition (1.2) is D=-699863. (Then we have $u=27\cdot 3$, w=955.) There are about 41.7% of 115 cases of D for which we have $Tr_{Q(\sqrt{-3D})/Q}\varepsilon \equiv +2 \pmod{9}$.

References

[1] M. Imaoka: Generating Polynomials and Ramification Conditions of Cubic Fields. Tokyo Metropolitan University, Master thesis (1997/98) (in Japanese).

- [2] S. Katayama: On Fundamental Units of Real Quadratic Fields with Norm + 1. Proc. Japan Acad., 68A, 18-20 (1992).
- [3] Y. Kishi and K. Miyake: Characterization of the Quadratic Fields whose Class Numbers are Divisible by Three. Tokyo Metro. Univ. Math. Preprint Series, no. 7 (1997).
- [4] T. Komatsu: The Relation between Elliptic Curves and Quadratic Fields whose Class Numbers are Divisible by 3, and its Application to Real Quadratic Fields. Tokyo Metropolitan University, Master thesis (1997/98) (in Japanese).
- [5] P. Llorente and E. Nart: Effective Determination of the Decomposition of the Rational Prime in a Cubic Field. Proc. American Math. Soc., 87, 579-585 (1983).