On smooth projective threefolds with non-trivial surjective endomorphisms

By Eiichi SATO^{*)} and Yoshio FUJIMOTO^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., Dec. 14, 1998)

The main purpose of this paper is to announce the structure of non-singular projective threefold X with a surjective morphism $f: X \rightarrow X$ onto itself, which is not an isomorphism.

We call it a non-trivial surjective endomorphism of X.

The details will be published elsewhere.

Lemma 1. Let $f: X \rightarrow X$ be a surjective morphism from a non-singular projective variety X onto itself. Then

- (1) f is a finite morphism.
- (2) If $\kappa(X) \ge 0$, f is a finite étale morphism.
- (3) If f is a finite étale morphism, then $\chi(\mathcal{O}_X) = \deg(f) \cdot \chi(\mathcal{O}_X)$.

The structure of algebraic surfaces with a non-negative Kodaira dimension, which admit a non-trivial surjective endomorphism, are fairly simple. They are minimal and by taking s finite étale covering, isomorphic to an abelian surface or a direct product of an elliptic curve and a smooth curve of genus ≥ 2 . In this note, we are mainly concerned with the case where X is a smooth projective threefold with non-negative Kodaira dimension $\kappa(X)$. Contrary to the case of algebraic surfaces, they are not necessarily minimal, but similar results also hold in this case. We cannot drop the assumption that f: X $\rightarrow X$ is a morphism. There are infinitely many examples which admit a generically finite rational map $f: X \longrightarrow X$ of degree ≥ 2 , eg. a Kummer surface, or a relatively minimal elliptic surface with a global section.

Notations. In the present note, by a smooth projective *n*-fold X, we mean a non-singular projective manifold of dimension *n* defined over *C*. K_X : the canonical bundle of X $\kappa(X)$: the Kodaira dimension of X $\chi(\mathcal{O}_X)$: the Euler-Poincaré characteristic of the structure sheaf \mathcal{O}_X

- $N_1(X) := (\{1 \text{-cycles on } X\}) / = \bigotimes_Z R$, where \equiv means a numerical equivalence.
- NE(X): = the smallest convex cone in $N_1(X)$ containing all effective 1 - cycles.
- NE(X): = Kleiman-Mori cone of X, ie. the closure of NE(X) in $N_1(X)$ for the metric topology.

 $\rho(X) := \dim_{\mathbb{R}} N_1(X)$, the Picard number of X.

The next propositions, which are direct consequences of Mori theory [1], play a key role in this paper.

Proposition 2. Let $f: Y \to X$ be a finite, étale covering between smooth projective *n*-folds with $\rho(X) = \rho(Y)$.

Then $f^*: N_1(X) \to N_1(Y)$ (resp. $f_*: N_1(Y) \to N_1(X)$) is isomorphic and $f^* \overline{NE}(X) = \overline{NE}(Y)$

 $(resp. f_*NE(Y) = NE(X)).$

Moreover, if the canonical bundle K_X of X (hence $K_Y \simeq f^*K_X$) is not nef, there is a one to one correspondence between

{extremal rays on NE(X)} and {extremal rays on $\overline{NE}(Y)$ } under the above isomorphisms f^* and f_* .

Proposition 3. Let X, Y be non-singular projective threefolds with non-negative Kodaira dimensions. Assume that X and Y have the same Picard number and there exists a finite étale covering $f: Y \rightarrow X$, which is not an isomorphism. If the canonical bundle K_X of X (hence $K_Y \cong$ $f^*(K_X)$) is not nef, then Mori's extremal contractions of X (resp. Y), $\operatorname{Cont}_R: X \rightarrow X'$ (resp. $\operatorname{Cont}_{\widetilde{R}}: Y \rightarrow Y'$), associated to each extremal ray

R of $\overline{NE}(X)$ (resp. \tilde{R} of NE(Y)), is a birational divisorial contraction, which is (inverse of) the blow-up along a smooth curve *C* (resp. \tilde{C}) on *X'* (resp. *Y'*). Moreover *C* (resp. \tilde{C}) is not P^1 and if $f^*(R) = \tilde{R}$, the following commutative diagram holds.

^{*)} Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581.

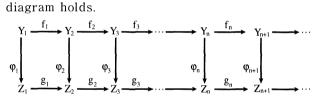
^{**)} Department of Mathematics, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193.

$$f \xrightarrow{X} \underbrace{\xrightarrow{Cont_R}}_{X} \xrightarrow{Y'} f'$$

where $f': Y' \to X'$ is a non-isomorphic finite étale covering, and $\tilde{C} = f'^{-1}(C)$.

Proposition 4. Let $Y_1 \xrightarrow{f_1} Y_2 \xrightarrow{f_2} \cdots \rightarrow Y_n$ $\xrightarrow{f_n} Y_{n+1} \xrightarrow{f_{n+1}} \cdots$ be an infinite descending sequence of non-isomorphic, finite étale coverings between non-singular projective threefolds Y_n with non-negative Kodaira dimensions. $(n = 1, 2, \cdots)$

Moreover we assume that the canonical bundle K_{Y_n} of Y_n is not nef and the Picard number $\rho(Y_n)$ of Y_n ($n = 1, 2, \cdots$) are constant. Then Mori's extremal contraction of $Y_n, \varphi_n := \operatorname{Cont}_{R_n}: Y_n \to Z_n$, associated to each extremal ray R_n of $\overline{NE}(Y_n)$, is the birational divisorial contraction, which is (inverse of) the blow-up along a smooth *elliptic curve* E_n on Z_n . Moreover, if $R_n = (f_n \cdots f_1) * R_1$ for all $n = 1, 2, \cdots$, the following commutative



where $g_n: Z_n \to Z_{n+1}$ is a non-isomorphic, finite, étale covering and $E_n = g_n^{-1}(E_{n+1})$ holds for all n.

