A construction of normal bases over the Hilbert p-class field of imaginary quadratic fields

By Tsuyoshi ITOH
Department of Mathematics, School of Science and Technology, Waseda University (Communicated by Shokichi Iyanaga, M. J. A., Jan. 12, 1998)

§1. Introduction. Let p be an odd prime and K a \boldsymbol{Z}_{p}-extension field over an algebraic number field k. Then there exists a tower of extensions of k,

$$
k=k_{0} \subset k_{1} \subset \cdots \subset k_{n} \subset \cdots \subset K=\bigcup_{n=0}^{\infty} k_{n}
$$

such that k_{n} is a cyclic extension of degree p^{n} over k. We say that K has a normal basis over k if the p-integer ring $O_{k_{n}}\left[\frac{1}{p}\right]$ has a normal basis over $O_{k}\left[\frac{1}{p}\right]$ for each n (see [5]). In the case where k is the ray class field modulo p of an imaginary quadratic field, K. Komatsu obtained the following result in [6]:

Theorem A. Let p be an odd prime, F an im. aginary quadratic field, K a \boldsymbol{Z}_{p}-extension of F and k the ray class field of F modulo p. Then the \boldsymbol{Z}_{p}-extension $k K / k$ has a normal basis.

In the present paper, we will show the following theorem:

Theorem 1. Let p, F, K be as in Theorem A and H_{p} the Hilbert p-class field of F. Then the \boldsymbol{Z}_{p}-extension $K H_{p} / H_{p}$ has a normal basis except when the following condition (C) holds:
(C) $p=3$ and $F=\boldsymbol{Q}(\sqrt{-3 d})$ with a square-free integer d satisfies $d>1$ and $d \equiv 1$ $(\bmod 3)$.
§2. Key lemma. The following lemma is essential to prove Theorem 1.

Lemma 1. Let L be an abelian extension field of an algebraic number field k and K a cyclic extension of degree p^{n} over k which is unramified outside p. Suppose that $L \cap K=k$ and that p does not divide $[L: k]$. If $O_{K L}\left[\frac{1}{p}\right] / O_{L}\left[\frac{1}{p}\right]$ has a normal basis, then $O_{K}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ also has a normal basis.

Proof. We put $G=\mathrm{Gal}(K L / L), \Gamma=\mathrm{Gal}$ $(K L / K)$ and $d=[L: k]$. It is well known that α $\in O_{K}\left[\frac{1}{p}\right]$ generates a normal basis of $O_{K}\left[\frac{1}{p}\right] / O_{k}$
[$\frac{1}{p}$] if and only if $\sum_{\sigma \in G} \alpha^{\sigma} \sigma$ is an invertible element of the group ring $O_{K}\left[\frac{1}{p}\right][G]$ (see [4], Lemma 1.4). Let α be a generator of a normal basis of $O_{K L}\left[\frac{1}{p}\right] / O_{L}\left[\frac{1}{p}\right]$. By the assumption of our lemma we can find integers Δ, t such that $\Delta d=t p^{n}+$ 1. We set

$$
X=\sum_{\sigma \in G} B_{\sigma} \sigma:=\left(\prod_{\tau \in \Gamma}\left(\sum_{\sigma \in G} \alpha^{\sigma \tau} \sigma\right)\right)^{\Delta}
$$

Then it is easy to see that X is an invertible element of the group ring $O_{K}\left[\frac{1}{p}\right][G]$. For any element ρ in G, we have

$$
\begin{aligned}
\rho X= & \rho^{\left.\frac{\left(t^{n}+1\right.}{d}\right) d} X \\
& =\left(\prod_{\tau \in \Gamma}\left(\sum_{\sigma \in G} \alpha^{\sigma \tau}(\rho \sigma)\right)\right)^{\boldsymbol{\Delta}}=\sum_{\sigma \in G}\left(B_{\sigma}\right)^{\rho^{-1}} \sigma .
\end{aligned}
$$

