On a family of quadratic fields whose class numbers are divisible by five

By Masahiko SASE

Department of Mathematics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1998)

Abstract: In this paper, we construct a family of quadratic fields whose class numbers are divisible by five. We obtain this result by extending the method of Kishi and Miyake [1] and using a family of quintics introduced by Kondo [2].

Notation. Throughout this paper, we shall use the following notation. Z, Q will be used in the usual sense. For a rational prime p and $a \in$ Z, $a \neq 0$, $\nu_{h}(a)$ will mean the greatest exponent m such that $P^{m}|a$. We shall consider various number fields, i.e. finite extensions of Q, k, K, L, F, ... If \mathfrak{p} is a prime ideal and \mathfrak{a} an integral ideal $\neq 0$ in a number field, $\nu_{\rm p}(a)$ will mean the greatest exponent m such that $p^m \mid a$. If p is a prime ideal dividing p, $e_{\mathfrak{p}/\mathfrak{p}}$ will mean the ramification index of \mathfrak{p} . For $f(x) \in \mathbf{Z}[x]$, $f^{(j)}(x)$ will mean the jth derivative of f(x). C_n will mean the cyclic group with order n; D_n the dihedral group with order 2n. h_k will mean the class number of a number field k. If K is a Galois extension of k, G(K/k) will mean the Galois group for K/k.

1. Ramification of primes. Let q be an odd prime and f(x) be an irreducible polynomial of degree q in Q[x]. Let θ be a root of f(x) and $F = Q(\theta)$. We denote by L the minimal splitting field of f(x) over Q. We shall first prove:

Proposition 1. Suppose $[L:Q] \leq 2q$ and that no prime number is totally ramified in F. Then G(L/Q) is isomorphic to D_q and L is an unramified cyclic extension of degree q over the quadratic field k contained in L which is unique.

Proof. Since $[L:Q] \leq 2q$ and $q \mid [L:Q]$, G(L/Q) should be C_q or D_q . But C_q is excluded because of our assumption on the ramification in F/Q. Thus $G(L/Q) \cong D_q$ and there is a unique k such that $L \supset k \supset Q$, [k:Q] = 2 and [L:k] = q. Next, we have to prove that L/k is unramified. Suppose a prime ideal \mathfrak{P} of L is ramified in L/k. Its ramification index is q since L/k is a cyclic extension with degree q. Since [L:F] = 1

2, the prime $\mathfrak{p} = \mathfrak{P} \cap F$ is totaly ramified in F/Q. This contradicts to the assumption. Since q is odd, the infinite primes of k are also unramified.

We next study the ramification of a prime in F. We write the polynomial f(x) of the form

$$f(x) = x^{q} + \sum_{j=0}^{q-1} a_{j} x^{j}, a_{j} \in \mathbf{Z}, \quad (*)$$

and consider the following condition for the coefficients of f(x) and a prime p:

C(f, p): There is a number $j \in \{0, 1, \ldots, q - 1\}$ such that $\nu_p(a_j) < q - j$.

The following lemma is an obvious consequence of [5, Proposition 6.2.1].

Lemma 1. Let p be a prime that is totally ramified in F. Then the factorization of f(x) modulo p is given by

$$f(x) \equiv (x+a)^q \bmod p,$$

with some $a \in \mathbf{Z}$.

For a proof of next lemma, we refer to Bauer [4] or Llorente and Nart [3].

Lemma 2. Let p be a prime. Assume that $f(0) \equiv 0 \mod p$, and the condition C(f, p) is satisfied. Then p is totally ramified in F if and only if the Newton polygon of f(x) with respect to p has only one side.

We are now ready to mention a criterion for a prime to be totally ramified in F.

Proposition 2. Let p be a prime and f(x) be an irreducible polynomial of degree q of the form (*) satisfing C(f, p), and furthermore, assume that $a_{q-1} = 0$. Then p is totally ramified in F if and only if the following conditions are satisfied.

