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Abstract: In this paper, we characterize the semigroups which are the semilattices of
nilextensions of left groups and prove that these semigroups form a variety defined by the
equation (xy)“(yx)® = (xy)“. Moreover, we obtain some decompositions of this variety by
Mal’cev product and semidirect product. In particular, we prove that this variety is just the
semidirect product G*R of the variety G of groups and the variety R of R-trivial semi-

groups.

1. Introduction and preliminaries. A semi-
group S is called a semilattice Y of semigroups of
type T if there is a homomorphism & from S
onto a semilattice Y and the inverse image of
each element of Y under ¥ is a semigroup of type
T. In [3], Davenport studied the semigroups
which are semilattices of nilextensions of groups.
The purpose of this paper is to characterize the
class of finite semigroups that are semilattices of
nilextensions of left groups and to generalize
some results of [3]. For simplicity’s sake, we de-
note by SNLG the class of finite semigroups
which are semilattices of nilextensions of left
groups.

First, we will characterize the semigroups in
SNLG and prove that SNLG is defined by equa-
tion (xy)” (yx)® = (xy)®. Hence SNLG is a
variety in the sense of Eilenberg [4] since it is
closed under finite products, subsemigroups and
homomorphic images. Then, using the functorially
minimal L’ homomorphic image, a concept intro-
duced in [1], we give a decomposition of SNLG
by semidirect product G*R. We also consider
some decompositions of SNLG by Mal’cev pro-
ducts.

For convenience let us review some defini-
tions and facts germane to what follows. If S is a
semigroup, then St is the semigroup obtained by
adjoining an identity element 1 to S. A semigroup
S is said to be archimedean, if for any a, b € S,
there exist m, n € N such that a” € SleI, b”
€ S'as".

Lemma 1.1[8]. A semigroup S is a semilat-
tice of archimedean semigroups if and only if, for

every a, b € S, the condition b € S'aS" implies
b' € S'a’S' for some positive integer i.

A finite semigroup is a left group, if for any
xE€ S, S= Sz

Lemma 1.2 [Theorem 1.27,2]. Let S be a
semigroup. Then the following conditions are
equivalent :

(1) S is a left group;

(2) S is a regular semigroup whose idempo-
tent elements form a left zero semigroup;

(3) S is isomorphic to a direct product of a
left zero semigroup and a group.

Let I be an ideal of S. S is a nilextension of
I if for any a@ € S, there exists a positive integer
n such that a” € L.

Throughout this paper, all semigroups are fi-
nite.

For any element x in a semigroup S, we de-
note by x“ the unique idempotent element in the
subsemigroup of S generated by x.

A semigroup S is ®R-trivial, if S satisfies the
equation (xy)“z = (xy)*.

For a semigroup S, we denote by E (S) the
set of idempotents of S.

For non defined notations and terminology,
the reader is referred to [5], [7], [9]

2. The main structure theorem.

Theorem 2.1. Let S be a semigroup. Then
the following are equivalent:

(1) S € SNLG;;

(2) Each regular @-class of S is a left group;

(3) For all x and y in S, if xy and yx are

idempotent, then (xy) (yx) = zy;

(4) S satisfies the equation (xy)” (yx)* =
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(zy)®.

Proof. (1) = (2) Suppose that S is a semi-
lattice of semigroups S,, &« € Y with S, being a
nilextension of left group T,. It is easy to show
that if 9y, then xr and y are in the same S,.
But each S, contains only one regular P-class
T, Hence each regular P-class of S is a left
group.

(2) = (3) If xy and yx are idempotent, then
xy D yx. Hence xy and yx are in the same regular
P-class of S. Thus zy, yxr are idempotent ele-
ments in a left group. By Lemma 1.2, (xy) (yx)
= xy.

(3) = (4) For any z,y € S, (zy)’ =
zl(yx)* 'yl , (y2)® = [(y2)* 'yl . By (3),
(zp)®(yz)* = (xy)*.

(4) = (1) Let a, b € S with b = uav, u, v
€ S'. Then

b° = (uav)® = ua(vua)“v(uav)®™ .

