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1. Statement of results. In this paper we
shall consider the inverse problem of determining
the nonlinear term g of the boundary value prob-
lem

u" + [ q(x)]u g(u), 0 < x < 1,
(1.1) u’(0) u(1) 0,
from its first bifurcating branch. From a view-
point of physical applications, the invest,gation of
the inverse problem can be regarded as a study
to determine unknown inhomogeneity of elastic
materials such as springs or rubbers by sear-
ching a modulus of elasticity which matches
given period of vibration for each amplitude. Re-
lated inverse problems have been studied by De-
nisov [2], Lorenzi [8], Denisov and Lorenzi [3],
Kamimura [7], which can be considered as inves-
tigations to determine inhomogeneity by measur-
ing the dependence of the initial velocity and the
displacement at a fixed time on the modulus of
elasticity. There have been few investigations
concerning inverse problems of determining un-
known nonlinear terms in nonlinear differential
equations from some measured date for their
solutions, outside of these works.

An existence result for the inverse problem
mentioned in the beginning was established by
Iwasaki and Kamimura [4]. The purpose of the
present paper is to establish a uniqueness result
for the problem.

Let q be a real function of class C[0, 1] and
assume that g is a real function of class C (R)
satisfying g(0) g’(0) 0. As a representation
of the first bifurcating branch of (1.1) in R, let
/’(g) be the set of (2, h) R for which there
exists a solution u(x) of (1.1) such that (i) u(x)
:# 0 for any x [0, 1);(ii) u (0) h. The
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assumption g(0) g’(0) 0 implies that the
linearized problem of (1.1) at the trivial solution
u(x) =Ois

+ [ q(x)]u O, 0 < x < 1,
(1.2) u’(0) u(1) 0.

Therefore the set F(g)bifurcates at the point

(21, 0) from the trivial solution u(x) 0,
where 21 is the first eigenvalue of the problem
(1.2) (see [4,{}2], also see [1,9,10] for general
theory).

Throughout the paper, we assume that the
first eigenfunction v (x) of (1.2) satisfies the fol-
lowing three conditions:
(A1) v;’(0) < 0.
(A2) v(x) < 0 for 0 <x<_ 1.
(A3) v(x)vl(x) <-- 2v(x) for 0--<x< 1.
This is an assumption on q. It should be pointed-
out that if max q(x) 3.1 then (A1)--(A3) hold.

0xl

For other sufficient conditions for (A1)--(A3) the
reader may refer to [4, Remark 4.8].

We use the following two function spaces.
Let 0 cg 1/2 and let X, Y be function
spaces defined by

X’ [g(h) C(R) Ig(0) g’(0) 0,

](1 + ]kl)g’(k) (1 + Ihl)g’(h)[ < lsup
h,kR,hCk Ik- hi

Y’ {,(h) C(R)lhZ(h) C(R), (0) ,,
+

h,keR, h=/:kSUp Ik- hi+ln
< cj.

For 2 (h) Y, let u(h, x) denote the solution of
the initial value problem

u" 4- [2 (h) q(x)]u g(u),f(1.3) [ u(0) h, u’(0) 0.

Clearly if (2(h), h) F(g) then u(h, 1) 0.
The main result of the present paper is

stated as follows:
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Theorem 1.1. Let q (x) be a real function of
class C2[0, 1] and suppose that the conditions (Ai)
--(A3) hold. Suppose that, for , (h) ,Y, there e
ists a function g X satisfying
(1.4) F(g) {(/(h), h) h R\{0}},
and that, for each h R \ {0}, the solution u (h, x)
of (1.3) satisfies the following three conditions"

(i) u" (h, 0) < 0,
(ii) u’(h, x :/: 0 for any x (0, 1],

(iii) the solution w (h, x) of the "initial value
problem

w" + [(h) q(x) g’(u(h, x))]w 0,
w(0) 0, w’(0) 1,

satisfies w(h, 1) :/: 0.
Then g satisfying (1.4) is unique in X.