(a) If $p \neq q$,

$$0 < \frac{\nu_p(a_0)}{q} \le \frac{\nu_p(a_j)}{q-j} \text{ for any } j \in \{1, 2, \dots, q-2\}.$$

(b) If p = q, one of the following conditions (i), (ii) holds:

(i)
$$0 < \frac{\nu_q(a_0)}{q} \le \frac{\nu_q(a_j)}{q-j}$$
 for any $j \in \{1, 2, \dots, q-2\}$,

(ii)
$$\nu_a(a_0) = 0$$
, $\nu_a(a_i) > 0$ for any $j \in \{1, 2, \dots, q-2\}$,

$$\frac{\nu_q(f(-a_0))}{q} \le \frac{\nu_q(f^{(j)}(-a_0))}{q-j} \text{ for any } j \in \{1, 2, \dots, q-1\},$$
and $\nu_q(f^{(j)}(-a_0)) < q-j \text{ for some } j \in \{0, 1, \dots, q-1\}.$

Proof. Case I. $\nu_h(a_0) > 0$. In this case, we can easily show by Lemma 2 that p is totally ramified if and only if p satisfies that $0 < \nu_p(a_0)$ $/q \le \nu_b(a_i)/(q-j)$ for all j.

Case II. $\nu_b(a_0) = 0$ and $p \neq q$. Then we have $f(x) \not\equiv (x+a)^q \mod p$, for any $a \in \mathbb{Z}$, since $a_{q-1} = 0$. So by Lemma 1, p is not totally ramified in F.

Case III. $\nu_b(a_0) = 0$ and p = q. If $\nu_a(a_i) =$ 0 for some j > 0, then it is shown in the same manner as in the Case II that q is not totally ramified in F. Now consider the case $\nu_a(a_i) > 0$ for all j > 0. Then $f(x) \equiv (x + a_0)^q \mod q$. We use $f_1(x) = f(x - a_0)$ instead of f(x);

$$f_1(x) = x^q + \sum_{j=0}^{q-1} \frac{f^{(j)}(-a_0)}{j!} x^j \in \mathbf{Z}[x].$$

We have $f_1(0) \equiv f(-a_0) \equiv 0 \mod q$ and see that the condition $C(f_1, q)$ means $\nu_q(f^{(j)}(-a_0)) < q$ -j for some j, $0 \le j \le q - 1$. So by Lemma 2, under the condition $C(f_1, q)$, q is totally ramified or not in F, according as the inequality $\nu_q(f)$ $(-a_0)/q \le \nu_q (f^{(j)} (-a_0))/(q-j)$ for all jholds or does not hold. Finally, assume that ν_a $(f^{(j)}(-a_0)) \ge q - j$ for all j. Then putting $f_2(x)$ $=f_1(qx)/q^q \in \mathbf{Z}[x]$, we see that the coefficient of $f_2(x)$ of degree q-1 is $-a_0$, so $f_2(x)$ $\not\equiv (x+a)^q \mod q$, for any $a \in \mathbb{Z}$. Hence q is not totally ramified in F.

The proof is easily completed by the above argument.

2. A family of certain quintics. In this section, we consider a family of quintics introduced by Kondo [2]. Let A, B be indeterminates and put $f(x; A, B) = x^5 + (A - 3)x^4 + (B - A + 3)x^3$

$$+(A^{2}-A-1-2B)x^{2}+Bx+A.$$
 (**)

The discriminant of f(x; A, B) is $d(f) = A^2 \Delta (A, B)^2$

$$d(f) = A^2 \Delta (A, B)^2$$

$$\Delta(A, B) = -4B^{3} + (A^{2} - 30A + 1)B^{2} + (24A^{3} - 34A^{2} - 14A)B$$

$$-4A^{5}+4A^{4}+40A^{3}-91A^{2}+4A$$
.

Kondo [2] showed the following result about this family:

Proposition 3 (Kondo [2]). Let A, B be indeterminates which are algebraically independent over **Q** and L be the minimal splitting field of f(x; A,B) over Q(A, B). Then, G(L/Q(A, B)) is isomorphic to D_5 and the quadratic field over Q(A,B) contained in L is given by $Q(A, B, \sqrt{\Delta(A, B)})$. From this, G(L/Q(A, B)) is solvable (cf. Dummit [5]) and the discriminant of f(x; a, b) is a square in Q for any $a, b \in Q$. So we obtain the following:

Proposition 4. For $a, b \in Q$, let L be the minimal splitting field of f(x; a, b) over Q. If f(x; a, b) is irreducible over Q, then G(L/Q) is isomorphic to C_5 or D_5 .