Since (vua)® = (vua)® (avw)®, b* = ua(vua)® -
(avu)“v(uav)®™ € S'a’S'. By Lemma 1.1, S is
a semilattice of archimedean semigroups S,, a €
Y. Since S, is finite, S, has the least ideal, and if
one denotes it by T,, then T, is a finite simple
semigroup. Hence T, is completely simple and so
T, is a regular semigroup. Since S, is archime-
dean, E(S,) € T,. Thus S, is a nilextension of
T,. For any x, y € T,, there exist u, v, w € T,
such that x = xux, ux = vyw, as T, is regular
simple. Hence

ur = (ux)’ = (vyw)® = (vyw)* (woy® € T,y
Thus x = xux € T,y. It follows that T, is a left
group and so S is a semilattice of nilextensions
of left groups.

The following proposition, generalizing Pro-
position 1.6 of [3], gives us some information
about SNLG that will be useful later.

Proposition 2.2. Let S be a semilattice of
semigroups S,, @ € Y, with S, being a nilexten-
sion of left group 7, for each a € Y. Define the
relation p on S as follows:

s pt iff there exist a € Y, ¢ € E(S,) such
that s, t € S, and es = ef. Then p is a congru-
ence on S and S/p is a Clifford semigroup.

Proof. It is easy to prove that o is an
equivalence on S. Let s o ¢ and ¢ be in S;. Then
there exist « € Y, ¢ € E (S,) such that s, t €
S, and es = et. Since (ce)(sc) = (ce)(tc),
(ce)”(sc) = (ce)”(tc). Thus scp tc.

Since (ec)“e- (ec)®e = (ec)“e and E (S,,) is
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a left zero semigroup,
(ec)?e = (ec)®(e0)®e = (ec)”.
Therefore
(ce)®cs = clec)’s = clec)“es = c(ec)’et =
c(ec)’t = (ce)“ct. Thus c¢s o ct. It follows that o
is a congruence on S.

Next, we will show that S/p is a completely
regular semigroup whose idempotents are in the
center of S. In fact, for any z € S, 2“2z = 2“
2. Hence zp x“*'. It follows that S/p is a
completely regular semigroup. For any ¢ € E(S),
by Theorem 2.1,

(ze)” = (ze)® (ex)” = (xe)”e(ze) 'z =
(ze)*(ze)* 'z = (ze)** 'z
Hence (ze)”-ze = ze(xe)” = (xe) - (xe)* ‘ex =
(ze)*ex = (ze)®ex. It follows that xep ex.
Thus S/p is a Clifford semigroup.

3. Some decompositions of SNLG. First,
we recall some definitions and facts which are
also found in [7], [9]. A relational morphism 7: S
— T is a function from S to the power set of T
with the property that for all s and ¢ in S, s7 is
not empty and (s7) (¢r) < (sf) 7.

Let U and V be varieties of semigroups. De-
fine the Mal'cev product of U and V to be the
following class of semigroups:

U™'V = {S: there exists a surjective relational
morphism 7 from S to a semigroup T in V .such
that for each ¢ € E(T), er”' € U}.

Lemma 3.1 [7]. U7'V is a variety generated
by the following class of semigroups:

{S: there exists a surjective morphism ¥
from S to a semigroup T in V such that for each
e € E(T), ¥~ € U).

Let R and T be semigroups. A left action of
T on R is a function: TX R— R, (t, r) —='r
satisfying the following conditions:

1) ‘) ="'y,

(2) t(t’r) — tt’r;
forallt, € T, r,r €R.

The semidirect product R*T is the set R X
T equipped with the product

(r, ), t') = (', #t).

Let U and V be varieties of semigroups.
Then U *V is the variety generated by the fol-
lowing class of semigroups:

{R*T: R€ U, TE V)

Let J be a f-class of a semigroup S. Let

F(J)=U{J’:J isa F-class of S and J £ J'}.

Then F(J) is an ideal of S (If we also assume
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that the empty set is an ideal of S). Denote by 7
the canonical homomorphism from S onto S/F(J).
Consider the relation =, on S/F(J) defined by

s, =g s, iff (27)(s,") € (") (s,")
in S/F(J) for all x € J. Then =, is a congru-
ence on S/F(]J).

Let ¥ be a surjective homomorphism from S
to T. ¥is L’ iff s; and s, are regular elements of
S and ¥(s,) = ¥(s,) implies s5,¥s,.

Let S* denote the functorially minimal L” homo-
morphic image of S.

Lemma 3.2 [8.3.9(c) of [1]]. Let /], ..., J,
be the regular f-classes of S. Then SY¥ is iso-
morphic to a subdirect product of [S/F(J,)1/ =,
1=1,2, ..., n

Corollary 3.3. Let S be in SNLG. Then S”
is an ®-trivial semigroup.