On the other hand, we see that

$$
\rho X=\sum_{\sigma \in G} B_{\sigma}(\sigma \rho)=\sum_{\sigma \in G} B_{\sigma \rho^{-1}} \sigma .
$$

Hence we have $B_{\sigma \rho^{-1}}=\left(B_{\sigma}\right)^{\rho^{-1}}$ for any σ, ρ in G. If we put $B:=B_{e}$, where e denotes the identity element of G, then B generates a normal basis of $O_{K}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ because $X=\sum_{\sigma \in G} B^{\sigma} \sigma$.

In the case where p is unramified in F, Theorem 1 follows from Theorem A and Lemma 1 since the degree of the ray class field modulo p of F over the Hilbert p-class filed of F is prime to p.

Let L / k be a Galois extension and K^{\prime} a Galois extension of k contained in L. It is well known that if $O_{L}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis, then $O_{K^{\prime}}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ also has a normal basis. By virtue of this fact and Lemma 1 , in order to prove Theorem 1, it is sufficient to show the following Teorem 2, because any \boldsymbol{Z}_{p}-extension is unramified outside p.

Theorem 2. Let F be an imaginary quadratic field whose discriminant is less than $-4, p$ an odd prime which ramifies in F and \mathfrak{p} the prime of F lying above p. Let k be the ray class field modulo \mathfrak{p} of F and let L be the ray class field modulo p^{n} of F for a positive integer n. Suppose that \mathfrak{p} and F do not satisfy condition (C) of Theorem 1. Then $O_{L}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis.

Remark 1. Even if F and p satisfy condition (C) of Theorem 1, the above assertion holds for n $=1$. (see [1], [8], and [10]. These papers give stronger results.)
§3. Proof of Theorem 2. Let F be an imaginary quadratic field. We put $\zeta_{m}=e^{\frac{2 \pi i}{m}}$ for any positive integer m. We fix a positive integer n and an odd prime p which ramifies in F. Denote by \mathfrak{p} the unique prime of F lying over p. Let L^{\prime}, L and k be the ray class fields of F modulo $p^{2 n}, p^{n}$ and \mathfrak{p}, respectively, and let $k_{n}=k\left(\zeta_{p^{n}}\right)$.

Lemma 2. With the above notation, we have
$\operatorname{Gal}\left(L^{\prime} / k\right) \cong\left\{\begin{array}{l}\boldsymbol{Z} / p \boldsymbol{Z} \oplus \boldsymbol{Z} / p^{2 n-1} \boldsymbol{Z} \oplus \boldsymbol{Z} / p^{2 n-1} \boldsymbol{Z} \\ \text { if } p \text { and } F \text { satisfy condition }(C) \\ \boldsymbol{Z} / p^{2 n-1} \boldsymbol{Z} \oplus \boldsymbol{Z} / p^{2 n} \boldsymbol{Z} \text { otherwise. }\end{array}\right.$
Furthermore, in the latter case, we have Gal $\left(L^{\prime} / k\right)=\left\langle\left(\frac{L^{\prime} / F}{\left(\alpha_{1}\right)}\right),\left(\frac{L^{\prime} / F}{\left(\alpha_{2}\right)}\right)\right\rangle$ where $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$ are primes of F satisfying $\alpha_{1} \bar{\alpha}_{1} \equiv 1\left(\bmod p^{2 n}\right)$ and $\alpha_{2} \equiv 1+p\left(\bmod p^{2 n}\right)$.

