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1. Introduction. Let p be an odd prime
and K a Zp-extension field over an algebraic
number field k. Then there exists a tower of ex-
tensions of k,

k- ko c k c kn c K U kn,
t----0

such that k. is a cyclic extension of degree p"
over k. We say that K has a normal basis over k

1
if the p-integer ring Ok,[--] has a normal basis

over Ok[-] for each n (see [5]). In the case where

k is the ray class field modulo p of an imaginary
quadratic field, K. Komatsu obtained the follow-
ing result in [6]:

Theorem A. Let p be an odd prime, F an im-

aginary quadratic field, K a Zp-extension of F and
k the ray class field of F modulo p. Then the

Z-extension kK/k has a normal basis.

In the present paper, we will show the fol-
lowing theorem:

Theorem 1. Let p, F, K be as in Theorem A
and H the Hilbert D-class field of F. Then the

Z-extension K H/Hp has a normal basis except
when the following condition (C) holds

(C) p 3 and F Q (v/- 3d with a

square-free integer d satisfies d > 1 and d =- 1
(mod 3).

2. Key lemma. The following lemma is

essential to prove Theorem 1.
Lemma 1. Let L be an abelian extension field

of an algebraic number field k and K a cyclic exten-
sion of degree pn over k which is unramified outside
p. Suppose that L f? K k and that p does not di-

1 1
vide [L: k]. If OKL[--g]/OL[] has a normal basis,

then OK[-]/O[] also has anormal basis.

Proof We put G= Gal (KL/L),F= Gal
(KL/K) and d [L: k]. It is well known that c

OK[-] generates a,normal basis of OK[-]/O

1
[-L-] if and only if cr is an invertible ele-

aG

ment of the group ring OK[ [G] (see [4], Lemma

1.4). Let a be a generator of a normal basis of

} 1
OKL[ ]/OL[-]. By the assumption of our lemma

we can find integers A, t such that Ad tp+
1. We set

X- Ba ( H ( ))A
G vF

Then it is easy to see that X is an invertible

element of the group ring 0[] [G]. For any ele-

ment p in G, we have

II (E a(pa))) a E (Bo) -1
-F ffG rG

On the other hand, we see that

pX E Bo(ap) E Boo-a.
G

Hence we have Bgo-1 (Ba) -1 for any r, p
in G. If we put B: B where e denotes the
identity element of G, then B generates a normal

basis of OK[-]/O[;-] because X- Ba.I
In the case where p is unramified in F,

Theorem 1 follows from Theorem A and Lemma
1 since the degree of the ray class field modulo p
of F over the Hilbert p-class filed of F is prime
to p.

Let L/k be a Galois extension and K’ a

Galois extension of k contained in L. It is well

known nor . 

then 0,[]/O[%] also has a normal basis. By

virtue of this fact and Lemma 1, in order to

prove Theorem 1, it is sufficient to show the fol-
lowing Teorem 2, because any Z-extension is

unramified outside p.
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Theorem 2. Let F be an imaginary quadratic

field whose discriminant is less than --4, p an odd
prime which ramifies in F and p the prime of F
lying above p. Let k be the ray class field modulo p
of F and let L be the ray class field modulo
pn of F for a positive integer n. Suppose that p and
F do not satisfy condition (C) of Theorem 1. Then

Remark 1. Even if F and p satisfy condition
(C) of Theorem 1, the above assertion holds for n

1. (see [11, [81, and [101. These papers give stron-
ger results.)

3. Proof of Theorem 2. Let F be an im-

aginary quadratic field. We put m--e m for
any positive integer m. We fix a positive integer
n and an odd prime p which ramifies in F. De-
note by p the unique prime of F lying over p. Let
L’, L and k be the ray class fields of F modulo
p,, pn and p, respectively, and let kn k(p,).