In [4] it was proved that if , (h) is sufficient-
ly near the straight line o(h) ,1 in the norm
of Y then there exists a function g X satisfying
(1.4), and that the correspondence
g (h) is continuous as a mapping from X to Y.
Moreover, as is easily seen, the conditi6ns (i)-
(iii) are satisfied if sup I(h)- 11 + sup Ig’(h)l

heR her

is sufficiently small. Hence, as a direct consequ-
ence of Theorem 1.1, we have"

Theorem 1.2. Let q( x) be a real function of
class C2[0, 1] and suppose that the conditions (A1)
--(A3) hold. If (h) Y is sufficiently near the
straight line o (h) 1 iu the norm of Y then, for
g, g2 X,

F(gl) F(g2) (( (h), h)l h R \ (0)) gl g2.

This result implies that the first bifurcating
curve of (1.1) controls its nonlinear term g. In
particular we have:

Corollary 1.3. Under the same assumption on
q as in Theorem 1.2,

F(g) { (21, h) [h R \ {0} }, g X g 0.

Remark 1.4. For the second bifurcating
branch, the conclusion in Corollary 1.3 is not
true (see [6]).

In the case q(x) ----0, we easily get u’(h, x)
w’(h, x) u"(h, x)w(h, x) -: 0, from which it
follows that the condition (iii) is satisfied for
q (x)----0. Furthermore, as is readily checked
(see [5,2]), other conditions (i) and (ii) are also
satisfied. Hence we have:

Corollary 1.5. Let q (x) :-- O. Then, for gi,

g. X,

F( g F( g g g..

In the next section we shall present an out-
line of the proof of Theorem 1.1. More detailed
proof will be published elsewhere. Our approach
consists in combining the idea of [4] with the
techniques developed in [7] to trace the proof of
the implicit function theorem (see e.g. [10,
2.7.2]).

2. Sketch of the proof. Let go X be a

function satisfying (1.4) and conditions (i)- (iii)
of Theorem 1.1. Moreover let g X be a func-
tion satisfying (1.4). We use the notation (h)
-g (h)- go (h) and put, for 0 --a <-- 1, ga(h)
-go (h)+ a (h). Our goal is to show that
(h) O.

Let y(h, x ) be the solution of

v" + [/ (h) q( X V h-1 go(hv)
v(O) 1, v’ (O) o.

In the case h 0 we define v(O, x; a) Vl(X),
where vl (x) is the first eigenfunction normalized
by v(O) 1. By means of the assumptions
sup h-ga (h) < c, sup [, (h) < oo, it fo1-
her her

lows that v(h, x; a) can be defined for any h
i, 0 <- x<_ 1, 0 g a<- 1. It is clear from the
assumption
F(go) F(g) (((h), h) [h /\(0}}

that
(2.1) v(h, 1;0) v(h, 1;1) 0.

The theory of dependence of solutions on pa-
rameters shows that v(h, x;a) is differentiable
in a and the derivative vq(h, x; a) satisfies the
following"

v"o + [ (h) q( x g’(hv(h, x a) vo
(2.2) h-i#(hv(h, x; a)),

v(0) v’(0) 0.

Let w(h, x a), w2(h, x; a) are solutions of the
equation

w" + [/(h) q(x) g’o(hv(h, x; a))]w 0
(j-l)

satisfying the conditions w
i, j 1, 2, and put
(2.3) G(h, x, t a) w(h, t; a)w(h, x a)

w (h, t a)w (h, x a).
Then (2.2) is solved as

%(h, x; a) h- G(h, x, t; a)(hv(h, t; a))dt.

This, together with (2.1), yields

(2.4) 0 vo(h, 1;)d
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fo foh-1 da G(h, 1, t; a)(hv(h, t; a))dt.

We define an operator T by
(2.5) Tg(h)"

h- G(h, 1, t;O)(hv(h, t;O))dt.