Proof. By class field theory, we have Gal $\left(L^{\prime} / k\right) \cong(1+\mathfrak{p}) /\left(1+\mathfrak{p}^{4 n}\right)$. We note that the subgroup $\operatorname{Gal}\left(L^{\prime} / F(p)\right)$ is isomorphic to $\boldsymbol{Z} / p^{2 n-1}$ $\boldsymbol{Z} \oplus \boldsymbol{Z} / p^{2 n-1}$ where $F(p)$ is the ray class field of F modulo (p) (cf. [6], p. 159). Therefore the group $\mathrm{Gal}\left(L^{\prime} / k\right)$ is isomorphic to $\boldsymbol{Z} / p \boldsymbol{Z} \oplus$ $\boldsymbol{Z} / p^{2 n-1} \boldsymbol{Z} \oplus \boldsymbol{Z} / p^{2 n-1} \boldsymbol{Z}$ or $\boldsymbol{Z} / p^{2 n-1} \boldsymbol{Z} \oplus \boldsymbol{Z} / p^{2 n} \boldsymbol{Z}$. For a positive integer i, we let $U_{\mathfrak{p}}^{(i)}$ denote the completion of $1+\mathfrak{p}^{i}$ in the local unit group of $F_{\mathfrak{p}}$, the completion of F at \mathfrak{p}. Then we have $(1+\mathfrak{p})$ / $\left(1+p^{4 n}\right) \cong U_{\mathfrak{p}}^{(1)} / U_{\mathfrak{p}}^{(4 n)}$. Thus it is sufficient to show that $F_{\mathfrak{p}}$ contains ζ_{p} if and only if all elements of $U_{\mathfrak{p}}^{(1)} / U_{\mathfrak{p}}^{(4 n)}$ have order less than $p^{2 n-1}$. (Note that the condition that $F_{\mathfrak{p}}$ contains ζ_{p} is equivalent to condition (C) because F is an imaginary quadratic field and p is an odd prime.)

Suppose that $F_{\mathfrak{p}}$ contains ζ_{p}. We may assume that $p=3$. Let $\pi \in F_{\mathfrak{p}}$ be any prime element. Then there exists an element $1+\alpha \in U_{\mathfrak{p}}^{(1)}$ such that $\pi= \pm(1+\alpha)\left(\zeta_{p}-1\right)$. We assume that π
$=(1+\alpha)\left(\zeta_{p}-1\right)$. Then we have

$$
1+\pi=\zeta_{p}\left(1+\zeta_{p}^{-1} \cdot \alpha \cdot\left(\zeta_{p}-1\right)\right)
$$

Now $(1+\pi) U_{\mathfrak{p}}^{(4 n)} \in U_{\mathfrak{p}}^{(1)} / U_{\mathfrak{p}}^{(4 n)}$ has order less than $p^{2 n-1}$ because $1+\zeta_{p}^{-1} \cdot \alpha \cdot\left(\zeta_{p}-1\right)$ is in $U_{p}^{(2)}$. The case where $\pi=-(1+\alpha)\left(\zeta_{p}-1\right)$ can be treated in a similar way.

Conversely, suppose that there exists a prime element π of \mathfrak{p} such that $(1+\pi)^{p^{2 n-1}} \in$ $U_{\mathfrak{p}}^{(4 n)}$. Then there exists a \mathfrak{p}-integral element β such that $(1+\beta p)^{p^{2 n-1}}=(1+\pi)^{p^{2 n-1}}$ because $U_{\mathfrak{p}}^{(4 n)}=\left(U_{\mathfrak{p}}^{(2)}\right)^{p^{2 n-1}}$. Hence $F_{\mathfrak{p}}$ contains a p-th root of unity because $1+\pi \neq 1+\beta p$. Then the first assertion follows.