Lemma 2. With the above notation, we have

Z/pZ Z/p2n-lZ ( Z/p2n-lZ
Gal(U/k) - ifp and F satisfy condition (C)

Z/pen-lz Z/penZ otherwise.
Furthermore, in the latter case, we have Gal

L’/F L’/F
(L’/k (((cl) ), ((cO) ) where (al) and (0e)

are primes of F satisfying cqcT1 1 (mod p*) and

c2 -= 1 +p (mod
Proof By class field theory, we have Gal

(L’/k) -(1 + p)/(1 + p4n). We note that the
subgroup Gal (L’/F(p)) is isomorphic to
Z( /pen-1 where F(p) is the ray class field of
F modulo (p)(el. [6], p. 159). Therefore the
group Gal (L’/k) is isomorphic to /p
Z/p2n- Z ( Z/pen- z Zor Z/p2n- ( Z/p2nz. For

1.T()a positive integer , we let denote the com-
pletion of 1 + pi in the local unit group of
the completion of F at p. Then we have (1 + p)/

1) (4n)(1 4- p4n)
__
U Thus it is sufficient to

show that Fp contains Cp if and only if all ele-
TT (1)/It (4n) 2n-1

ments of up ,up have order less than p
(Note that the condition that Fp contains is
equivalent to condition (C) because F is an im-
aginary quadratic field and p is an odd prime.)

Suppose that Fp contains . We may assume
that p- 3. Let 7r F be any prime element.

TT (1)
Then there exists an element 1 4- c up such
that 7r-- 4- (1 4- o)(- 1). We assume that

(1 4- a)( 1). Then we have
1 + rr (1 + ;’c" (- 1)).

]r (4n) (1)Now (1 + 7r)p Up /p has order less
than because 1 + 1 a" (p 1) is in

The case where 7r----(1 4-c)(--1)
can be treated in a similar way.

Conversely, suppose that there exists a

prime element rr of p such that (1
Then there exists a p-integral element

such that (1 4- p )-1 (1 4- rr )*- because

Up(4n) rr(2))p."-(up Hence Fp contains a p-th root
of unity because 1 4- 7r :/: i 4- tip. Then the first

assertion follows
In the latter case, we have Gal (k.n/k)

Z/pn-lZ because k contains p. Then by the Che-
botarev density theorem, there exists a prime (1)
of F such that o 1 4- ) Gal (L’/k.n)

L’/F
)(((cq)) and alCl 1 (mod pen) Let (ce) betaprime of F satisfying c ---1 4-’p (mod pen .

Then it is sufficient to show that (1
p4n) is generated by Cl and ce. If there exist inte-

a p2ngers a, b satisfying cq c (rood ), we have

(alCl) --: (CeCe) (rood pen). Then (aece) (1
+ 2p + p)o --= 1 (rood pen). Hence pen-1 divides

ab, and therefore cq ----c 1 (mod pen). There-
fore (1 4- p)/(1 4- p4n) is generated by c and

In the rest of this paper, we assume that F
and p do not satisfy condition (C).

U/F.
By Lemma 2, we have Gal(L’/kn)

L’/F ,-).((%)) Let K be the intermediate field of
.L’/F , L’/F

L/k corresponding to (((cq)) (ce) )" Then
we have L knK.

We will recall two lemmas which play a cru-
cial role in the proof of Theorem 2.

Lemma 3 (see [2], p. 227). Let k be an

algebraic number field, K a cyclic extension over k
which is unramified outside p for i- 1 and 2. If

OK,[]/Ok[] has anormal basis for i--land 2,

Lemma 4 (see [3], Theorem 3.3). Let k be an

algebraic number field, K a cyclic extension of de-
gree pn over k which is unramified outside p. We
put kn k(,) and assume K 0 kn k. If there

exists a p-unit u O,[] such that Kkn
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1 1
k, (Pnv ), then OK[ -] -] has a normal

basis. 1 1
It is well known that Okn[]/Ok[-] has a

normal basis (cf. [4], Theorem 2.1). Hence we will

_
1

show that OK[ ]/Ok[] has a normal basis. The

course of the proof is similar to [61.
We put F-- (v/- d )with a positive

square-free integer d and OF- 501 + 502 with

501- 1 and
v/- d if d 1, 2 (mod 4),

502-- 1-- /-- d
2 if d -= 3 (mod 4).