Moreover we set

(h)" h- d {G(h, 1, t; ))(hv(h, t; ))
(2.6) (h, 1, t; O)(h(h, t; 0))}dr.
Then (2.4)can be written as

(2.7) T .
We now introduce two function spaces as

follows
X(. [g(h) C[ H, g(0) g’(0) 0,

g IIx,,, sup
Ig’(k) g’(h)[ <

h,k-H,, [k hi
Y(’ (h) s C[- H, lh’(h) e C[- H, , (0) 0,

1,.,’ sup
IIl’() Ihl’(h)l

,,t-n,n,,, [k- h[+v
<

where H > 0. Moreover we use the notation

lal.’- sup Ig’(h) i.
h [-H,H]

Concerning the function (h)defied in
(2.6), we have the following estimate’

Lamina 2.1. LatH1> O. If v’(h,x; a) 0
for ]hi H1, 0 < x 1, 0 a 1 then, for
each H H, (h) belongs to the space Y(H) and
the norm is estimated as

where M is independent of H.
To show that if H is suitably small then the

operator T defined in (2.5) is an isomorphism of
X(H) onto Y(H), we approximate T by an oper-
ator L defined by

L(h) h- G(O, 1, t ;O)g(hv(t))dt

By denoting the residual T- L by N we obtain
the decomposition

T=L+R.
It follows from (2.) that (0,1, t;0

v; (1)-v (t), which yields

Lg(h) v(1) v(t)(hv(t))dt.

This operator was studied in [4, 4]. The follow-
ing is a direct consequence of [4, Theorem 4.71.
(Here we have used the assumptions (A1)--(A).)

Lepta .. For any H > O, the operator L is

an isomorphism from X (H) onto Y(H). Moreover
the operator norm L-111H is uniformly bounded, that
is, L-111H M with some constant M independent

of H.
Furthermore a tedious estimation to

Rg(h) h-1 {G(h, 1, t O)(hv(h, t 0))
(0, 1, t;O)g(hvl(t))}dt

yields the following"
Lemma 2.3. For sufficiently small H > O,

the operator R is a bounded operator from X(H) to
Y(H). The operator norm R II converges to 0 as H-- O, that is, lim R IIH 0,

H--,0

By Lemmas 2.2 and 2.3 we have IIL-XRIIH
1<- - for sufficiently small H > 0. In this case the

equation (2.7) can be solved as (1+ L-1

R)-XL-I by the Neumann series, where I de-
notes the identity operator. This, together with
Lemma 2.1, leads to

for small H > 0, where M’ is independent of H.
But, in view of ’(0) 0, if H > 0 is sufficiently
small then M’I #In < 1. This shows that

0. Thus we have proved the following:
Lemma 2.4. There exists H > 0 such that

(h) O forany h H, H].
We now define a number H* by

(2.8) n*: sup {HI #(h) 0 for any h H, HI}.

By Lemma 2.4 we have H* > 0. Assume that
H* < c. Then, by the conditions (i), (ii) and
continuity of v(h, x; a) it follows that there ex-
ists H > H* such that

v’(h, x a) =/= O for lhl <_ Hl, 0 < x <_ l, O <_ a <_ l.

Let v-1 (h, y )denote the inverse function of
v (h,x;0). Then, by the definition (2.8), the
equation (2.7) can be rewritten in the form

W(h, s)
-s)i/2s(s)ds= h2(h), H* <- ---h _< H1,

H
$

(h

for +/- h > 0, respectively. Here we set

G(h, 1, v-(h, s/h) O) (h- s)
W(h, s):

v’(h, v- (h, sh) O) s

An elementary calculation shows that
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G(h, 1, 0;0)
W(h, h)

(-v"(h, 0; 0)) 1/’

where v" (h, 0; 0) > 0 by the condition (if).
From (2.3) and the condition (iii) we have

G(h, 1, 0; 0) w.(h, 1; 0) w(h, 1) :/: 0.

Therefore, by a standard method (see [1I, {}41])
of reduction to Volterra integral equations of the
second kind, we can prove the following:

Lemma 2.5. For each H H*, H],

# <- ell . I1..
where C is a constant independent of H.
Combining Lemmas 2.1 and 2.5 we obtain

o IIx<.. -< CUll o IIx<..I o I1/.
from which it follows that there exists H_ > H*
such that (h) 0 for any h [-H+, H+].
This contradicts the fact H* was the largest of
such numbers. Therefore we conclude that H*
oo, which implies (h) 0 for any h R.
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