Proof. Let J be a regular f-class of S. For
any t € J, s, s, € S. It is easy to see that x
(5;8,)“s, € F(J) iff x(s;8)° € F(J).

If x(s,5,)“s, € F(J), then [x(s;s,)"s,] m =
[x(s,5,)“]1m and so [x(s;s,)“s, 1w L[x(s;5,)“17 in
S/F(]).

If 2(s;8)%s, € F(J), then x(s,;s,)“s;, £(s,5,)
€ J. Since J is a left group, x(s,;s,)“s; € x(s;s,)*
in S and so
[x(s,8,)“s, 1w € [x(5,5,)“lm in S/F(]J). It fol-
lows that [(s;8,)“s, ] =4[ (s;5,)“1 7. Thus the
semigroup [S/F(J)]/ = is R-trivial. Therefore
S¥ is R-trivial.

In order to state some decompositions of
SNLG, we need the following notations:

G - - - the variety of groups,

LG ' * ' the variety of left groups,

R - - - the variety of R-trivial semigroups,

D - - the variety of semigroups which are

nilextensions of left zero semi-
groups,

SG - - * the variety of Clifford semigroups,

J, - - - the variety of semilattices,

LU * - the variety of semigroups which are

nilextensions of left groups.

The main result of the paper is the following
theorem.

Theorem 3.4. Let S be a semigroup. Then
the following conditions are equivalent:

(1) S € [LG]™'R,

(2) S € SNLG,

(3) S¥ € R,

(4) S € G*R,
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(5) S € D7'SG,

6) S € [LUI'J,.

Proof. (1) = (2) Let ¥ be a surjective homo-
morphism from S on T with T € R such that
eW ™ € LG for all e € E(T). Then for any z, y
€S, [ (yx)y] U= (y2)*U, [ (zy)°2] T=
()W and (2y)°T = (zy)*"'¥, since T is
R-trivial. It follows that
[(zy ) (yx)1 U= [(2y )z (yx)“y] T=
(zy) V' = (2p)“"'T = (2y)°¥. Hence (zy)®,
(zy)”(yx)® are in the left group [(xy)*WI T~
Since every idempotent of a left group S is a
right identity of S,

(2y) (yz)* (2y)* = (ay)* (yx)®.
Hence (zy)“(yx)® is an idempotent element and
so it is a right identity of [(zy)“¥I ¥\ It fol-
lows that

(xy)“(yx)” = (x2y)* (xy)“(yx)* = (xy)“.
Thus S € SNLG. By Lemma 3.1, [LG] 'R S
SNLG.

(2) = (3) See Corollary 3.3;

(3) = (4) Since R is closed under semi-
direct products, by Proposition 3.3 of [6], S €
G*R iff S¥ € R. Hence (3) implies (4);

(4) = (1) It is sufficient to show that if S
is a semidirect product of a group G with an
R-trivial semigroup R, then S € [LG] R, Let
U be the projection from G*R to R. For each e
€ E(R),

e ={(g,e): g€ G). Let (g, e), (g, ) €
e¥ ™. Then (&, (egz)_l, e): (g, e) = (g (egz)—1
(‘g,), e-e) = (g, e). It follows that e¥ ' is a

left group.
Hence S € [LG]'R.
(2) = (5) Let S be in SNLG. Then S =

U S, with S, being a nilextension of a left
aeyY

group T, for each @ € Y. Let p be the Clifford
congruence on S defined in Proposition 2.2. Then
for each ¢ € E(S,), eo = {s € S,: es = ¢}, and
E(S,) S ep. Clearly, E(ep) = E(S,) is a left
zero semigroup and an ideal of e¢p. Hence ¢p is a
nilextension of a left zero semigroup and so ep
€ D. Thus S € D7'SG;

(6) = (2) By Lemma 3.1, it is sufficient to
show that if there exists a Clifford congruence p
on S with the property that eo € D for each ¢ €
E (S), then S € SNLG. For each x, y € S, We
got (xy)“0 = (yx)“p since S/p is a Clifford
semigroup and since both (xy)“p and (yx)“p
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are idempotents in the same group, and so
(yx)®, (xy)® are in the semigroup (ry)“p. But
(xy)“p is a nilextension of a left zero semigroup.
Hence (xy)” = (xy)“(yx)”. Thus S € SNLG.

(2) & (6) follows from the definition of
SNLG.
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