3. Main theorem. Now we give a family of quadratic fields whose class numbers are divisible by five.

Theorem. Let $b, c \in \mathbf{Z}$ and put g(y; b, $c) = y^5 + Sy^3 + Ty^2 + Uy + V,$

$$S = -10c^{2} - 5c + b,$$

$$T = 20c^{3} + 40c^{2} + 25c - 3bc - 2b + 5,$$

$$U = -(3c + 1)(5c^{3} + 20c^{2} - bc + 10c - b),$$

$$V = 4c^{5} + 30c^{4} - bc^{3} + 25c^{3} - 2bc^{2} + 5c^{2} - bc + 5c + 3.$$
If $g(y; b, c)$ is irreducible in Q and (S, T, U)

$$= 1, \text{ then the class number of the quadratic field } k$$

$$= Q(\sqrt{m}) \text{ is divisible by five, where}$$

$$m = -4b^{3} + 5(5c^{2} - 24c - 16)b^{2}$$

$$m = -4b^{3} + 5(5c^{2} - 24c - 16)b^{2} + 50(60c^{3} + 90c^{2} + 43c + 6)b - 125(100c^{5} + 280c^{4} + 272c^{3} + 119c^{2} + 26c + 3).$$

Proof. Putting A = 5c + 3, B = b in the polynomial (**), we obtain

$$f(x; 5c + 3, b) = x^{5} + 5cx^{4} + (b - 5c)x^{3} + (25c^{2} + 25c + 5 - 2b)x^{2} + bx + 5c + 3.$$

Note that g(y; b, c) = f(y - c; 5c + 3, b) and that $\Delta (5c + 3, b)$ is equal to m. Let θ be a root of g(y; b, c) and $F = Q(\theta)$. By Proposition 2 no prime number is totally ramified in F, for g(y); b, c) is irreducible and (S, T, U) = 1. By Propositions 1 and 4, the Galois group of g(y; b,c) is isomorphic to D_5 , and the quadratic field k $= Q(\sqrt{m})$ has unramified cyclic extension of degree five.

Example 1 (THE CASE c = 0). Let $b \in \mathbb{Z}$, (b, 5) = 1, and $m = -4b^3 - 80b^2 + 300b -$

375. Then the class number of $Q(\sqrt{m})$ is divisible by five. Indeed, since $g(y; b, 0) = y^5 + by^3 - (2b - 5)y^2 + by + 3$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$, g is irreducible in \mathbb{Q} .

Example 2 (THE CASE c=-1). Let $b \in \mathbb{Z}$, (b, 5) = 1, and $m = -4b^3 + 65b^2 - 300b - 500$. If $g(y; b, 1) = y^5 + (b-5)y^3 + by^2 + 10y + 4$ is irreducible in \mathbb{Q} , then the class number of $\mathbb{Q}(\sqrt{m})$ is divisible by five.

Remark. These examples give explicitly a parametric family of quadratic fields k whose class numbers are divisible by five. We need no discussions about the units of k to establish this

Table for Example 1

	3					
$c = 0, m = -4b^3 - 80b^2 + 300b - 375, k = \mathbf{Q}(\sqrt{m})$						
b	$m=s^2\cdot m'$	m'	h_k			
9	-7071	$-1 \cdot 3 \cdot 2357$	70			
8	-5143	$-1 \cdot 37 \cdot 139$	40			
7	-3567	$-1 \cdot 3 \cdot 29 \cdot 41$	20			
6	-2319	$-1 \cdot 3 \cdot 773$	30			
4	$3^2 \cdot (-79)$	-1.79	5			
3	-303	$-1 \cdot 3 \cdot 101$	10			
2	-127	-1.127	5			
1	-159	$-1 \cdot 3 \cdot 53$	10			
-1	-751	-1.751	15			
-2	-1263	$-1 \cdot 3 \cdot 421$	20			
-3	-1887	$-1 \cdot 3 \cdot 17 \cdot 3$	20			
-4	-2599	$-1 \cdot 23 \cdot 113$	30			
-6	-4191	$-1 \cdot 3 \cdot 11 \cdot 127$	60			
-7	-5023	-1.5023	25			
-8	-5847	$-1 \cdot 3 \cdot 1949$	50			
-9	-6639	$-1 \cdot 3 \cdot 2213$	90			
-11	-8031	$-1 \cdot 3 \cdot 2677$	60			
-12	-8583	$-1 \cdot 3 \cdot 2861$	50			
-13	-9007	-1.9007	35			
-14	$3^2 \cdot (-1031)$	-1.1031	35			
-16	-9271	-1.73.127	60			
-17	-8943	$-1 \cdot 3 \cdot 11 \cdot 271$	60			
-18	-8367	$-1 \cdot 3 \cdot 2789$	30			
-19	-7519	-1.73.103	50			
-21	-4911	$-1 \cdot 3 \cdot 1637$	50			
-22	-3103	$-1 \cdot 29 \cdot 107$	20			
-23	$3^2 \cdot (-103)$	-1.103	5			
-24	1641	3.547	5			
-26	8049	$3 \cdot 2683$	5			
-27	11937	$3 \cdot 23 \cdot 173$	10			
-28	16313	11 · 1483	5			
-29	21201	3.37.191	10			

