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1. The S-T set for a group. ,In [1], we in-
troduced a "Shafarevich-Tate set" IIIa(g, G) for
any g-group G and a family H of subgroups of a

group g:
(1.1) Ilia(g, G) f’l h Ker rh, h H,
where rh is the restriction map: H (g, G )
H(h, G)of 1-cohomology sets (with origin). In
this paper, we consider exclusively the case
where g G, acting on itself as inner auto-
morphisms, and H the family of all cyclic sub-
groups of G. Hence we have a right to set simply
(1.2) Ill(G) III.(a, G).
Extending the usage of language in Galois coho-
mology, we call III(G) in (1.2) the S-T set of G.
Furthermore G will be said to enjoy the Hasse
principle, if ILl(G) 1. It is easy to verify this
for abelian groups, dihedral groups and the qua-
ternion group.

2. Results. In this paper, we shall prove
the following
(2.1) Theorem. Let G be either PSL.(Z) or
PSL (Fp), p being any prime. Then G enjoys the
Hasse principle.
(2.2) Corollary. In view of the well-known iso-
morphisms PSL2 (F2) S, PSL2 (F) A4 and
PSL2(F) A, three groups S, A4 and A enjoy
the Hasse principle.

Before proving (2.1), let us gather some
basic facts on G-- PSL2(A) where A-Z or

F. If M SLy(A), we often use the same sym-
bol M to denote its image in the group G
PSL (A) SL (A)/{+ 1}. Let S, T and U
be elements of G defined by
(2.1)

1 0 0 1 1 1
One has:
(2.2) U ST, S= 1, Ua= 1,
(2.3) G is generated by S and T: G S, T).
(2.4) G is generated by S and U: G S, U).

3. Proof of (2.1). Case 1. A =/= F2. We use
(2.3). Let [f] be an element of Ill(G). On replac-

ing the cocycle fby one equivalent to it, we may
assume that
(a.1) f(S) 1, f(T) M-1M r,

Mr TMT-1, for some M G.
From (2.2) it follows that

1 f(U3) f( g)f(U) vf(U) g (f(U) U)
(3.2) (Sf(T) T) (SM-1MrT)

(SM-1TM).
Now set

(3.3) M-- ( a b) G
c d

Then, (3.2) is equivalent to

cd+ 1 d 0 1
Furthermore, set
(3.5) t c -]- d 2.
Then, (3.2), (3.4) amount to the following relation

(c2t2-t-c2 (cd-1)(t2-1))=+(1 O)(3.6)
(cd+l)(t2-1) d2tZ-t-d2 0 1

We find also that

(3.7) f(T)--M-1MT-( l+cd -1-cd+d2)2--c 1--cd+c
Now, to prove (2.1) in Case 1 amounts to

find an X G so that
-1Xs

1
(3.8) x-ix T f(T).

Since cd 4:1 or cd 4: 1 in this case, we

see from (3.6) that t= +__ 1. Put X-- ( d --c)c d
ift- 1 and X- ( -d c)c d

if t- 1. In view

of (3.5), (3.7), one verifies immediately that X
satisfies (3.8).

Case 2. A F2. We use (2.4). Let If] be an
element of III (G). On replacing the cocycle f by
one equivalent to it, we may assume that
(3.9) f(S) 1, f(U) M-1Mv, Mv UMU-1,
for some M G.
In this case, we have
(3.10) G- {U i, UiS, O

_
< 2}, with SU= U2S.

If M U i, then f(U) 1 and so f 1. if M
uis, thenf(U) SU-UUiSU-I= SUSU-I=
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U2SSU-1- U. Now we see at once that X-- S
is a solution to

x-ixS 1
(3.11) X-iX U f(U) U.

Q.E.D.
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