Remark 5. For a non-trivial surjective endomorphism $f: X \to X$ between a non-singular projective threefold X with κ $(X) \ge 0$ and whose K_X is not nef, all the assumptions in proposition 4 are automatically satisfied by putting $Y_n := X$ and $f_n := f$ for all n.

Proposition 6 (Minimal reduction). Let X be a non singular projective threefold with a nonnegative Kodaira dimension. Assume that there exists a non-isomorphic surjective endomorphism $f: X \to X$ and K_X is not nef. Then after a finite number of extremal divisorial contractions as in Proposition 4, we obtain $f_n: Y_n \to X_n$, which is birational to $f: X \to X$. Y_n and X_n are non-singular minimal models of X and f_n is a finite étale covering, which is not an isomorphism. (Hence they are isomorphic in codimension one and connected by a sequence of flops by Kawamata [3] and Kollar [5].)

By the abundance theorem by Miyaoka [4] and Kawamata [2], K_{X_n} and K_{Y_n} are semi-ample. If $\kappa(X) = 0$ and 2, thanks to the Bogomolov's decomposition theorem [6] and the standard fibration theorem by Nakayama [7,8], X_n and Y_n are isomorphic and we can describe the structure of the Iitaka fibration of them completely.

The following proposition is well-known.

Proposition 7. Let $f: X \to X$ be a surjective morphism between a non-singular projective *n*-fold of general type.

Then f is an isomorphism.

Combining Propositions 4,6,7 and the above remark, we obtain our Main Theorem.

Main Thorem (A). Let X be a non-singular projective threefold with a non-negative Kodaira dimension, which admits a non-isomorphic, surjective endomorphism $f: X \rightarrow X$.

Then the minimal models of X are non-singular, unique up to isomorphisms and one of the following cases occurs.

- Case 1) If $\kappa(X) = 2$, X has the structure of an elliptic fiber space $\varphi: X \to T$ over a normal surface T with at most quotient singularities and f induces an automorphism of the base space T and is compatible with φ . Moreover,
- 1a) X has the structure of a Seifert fiber space over T. (i.e. φ is equi-dimensional and X has at most multiple singular fibers of type ${}_mI_0$ in the sense of Kodaira, and is a principal fiber bundle outside them. K_X is numerially φ -trivial.)
- 1b) By taking a suitable finite étale covering \tilde{X} of X, \tilde{X} is isomorphic to the direct product $\tilde{T} \times E$, where \tilde{T} is a smooth algebraic surface of general type (not necessarily minimal) and E is a smooth elliptic curve.
- Case 2) If $\kappa(X) = 1$, the minimal model X'of X is non-singular, and the general fiber of the Iitaka fibration $\Phi_{|mK_{X'}|}: X' \rightarrow C$ is isomorphic to an Abelian surface or a hyperelliptic surface. In the latter case, we obtain the following commutative diagram of fiber spaces,

where $g: X \to T$ is a Seifert elliptic fiber space over a normal surface T with at most quotient singularities, $h: T \to C$ is a P^1 or elliptic fiber space and the general fiber of $\varphi := h \circ g$ is a hyperelliptic surface. f induces an endomorphism (resp. automorphism) of T (resp. C), and is compatible with φ , g and h. By taking a finite étale covering \tilde{X} of X, \tilde{X} is isomorphic to the direct product $\tilde{T} \times E$, where \tilde{T} is a smooth algebraic surface with κ (\tilde{T}) = 1 and E is an elliptic curve.

Case 3) If $\kappa(X) = 0$, by taking a suitable finite étale covering \tilde{X} of X, \tilde{X} is isomorphic to an Abelian threefold or the direct product $\tilde{T} \times E$, where \tilde{T} is a smooth algebraic surface which is birational to an abelian surface or a K3 surface, and E is an elliptic curve. In the latter case, X has the structure of a Seifert elliptic fiber space over the quotient of \tilde{T} by a finite group G.

> f is compatible with it and induces an automorphism of the base space \tilde{T}/G . In cases (1) and (3), $f: X \to X$ can be lifted to an endomorphism $\tilde{f}: \tilde{X} \to \tilde{X}$ and if moreover, \tilde{X} is of split type, it is

compatible with the first projection \overline{X} : = $\widetilde{T} \times E \rightarrow \widetilde{T}$ and induces an automorphism of \widetilde{T} .

Acknowledgements. The authors wish to express sincere thanks to Professors S. Mori and N. Nakayama for many suggestions.

References

- [1] S. Mori: Threefolds whose canonical bundles are not numerically effective. Ann. of Math., 116, 133-176 (1982).
- Y. Kawamata: Abundance theorem for minimal threefolds. Invent. Math., 108, 229-246 (1992).
- [3] Y. Kawamata: The crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces. Ann. of Math., 127, 93-163 (1988).
- [4] Y. Miyaoka: On the Kodaira dimension of minimal threefolds. Math. Ann., 281, 325-332 (1988).
- [5] J. Kollar: Flops. Nagoya Math. J., 113, 15-36 (1989).
- [6] A. Beauville: Variete Kahlerien dont la premiere class de Chern est nulle. J. Diff. Geometry, 18, 755-782 (1983).
- [7] N. Nakayama: Local structure of an elliptic fibration (1992) (preprint).
- [8] N. Nakayama: Projective threefolds whose universal coverings are C^3 (1997)(preprint).