In the latter case, we have $\operatorname{Gal}\left(k_{2 n} / k\right) \cong$ $\boldsymbol{Z} / p^{2 n-1} \boldsymbol{Z}$ because k contains ζ_{p}. Then by the Chebotarev density theorem, there exists a prime (α_{1}) of F such that $\alpha_{1} \in 1+\dot{p}, \operatorname{Gal}\left(L^{\prime} / k_{2 n}\right)=$ $\left\langle\left(\frac{L^{\prime} / F}{\left(\alpha_{1}\right)}\right)\right\rangle$ and $\alpha_{1} \bar{\alpha}_{1} \equiv 1\left(\bmod p^{2 n}\right)$. Let $\left(\alpha_{2}\right)$ be a prime of F satisfying $\alpha_{2} \equiv 1+p\left(\bmod p^{2 n}\right)$. Then it is sufficient to show that $(1+\mathfrak{p}) /(1+$ $\mathfrak{p}^{4 n}$) is generated by α_{1} and α_{2}. If there exist integers a, b satisfying $\alpha_{1}^{a} \equiv \alpha_{2}^{b}\left(\bmod p^{2 n}\right)$, we have $\left(\alpha_{1} \bar{\alpha}_{1}\right)^{a} \equiv\left(\alpha_{2} \bar{\alpha}_{2}\right)^{b}\left(\bmod p^{2 n}\right)$. Then $\left(\alpha_{2} \overline{\bar{\alpha}}_{2}\right)^{b} \equiv(1$ $\left.+2 p+p^{2}\right)^{b} \equiv 1\left(\bmod p^{2 n}\right)$. Hence $p^{2 n-1}$ divides b, and therefore $\alpha_{1}^{a} \equiv \alpha_{2}^{b} \equiv 1\left(\bmod p^{2 n}\right)$. Therefore $(1+\mathfrak{p}) /\left(1+\mathfrak{p}^{4 n}\right)$ is generated by α_{1} and α_{2}.

In the rest of this paper, we assume that F
and p do not satisfy condition (C).
By Lemma 2, we have $\operatorname{Gal}\left(L^{\prime} / k_{n}\right) \cong\left\langle\left(\frac{L^{\prime} / F}{\left(\alpha_{1}\right)}\right)\right.$, $\left.\left(\frac{L^{\prime} / F}{\left(\alpha_{2}\right)}\right)^{)^{n-1}}\right\rangle$. Let K be the intermediate field of L / k corresponding to $\left\langle\left(\frac{L^{\prime} / F}{\left(\alpha_{1}\right)}\right)^{p^{n}},\left(\frac{L^{\prime} / F}{\left(\alpha_{2}\right)}\right)\right\rangle$. Then we have $L=k_{n} K$.

We will recall two lemmas which play a crucial role in the proof of Theorem 2.

Lemma 3 (see [2], p. 227). Let k be an algebraic number field, K_{i} a cyclic extension over k which is unramified outside p for $i=1$ and 2 . If $O_{K_{i}}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis for $i=1$ and 2 , then $O_{K_{1} K_{2}}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis.

Lemma 4 (see [3], Theorem 3.3). Let k be an algebraic number field, K a cyclic extension of degree p^{n} over k which is unramified outside p. We put $k_{n}=k\left(\zeta_{p^{n}}\right)$ and assume $K \cap k_{n}=k$. If there exists a p-unit $u \in O_{k_{n}}\left[\frac{1}{p}\right]$ such that $K k_{n}=$
$k_{n}\left({\sqrt{p^{n}}}_{u}^{u}\right)$, then $O_{K}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis.

It is well known that $O_{k_{n}}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis (cf. [4], Theorem 2.1). Hence we will show that $O_{K}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis. The course of the proof is similar to [6].

We put $F=\boldsymbol{Q}(\sqrt{-d})$ with a positive square-free integer d and $O_{F}=\boldsymbol{Z} \omega_{1}+\boldsymbol{Z} \omega_{2}$ with $\omega_{1}=1$ and

$$
\omega_{2}=\left\{\begin{array}{l}
-\sqrt{-d} \quad \text { if } d \equiv 1,2(\bmod 4) \\
\frac{1-\sqrt{-d}}{2} \text { if } d \equiv 3(\bmod 4)
\end{array}\right.
$$

Lemma 5. Let F, p and \mathfrak{p} be as above and let α_{1} be as in Lemma 2. We write $\alpha_{1}^{p^{n}}=1+p^{n}\left(x_{n} \omega_{1}\right.$ $+y_{n} \omega_{2}$) with $x_{n}, y_{n} \in \boldsymbol{Z}$ for any non-negative integer n. Then p does not divide y_{n}.

