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Introduction. Let k be a field of character-
istic 0, G a linear algebraic group defined over k.
We are interested only in linear algebraic k-
groups, so the adjective "linear" will be omitted.
It is well-known (see e.g. [16]) that if G is com-
mutative, then for any finite extension k’ of k,
there is the so-called corestriction map

Cores,,/ (which will be denoted also by Cores
to emphasize the group G, when the fields k’, k
are fixed):

Cores H k’, G - H k, G ) q>_ O,
where H (L, H)denotes the Galois cohomology
H(Gal(,/L), H()) for a L-group H defined
over a field L of characteristic 0 (or a perfect
field L). However if G is not commutative, there
is no such a map in general and, as far as we

know, the most general sufficient conditions are
given in [14], under which such a map can be
constructed. The Corestriction The.,ory con-
structed there has many applications to theory of
algebras, representation theory and related ques-
tions. In this paper we are interested in the fol-
lowing natural question about the corestriction
map.

Assume that there is a map, which ,is functo-
rial in k:

a: H(k, G) -- H(k, T),
where T is a commutative k-group, G a non-com-
mutative k-group, i.e., c gives rise to a morphism
of functors (k I--- Hp (k, G)) ---* (k I--* Hq (k, T))
(cf. also [17], Section 6.1). By restriction, for any
finite extension k’/k we have a functorial map

cg: HP(k’, G -- Hq( k", T).
Question. When does CoresT (Im (o()) c

Im (c) ?
If the answer is affirmative for all k’, we say

that the Corestriction Principle holds for (the image

of) the map c. One defines similar notion for the
kernel of a map fl: H(k, T)-- Hq(k, G).
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versity and Lady Davis Fellowship at Technion.

We say that the map c H(k, G)- Hq(k, T)
is standard if it is obtained as a connecting map
from the exact cohomology sequence associated
with an exact sequence of k-groups involving G
and T. For example, let

1--,A---*B--, C’--* I,
be an exact sequence of k-groups, where A is

considered as a normal k-subgroup of B. Then
H(k, A) -- H( k, B), O, 1,

and
H(k, C)---.HI(k,A)

are standard maps. In general, C is just a quo-
tient space and may not be a group. If A is a cen-

tral subgroup of G, then C is a group, and one
may define a connecting standard map Hl(k, C)- H(k, A).

It is worth mentioning that in some particu-
lar cases, the above question has an affirmative
answer unconditionally and the Norm Principle is

said to hold if it holds for p--q--0 (which
approves the adjective norm). There are some ex-

amples to support this principle, for example, by
considering reduced norm in division algebras,
the Scharlau norm principle ([18, 20]), etc. A new
kind of Corestriction Principle over local and
global fields has been found by P. Deligne [5],
Prop. 2.4.8, which, in the case of characteristic 0
and in notations of abelian Galois cohomology [1],
[12], Appendix B), says that the Corestriction
Principle for images holds for the map

0ab H(k, G) ---* Hao (k, G ).
However, given any natural numbers n --> 2,

r_> 1, Rosset and Tare have constructed in [15]
an example of a field E containing the group gn
of n-th roots of 1, a finite Galois extension F of
E of degree r, and an element x of K.(F), which
is a symbol, such that the image of x via the
trace

Tr/z K.F ---* K.E
is a sum of at least r symbols. From this they de-
rive a symbol algebra of degree n over F, consi-
dered as an element of H(F, ttn), such that its
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image via the corestriction

Cores/" H( F, p --, H (E, f
is not a symbol. Therefore the question above has
a negative answer for the standard map

A H(E, PGL) -- H(E, f).
Despite of this, wewill see that in many interest-
ing cases, the Corestriction Principle for stan-
dard maps hold, especially in the case the field of
definition is a local or global field of characteris-
rico. In particular, our first main result in Sec-
tion 1 (Theorem 1.6)can be considered as a
generalization of the statement’ The norm of a

symbol is a norm. In certain sense, it is a cohomo-
logical complement to the well-known result by
Lenstra [10] and Tare [19] that for a local or
global field F, every element of K(F) is a sym-
bol, and it extends the result of deligne (above) to
higher dimensions. If the base field is an arbit-
rary field of characteristic 0, we discuss the rela-
tion between the corestriction principles for va-
rious types of standard maps.