Table for Example 2

c=0, m	$a = -4b^3 + 65b^2 -$	$-300b - 500, k = Q(\sqrt{m})$		
b	$m = s^2 \cdot m'$	m'	h_k	
19	-10171	-1.7.1453	20	
18	$2^2 \cdot (-2042)$	$-1 \cdot 2 \cdot 1021$	50	
17	-6467	$-1 \cdot 29 \cdot 223$	20	
16	$2^2 \cdot (-1261)$	$-1 \cdot 13 \cdot 97$	20	
14	$2^2 \cdot (-734)$	$-1 \cdot 2 \cdot 367$	40	
13	-2203	-1.2203	5	
12	$2^2 \cdot (-413)$	-1.7.59	20	
11	-1259	-1.1259	15	
9	-851	$-1 \cdot 23 \cdot 37$	10	
8	$2^2 \cdot (-197)$	-1.197	10	
7	-787	-1.787	5	
6	$2^{2} \cdot (-206)$	$-1 \cdot 2 \cdot 103$	20	
4	$2^2 \cdot (-229)$	-1.229	10	
3	-923	$-1 \cdot 13 \cdot 71$	10	
2	$2^2 \cdot (-218)$	$-1 \cdot 2 \cdot 109$	10	
1	-739	-1.739	5	
-1	-131	-1.131	5	
-3	1093	1093	5	
-4	$2^2 \cdot 499$	499	5	
-6	$2^2 \cdot 1126$	$2 \cdot 563$	5	
-7	6157	$47 \cdot 131$	5	
-8	$2^2 \cdot 2027$	2027	5	
-9	10381	$7 \cdot 1483$	5	
-11	15989	$59 \cdot 271$	5	
-12	$2^2 \cdot 4843$	$29 \cdot 167$	10	
-13	23173	23173	5	
-14	$2^{2} \cdot 6854$	$2 \cdot 23 \cdot 149$	10	
-16	$2^2 \cdot 9331$	$7 \cdot 31 \cdot 43$	20	
-17	43037	43037	5	
-18	$2^2 \cdot 12322$	$2 \cdot 61 \cdot 101$	20	
-19	56101	56101	5	
-21	, 71509	43 · 1663	5	
-22	$2^2 \cdot 20038$	$2 \cdot 43 \cdot 233$	10	
-23	89453	7.13.983	10	
-24	$2^2 \cdot 24859$	24859	25	
_				

fact.

Acknowledgements. The author wishes to thank Prof. Shokichi Iyanaga, M. J. A., and Prof. Shin Nakano for their warm encouragement.

References

- [1] Y. Kishi and K. Miyake: Characterization of the quadratic fields whose class numbers are divisible by three (preprint).
- [2] T. Kondo: On a family of sexic polynomials found by Brumer. Proc. of the 2-nd Symp. on Number

- Theory, Tsuda Coll., pp. 27-36 (1997).
- [3] P. Llorente and E. Nart: Effective determination of the decomposition of the rational primes in a cubic field. Proc. Amer. Math. Soc., 87, 579-585 (1983).
- [4] M. Bauer: Zur allgemeinen Theorie der algebraischen Grössen. J. Reine Angew. Math., **132**, 21-32
- (1907).
- [5] D. S. Dummit: Solving solvable quintics. Math. Comp., 57, 387-401 (1991).
- [6] H. Cohen: A Course in Computational Algebraic Number Theory. Springer-Verlag GTM 138 (1993).