Proof. By definition, $\alpha_{1} \equiv 1(\bmod \mathfrak{p}), \alpha_{1}$ is not congruent to 1 modulo $(p)=\mathfrak{p}^{2}$ and $\alpha_{1} \bar{\alpha}_{1} \equiv$ $1\left(\bmod \mathfrak{p}^{2}\right)$.

We will prove in the cases where $d \equiv 1,2$ $(\bmod 4)$ because the case where $d \equiv 3(\bmod 4)$ can be treated in a similar way. First, we have

$$
\alpha_{1} \overline{\bar{\alpha}}_{1} \equiv 1+2 x_{0}+x_{0}^{2}+y_{0}^{2} d \equiv 1(\bmod p)
$$

Since $p \mid d, p$ divides x_{0} or $x_{0}+2$. If $p \mid x_{0}$, then it is clear that p does not divide y_{0}. On the other hand, if p divides $x_{0}+2$, we have $\alpha_{1} \equiv-1+$ $y_{0} \omega_{2}(\bmod p)$. Then if $p \mid y_{0}$, we have $\alpha_{1} \equiv-1$ $(\bmod p)$, which contradicts the assumption. This shows the case $n=0$.

We can prove the lemma inductively for $n \geq$ 1 using the fact that $\left(x_{n} \omega_{1}+y_{n} \omega_{2}\right)^{a} \in(p)=\mathfrak{p}^{2}$ for $a>1$.

Now, we recall some facts from the theory of modular functions. For any positive integer N, we denote by $\Gamma(N) \subseteq S L_{2}(\boldsymbol{Z})$ the principal congruence subgroup of level N. Let $\mathfrak{F}(N)$ be the field of all modular functions of $\Gamma(N)$ whose q-expansion at every cusp has coefficients in \boldsymbol{Q} $\left(\zeta_{N}\right)$. For any integer r which is prime to N, we define $\sigma_{r} \in \operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{N}\right) / \boldsymbol{Q}\right)$ as the automorphism with $\zeta_{N}^{\sigma_{r}}=\zeta_{N}^{r}$. For $f=\sum_{n=n_{0}}^{\infty} a_{n} q^{n} \in \mathfrak{F}(N)$, we put $f^{\sigma_{r}}=\sum_{n=n_{0}}^{\infty} a_{n}^{\sigma_{r}} q^{n}$, and then $f^{\sigma_{r}}$ is in $\mathfrak{F}(N)$ (cf. [9], p. 210). Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\boldsymbol{Z})$ be a matrix whose determinant δ is prime to N. Then there exists $A^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in S L_{2}(\boldsymbol{Z})$ such that

$$
A \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right) A^{\prime}(\bmod N)
$$

Then we define

$$
f^{A}(z)=f^{\sigma_{d}}\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)
$$

for $f \in \mathfrak{F}(N)$. Let β be an element of O_{F} and let $R(\beta)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be the regular representation of β with respect to ω_{1}, ω_{2}, that is $\beta \omega_{1}=a \omega_{1}+$ $b \omega_{2}, \beta \omega_{2}=c \omega_{1}+d \omega_{2} \quad$ with $\quad a, b, c, d \in \boldsymbol{Z}$. Then there exists $A(\beta) \in S L_{2}(\boldsymbol{Z})$ such that.

$$
R(\beta) \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & \beta \bar{\beta}
\end{array}\right) A(\beta) \quad(\bmod N)
$$