1. Corestriction Principle in non-abelian
eohomology- local and global fields. We use the
notion and results from the Borovoi-Kottwitz
theory of abelian Galois cohomology of algebraic
groups as presented in [1]-[3](see also [12],
Appendix B, for a survey). We recall briefly that
for a connected reductive group G defined over a
field k of characteristic 0 with a maximal k-
torus T, let G be the simply connected covering
of the semisimple part of G with maximal torus, which is projected into a subtorus of T via the
isogeny (---* G’" G, G One can define a
complex of tori T (P---, T) where T (resp. ’)
is in degree 0 (resp.-1). Then

H:b(k, G)" (k, T
where denotes the Galois hypercohomology of
the complex T ". Then it was shown that H:(k, G),

_> 0, satisfy usual functorial properties of a
cohomology theory, and there exist functorial
homomorphism and map, respectively

abe" H(k, G)-- Hb(k, G),

abe" Sl(k, G) -- S(k, G ).
Our first main result of this section is the follow-
ing

1.1. Theorem. Let k be a local or global

field of characteristic O, G a connected k-group, T a
connected commutative k-group and c" H(k, G)
--" H (k, T) a standard map. Assume that G is a

central extension of T if p q 2 where the 2-
cohomology is defined as in [7]. Then for 0 <--p
<-- q <-- 2 the Corestriction Principle holds for the
image of o.
The proof uses main results in the Galois coho-
mology of algebraic groups over local and global
fields, due to Kneser and Harder [9], [8] and also
abelianized Galois cohomology due to Borovoi

[1]-[3].
1.2. Remarks. It follows from the con-

struction of ab of [2], p. 228, that this map
satisfies the Corestriction Principle for images

for any field k of characteristic 0 and any con-

nected reductive k-group G.
2) Another proof of Theorem 1.1 (without using

abelianized Galois cohomology) follows from main

results of Section 2.
To be complete, together with the Corestric-

tion Principle for the images of standard maps,
we need also to consider the validity of this prin-
ciple for kernels of standard maps. Namely for a

standard map
c" H(k, T )--, Hq( k, G ),

where T, G are connected k-groups with T com-

mutative, and for a finite extension k’ of k with
the corestriction map Coresr" H
HP(k, T), we ask

Question. When does Coresr (Ker (c @ k’))
Ker (c) ?
By using Theorem 1.1 it is easy to see that

in the case k is a global or a global field of char-
acteristic 0, one is reduced to considering the
case p =q- 1. We have the following affirma-
tive result for local and global fields of charac-
teristic 0, and it is our second main result in this

section.
1.3. Theorem. Let k be a local or global

field of characteristic 0 and T a connected commuta-
tive k-subgroup of a connected k-group G. Then the
Corestriction Principle holds for the kernel of the

H Hstandard map c ( k, T) -- k, G ).
The proof uses z-extensions, which are the

same as cross-diagram due to Ono [13]. Recall
that a connected reductive k-group H is a z-ex-
tension of a k-group G if H is an extension of G
by an induced k-torus Z, such that the derived
subgroup (semisimple part) [H, H] of H is sim-
ply connected. From the proof of Theorem 1.3 we

can deduce the following
1.4. Corollary. The Corestriction Principle
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for kernels of the standard maps H( k, T)
H( k, G ), where T and G are connected groups
over a field k of characteristic 0, T is commutative,

holds if and only if the same holds for all pairs
(T, G with T a maximal torus of a simply con-
nected almost simple k-group G, all defined over k.
We derive the following consequence, which is a
slight generalization of a result of Deligne [5],
Proposition 2.4.8.

1.5. Theorem. With the above, notation,

assume that G is a connected reductive k-group.
For any finite extension k’ of a local or global field
k there is a canonical norm map

G( k’)/r(Go( k’)) -- G( k)k )).
From Theorem 1.1 and 1.3 we derive the follow-
ing main result of this section.

1.6. Theorem. (Corestriction Principle) Let
G, T be connected linear algebraic groups, where T
is commutative, all defined over local or global

field k of characteristic O. Assume that c"
H ( k, G -- Hq (k, T) (resp. fl," H (k, T)
H( k, G )) is a standard map. Then for any finite
extension k’/k we have

Coresr/(Im (at)) Im (a),

( resp. Coresk,/k (Ker (fir))c Ker (fl).
2. Corestriction Principle in non-abelian

cohomology" arbitrary field of characteristic O. In
this section we will discuss some relation be-
tween the validity of Corestriction Principles for
standard maps of various type. As applications
we apply the results obtained to give new proof
of a result of Deligne that we used in Section 1.

Let k be a field of characteristic 0 and
H (k, G)-- H (k, T) be a standard map, where
p 0, 1, q _p4- 1, G and Tare connected re-
ductive k-groups, T is a torus. Denote by
(resp. G) the simply connected covering (resp. the
adjoint) group of the semisimple part of G,/
Ker(G-G),F’-Ker(G’-G), where G’ is
the semisimple part of G. We consider the follow-
ing statements.

a) The Corestriction Principle for images holds

for any such
b) The Corestriction Principle for images holds

for H (k, (2) -- H+1 (k, F’) for p 0,
1.

c) The Corestriction Principle for images holds

for H (k, () -- H+1 (k, fi’ ), for p 0,
1.

d) The Corestriction Principle for images holds

for abe" H (k, G) -- H (k, G) for any
such G.