Lemma 5. Let F, p and p be as above and let
a be as in Lemma 2. We write o:1 1 + (X.Wl
+ ynWz) with xn, gin Z for any non-negative in-
teger n. Then p does not divide

Proof By definition, a ----1 (mod p), a is

not congruent to 1 modulo (p)
1 (mod p).

We will prove in the cases where d 1, 2
(mod 4) because the case where d--3 (mod 4)
can be treated in a similar way. First, we have

a’lO 1 + 2Xo + Xo + Yod ------ 1 (mod p).
Since P d, p divides Xo or Xo + 2. If P lxo, then
it is clear that p does not divide Yo. On the other
hand, if p divides xo + 2, we have

Yo50. (mod p). Then if P[Yo, we have o:1 -= 1
(mod p), which contradicts the assumption. This

shows the case n- 0.
We can prove the lemma inductively for n

1 using the fact that (XnO01 _3[_ ynW
fora> 1. /

Now, we recall some facts from the theory of
modular functions. For any positive integer N,
we denote by F(N)

_
SLz (Z) the principal con-

gruence subgroup of level N. Let (N)be the
field of all modular functions of F (N)whose
q-expansion at every cusp has coefficients in Q
(N). For any integer r which is prime to N, we
define o Gal (Q(N)/Q) as the automorphism
with -- . For f-- -=.o a.q" (N), we

put fr__ Eo__no a,, n,a. q and then far is in (N)

(cf. [9] p. 210). Let A -(a b)- M(Z)be a
c d

matrix whose determinant 6 is prime to N. Then

thereexistsA’ ( a" b’ ) SL (Z) h thatc’ d’
suc

1 0)AA (rood N)0 6
Then we define

fo( a’z+ b"
c’z+ d" )f" (z)

for f (N). Let fl be an element of OF and let

c d
be the regular representation of

with respect to c01, co, that is fl501- a501 +
b50, 50- c50 + d50 with a, b, c, d .
Then there exists A(fl) SL.() such that

R (fl) A (f) (mod N).o
Theorem 3. (Shimura’s reciprocity law [9], p.

213). Let f(z) be an element of (N) and () an

ideal of F generated by a prime element of 0F. We
assume that ():/: ()and is prime to
2dN. Then f(501/50.) is in F (N), the ray class

field of F modulo N, and

0) 0)

Let t0 Zv +Zv be a lattice in C with

Im(vi/v) O. We denote by

a(z) --z II 1----z e
o9-{0} 50

Ti
the Weierstrass a-function and r/i 2a’9 (-)
/ag(--) for i- 1, 2. We define the Klein form

f(a, a; 1, z)
(a11 +a)(a+a)

e a9 (a1271 -[- a%),
for al, a R. Let

7ciz

27i)z)(z) e l II (1-- e

be the Dedekind r/-function, and define the Siegel
function

g -g (z)

27ri(z)f( r s
N,N;Z, 1

We put
if p 3,

6= 4 ifp--3,
and

t7 p p g p p
s /Then _,, _, is an element of (p’) and we

have

g
e
,, P"

e

for every A _(a b) F(p’)(see [7] p. 28).
c d
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We assume d-= 1, 2 (mod 4) since the case

where d 3 (rood 4) can be treated in a similar
way.

Let c and o2 be as in Lemma 2. Then we
have

A(c) ’’ -= ( 1 +px pnyn) (rood p2n)
pnynd 1 + pnx

by Lemma 5 and there exist integers x n, Y n

such that

A(a2)- ( I + Pnx’n 0 ) (mod p2n).
0 1 + py’

We put

Then f has the following properties (see [7], p.
29, p. 31).
(i) fn has no poles or zeros in the upper half
plane.
(ii) The q-expansion of fn at has coefficients in

g[] and the leading coefficient of the
q-expansion of f, at each cusp is a p-unit.

Hence, by [7, p. 37], f (w/w) is a p-unit.

Furthermore we have f<)/fn is a primitive
pn-th root of unity by Lemma 5 and

fff>- because the q-expansion of g(1/pn, O)
at has coefficients in g.

Then by Theorem 3 we have fn(W/w)
n and Kn n n (W/Wz)) (for detail, see [6]).

 em-Hence

ma 4. This concludes the proof of Teorem 2.
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