Theorem 3. (Shimura's reciprocity law [9], p. 213). Let $f(z)$ be an element of $\mathfrak{F}(N)$ and (β) an ideal of F generated by a prime element β of O_{F}. We assume that $(\beta) \neq(\bar{\beta})$ and $\beta \bar{\beta}$ is prime to $2 d N$. Then $f\left(\omega_{1} / \omega_{2}\right)$ is in $F(N)$, the ray class field of F modulo N, and

$$
f\left(\frac{\omega_{1}}{\omega_{2}}\right)^{\left(\frac{F(N) / F}{(\beta)}\right.}=f^{R(\beta)}\left(\frac{\omega_{1}}{\omega_{2}}\right)
$$

Let $\Omega=\boldsymbol{Z} \tau_{1}+\boldsymbol{Z} \tau_{2}$ be a lattice in \boldsymbol{C} with $\operatorname{Im}\left(\tau_{1} / \tau_{2}\right)>0$. We denote by

$$
\sigma_{\Omega}(z)=z \prod_{\omega \in \Omega-\{0\}}\left(1-\frac{z}{\omega}\right) e^{\frac{z}{\omega}+\frac{z^{2}}{2 \omega^{2}}}
$$

the Weierstrass $\quad \sigma$-function and $\eta_{i}=2 \sigma_{\Omega}^{\prime}\left(\frac{\tau_{i}}{2}\right)$ $/ \sigma_{\Omega}\left(\frac{\tau_{i}}{2}\right)$ for $i=1,2$. We define the Klein form

$$
\begin{aligned}
& f\left(a_{1}, a_{2} ; \tau_{1}, \tau_{2}\right) \\
& \quad=e^{-\frac{\left(a_{1} \eta_{1}+a_{2} \eta_{2}\right)\left(a_{1} \tau_{1}+a_{2} \tau_{2}\right)}{2}} \sigma_{\Omega}\left(a_{1} \tau_{1}+a_{2} \tau_{2}\right)
\end{aligned}
$$

for $a_{1}, a_{2} \in \boldsymbol{R}$. Let

$$
\eta(z)=e^{\frac{\pi i z}{12}} \prod_{\nu=1}^{\infty}\left(1-e^{2 \pi i \nu z}\right)
$$

be the Dedekind η-function, and define the Siegel function

$$
\begin{aligned}
g\left(\frac{r}{N}, \frac{s}{N}\right)=g & \left(\frac{r}{N}, \frac{s}{N}\right)(z) \\
& =2 \pi i \eta(z)^{2} f\left(\frac{r}{N}, \frac{s}{N} ; z, 1\right)
\end{aligned}
$$

We put

$$
\delta_{p}=\left\{\begin{array}{l}
12 \text { if } p \neq 3 \\
4 \text { if } p=3
\end{array}\right.
$$

and

$$
\tilde{g}\left(\frac{r}{p^{n}}, \frac{s}{p^{n}}\right)=g\left(\frac{r}{p^{n}}, \frac{s}{p^{n}}\right)^{\delta_{p}}
$$

Then $\tilde{g}\left(\frac{r}{p^{n}}, \frac{s}{p^{n}}\right)$ is an element of $\mathfrak{F}\left(p^{2 n}\right)$ and we

$$
\tilde{g}^{A}\left(\frac{r}{p^{n}}, \frac{s}{p^{n}}\right)=e^{\frac{\delta p \pi i}{p^{2 n}\left(b r^{2}+(d-a) r s-c s^{2}\right)}} \tilde{g}\left(\frac{r}{p^{n}}, \frac{s}{p^{n}}\right)
$$

for every $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma\left(p^{n}\right)$ (see [7], p. 28).

We assume $d \equiv 1,2(\bmod 4)$ since the case where $d \equiv 3(\bmod 4)$ can be treated in a similar way.