For the statements a)--d) considered above,
let us denote by x(p, q) the statement x) evalu-
ated at (p, q), for 0 _< p <_ q g 2. For example,
a(1, 2) means the statement a) with p 1, q
2.
We will show later that if one of these conditions
holds (e.g. if k is a local or global field) then for
any isogeny of connected reductive k-groups
1 F-- G Ga--* 1, the Corestriction Princi-
ple for the image of H ( k, Ga) --" H+ ( k, F), p

0, 1 holds.
We have the following results.
2.1. Theorem. 1) All statements a) d) are

equivalent.

2) We have the following interdependence between
the statements a)- d) with particular values of p
and q.

a) For lower dimension"
a(O, O) v b(O) v c(O) v d(O)

a(O, )
b) For higher dimension"

a(1, 1) (:v b(1) c(1) ’ d(1)

a(1, 2)
where two statements in the same row are connected
by 3 if they are equivalent and the down arrow in-
dicates that the statements standing below follow the
ones standing above.

We just indicate the logical dependence and
the scheme of the proof of the statements of 1)"
d)a);a)d); b) CVc); c)<=>a); a)b).

From the proofs of propositions above we
derive several consequences.

2.2. Corollary. If either one of the conditions

a) or d) holds (e.g. if k is a local or global field of
characteristic 0) then for any isogeny of connected
reductive k-groups

1 --* F--* G1 -- G2 -- 1the Corestriction Principle for images holds for stan-
dards maps

H(k, G) --, H+(k, F), p 0, 1.
2.3. Remarks. 1) From the proof of

Theorem 1.2, its corollary and Theorem 2.1 one
may deduce a new proof of Deligne’s result men-
tioned above ([5], Prop. 2.4.8) in the case k is a
local or global field of characteristic 0.
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Corollary. If k is a local or global field of
characteristic 0 then d (0)holds. In particular
Theorem 1.1 holds.
2) A known sufficient condition for c(0) to hold
is that the group of R-equivalence of G over k’
is trivial, i.e., G (k’)/R- 1, since the Norm
Theorem for the group of elements R-equivalent
to 1 holds (see [6], Prop. 3.3.2). In [11], Theorem
1, Merkurjev proved, among other results, a
Norm Theorem from which the above" result of [6]
follows.
3) The proof of Theorem 2.1 reduces the proof of
Corestriction Principle for images for connected
reductive groups to that of the maps

H(k, ()---* H+( k,
where F is the center of a simply connected semi-
simple k-group ( with adjoint group (. It is
clear that we can reduce further to the case
where G is almost simple. In this case, the Cores-
triction Principle for images is known for the
case An Bn (due to the rationality of ( and the
result of Gille-Merkurjev mentioned above),
Cn([20]).

3. Corestrietion Principle for R-equivalence
groups. Let G be a k-group. Two points
x, y G (k) are called strictly R-equivalent (af-
ter Manin) if there is a map f" pl__., G defined
over k and regular at 0 and 1, such that f(0)
x and f(1) --y (see [4] for more detalis). The
equivalence relation generated from this is called
R-equivalence. The subset R’--RG (k)of all
elements of G(k) which are R-equivalent to the
identity is a normal subgroup of G(k). It is well-
known (see [4]) that for a field k of characteristic
0, the factor group G (k)/R, called the group of
R-equivalence classes of G over k, is a birational
invariant of the group G. In general, the study of
the group G(k)/R provides interesting informa-
tion about the arithmetico- group- theoretic struc-
ture of the group G(k), especially because there
are many (even semisimple) groups with non-tri-
vial R-equivalence groups (even over number
fields).

In this section we are interested in the
Corestriction Principle for images for G (k)/R
over local and global fields of characteristic 0.
We use the notion of standard maps introduced
in the introduction. By using our previous results
and a result of [6], we obtain.

3.1. Theorem. Assume that k is a local or

global field of characteristic O. Then for any con-
nected reductive k-group G, a k-torus T, a stan-
dard map 7c G (k ) "--* T (k ) and for any finite ex-

tension k’ of k, the norm homomorphism T (k’)
T(k induces a canonical functorial norm map for
images

Nk,/, Im (6(k’)/R T(k’)/R)- Im (G(k)/R- T(k)/R).
3.2. Corollary. With above notation, for any

isogeny of connected k-groups
1---* F--* H-- G--* 1,

with finite F, the Corestriction Principle for images
holds for the map

G(k )/R --’ (Im (c))/R,
where is the connecting map G (k) "-* H (k, F),
and the R-equivalence in Im () is induced from
that of G(k as defined in [6].
The proof uses Ono’s crossed diagram as in the
course of proving Theorem 2.1.
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