Let α_{1} and α_{2} be as in Lemma 2. Then we have

$$
A\left(\alpha_{1}\right)^{p^{n}} \equiv\left(\begin{array}{cc}
1+p^{n} x_{n} & p^{n} y_{n} \\
-p^{n} y_{n} d & 1+p^{n} x_{n}
\end{array}\right)\left(\bmod p^{2 n}\right)
$$

by Lemma 5 and there exist integers $x^{\prime}{ }_{n}, y^{\prime}{ }_{n}$ such that

$$
A\left(\alpha_{2}\right)^{p^{n-1}} \equiv\left(\begin{array}{cc}
1+p^{n} x_{n}^{\prime} & 0 \\
0 & 1+p^{n} y_{n}^{\prime}
\end{array}\right)\left(\bmod p^{2 n}\right)
$$

We put

$$
f_{n}=\prod_{j=0}^{p^{n}-1} \tilde{g}^{R\left(\alpha_{1}\right)^{j}}\left(\frac{1}{p^{n}}, 0\right)
$$

Then f_{n} has the following properties (see [7], p. 29, p. 31).
(i) f_{n} has no poles or zeros in the upper half plane.
(ii) The q-expansion of f_{n} at ∞ has coefficients in $\boldsymbol{Z}\left[\zeta_{p^{2 n}}\right]$ and the leading coefficient of the q-expansion of f_{n} at each cusp is a p-unit.

Hence, by [7, p. 37], $f_{n}\left(\omega_{1} / \omega_{2}\right)$ is a p-unit.
Furthermore we have $f_{n}^{R\left(\alpha_{1}\right)} / f_{n}$ is a primitive p^{n}-th root of unity by Lemma 5 and $f_{n}^{R\left(\alpha_{2}\right)^{p-1}}=f_{n}$ because the q-expansion of $\tilde{g}\left(1 / p^{n}, 0\right)$ at ∞ has coefficients in \boldsymbol{Z}.

Then by Theorem 3 , we have $f_{n}\left(\omega_{1} / \omega_{2}\right)^{p^{n}} \in$ k_{n} and $K k_{n}=k_{n}\left(f_{n}\left(\omega_{1} / \omega_{2}\right)\right)$ (for detail, see [6]). Hence $O_{K}\left[\frac{1}{p}\right] / O_{k}\left[\frac{1}{p}\right]$ has a normal basis by Lem-
ma 4. This concludes the proof of Teorem 2.
Acknowledgments. The author would like to express thanks to Prof. K. Komatsu for his advice and encouragement. The author also would like to express thanks to Dr. M. Ozaki for his advice and interest in these results.

References

[1] W. Bley: Galois module structure and elliptic functions. J. Number Theory, 52, 216-242 (1995).
[2] F. Kawamoto: On normal integral bases. Tokyo J. Math., 7, 221-231 (1984).
[3] F. Kawamoto and K. Komatsu: Normal bases and $\boldsymbol{Z}_{\boldsymbol{p}}$-extensions. J. Algebra, 163, 335-347 (1994).
[4] I. Kersten and J. Michaličtk: \boldsymbol{Z}_{p}-extensions of complex multiplication fields. J. Number Theory, 32, 131-150 (1989).
[5] I. Kersten and J. Michalictk: On Vandiver's conjecture and $\boldsymbol{Z}_{p^{-}}$-extensions of $\boldsymbol{Q}\left(\zeta_{p^{n}}\right)$. J. Number Theory, 32, 371-386 (1989).
[6] K. Komatsu: Normal basis and Greenberg's conjecture. Math. Ann., 300, 157-163 (1994).
[7] D. Kubert and S. Lang: Modular units. Grundlehren Math. Wiss., vol. 244, Springer, Berlin, Heidelberg, New York (1981).
[8] R. Schertz: Galoismodulstruktur und Elliptische Funktionen. J. Number Theory, 39, 285-326 (1991).
[9] H. M. Stark: L-functions at $s=1$. Adv. Math., 35, 197-235 (1980).
[10] M. J. Taylor: Relative Galois module structure of rings of integers and elliptic functions II. Ann. Math., 121, 519-535 (1985).

