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Abstract :

In this paper, we construct a family of quadratic fields whose class numbers

are divisible by five. We obtain this result by extending the method of Kishi and Miyake [1]
and using a family of quintics introduced by Kondo [2].

Notation. Throughout this paper, we shall
use the following notation. Z, @ will be used in
the usual sense. For a rational prime p and a €
Z, a+# 0, v,(a) will mean the greatest exponent
m such that P™|a. We shall consider various
number fields, i.e. finite extensions of @, k, K,
L, F, ... If pisa prime ideal and a an integral
ideal # 0 in a number field, v, (a) will mean the
greatest exponent # such that p”|a. If p is a
prime ideal dividing p, ep,, will mean the rami-
fication index of p. For f(x) € Z[z]1, ¥ (x)
will mean the jth derivative of f(x). C, will
mean the cyclic group with order #; D, the
dihedral group with order 2#. h, will mean the
class number of a number field k. If K is a Galois
extension of k, G (K/k) will mean the Galois
group for K/k.

1. Ramification of primes. Let ¢ be an odd
prime and f(x) be an irreducible polynomial of
degree ¢ in Q[ x]. Let 6 be a root of f(x) and F
= @ (#). We denote by L the minimal splitting
field of f(x) over Q. We shall first prove:

Proposition 1. Suppose [ L: Q] < 2¢q and
that no prime number is totally ramified in F. Then
G (L/ Q) is isomorphic to D, and L is an unrami-
fied cyclic extension of degree q over the quadratic
field k contained in L which is unique.

Proof. Since [L: Q1 < 2q and ¢|[L: Q1,
G (L/Q) should be C, or D, But C, is excluded
because of our assumption on the ramification in
F/Q. Thus G(L/Q) = D, and there is a unique
k such that LD kD Q, [k: Q] =2 and [L: k]
= q. Next, we have to prove that L/k is unrami-
fied. Suppose a prime ideal B of L is ramified in
L/k. lts ramification index is ¢q since- L/k is a
cyclic extension with degree ¢q. Since [L: F] =

2, the prime p = P N F is totaly ramified in
F/Q. This contradicts to the assumption. Since ¢
is odd, the infinite primes of k are also unrami-
fied. U

We next study the ramification of a prime in
F. We write the polynomial f(x) of the form

g—1 .
flx) =z'+ Z‘Ba,-x], a, € Z, (%
j=

and consider the following condition for the
coefficients of f(x) and a prime p:

C(f, p): There is a number 7€ {0, 1, ..., ¢
— 1} such that v,(a,) < g —j.
The following lemma is an obvious consequence
of [5, Proposition 6.2.1].

Lemma 1. Let p be a prime that is totally
ramified in F. Then the factorization of f (x)
modulo p is given by

flx) = (x+ a@)?mod p,
with some a € Z.
For a proof of next lemma, we refer to Bauer [4]
or Llorente and Nart [3].

Lemma 2. Let p be a prime. Assume that
() =0mod p, and the condition C (f, p) is
satisfied. Then p is totally ramified in F if and only
if the Newton polygon of f(x) with respect to p has
only one side.

We are now ready to mention a criterion for a
prime to be totally ramified in F.

Proposition 2. Let p be a prime and f(x) be
an irreducible polynomial of degree q of the form (x)
satisfing C (f, p), and furthermore, assume that
@,y = 0. Then p is totally ramified in F if and
only if the following conditions are satisfied.

(@ Ifp +q.
v,(ap) _ v,(a)

< < PRt e 1,2, q— 2.
0 7 q_]foranyj {1, q— 2}
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(b) If p = q, one of the following conditions (i), (ii)
holds :

. l"q (aO) Vq (ai) ; v —_
(1)0<—q < q_jfor(myJE{l,Z, ,q— 2},
(i) v, (@) =0, v,(a) >0 foramyj € {1, 2, -+, ¢ — 2},

_ )
vq(f(q ay) < v,,(fq( ]a)) frami €12, q—1),
and vq(fm(— a)) <q—jforsomej€{0,1,...,q—1}.

Proof. Case I. v,(a,) > 0. In this case, we
can easily show by Lemma 2 that p is totally
ramified if and only if p satisfies that 0 < v,(a,)
/g < v,(a)/(g— j) for all j.

Case 1I. v, (a)) =0 and p # q. Then we
have f(x) = (x+ a)’ mod p, for any a € Z,
since a@,_, = 0. So by Lemma 1, p is not totally
ramified in F.

Case III. v,(a,) =0 and p = ¢. If v,(a;) =
0 for some j > 0, then it is shown in the same
manner as in the Case II that ¢ is not totally
ramified in F. Now consider the case y,(a;) > 0
for all § > 0. Then f(x) = (x + a,)’ mod q. We
use fi(x) = f(x — a,) instead of f(x);

(J)(_ ao) j

filx) =x° +Z € Zlx].
We have f,(0) = f(— a,) = 0 mod ¢ and see that
the condition C(f;, g) means v, (f” (— a,)) < ¢
— 7 for some j,0 < j<¢g— 1. So by Lemma 2,
under the condition C (f;, ¢), ¢ is totally rami-
fied or not in F, according as the inequality v, (f
(—ag /g < v, (f” (— a,))/ (g —7) for all j
holds or does not hold. Finally, assume that yp,
(FP(— a,)) = q — j for all j. Then putting f,(x)
= f,(qx)/q" € Z[ x], we see that the coefficient
of f, (x) of degree ¢ —1 is — a,, so f, (x)
# (x+ a)’ mod g, for any a € Z. Hence q is
not totally ramified in F.

The proof is easily completed by the above
argument. O

2. A family of certain quintics. In this sec-
tion, we consider a family of quintics introduced
by Kondo [2]. Let A, B be indeterminates and put

flz; A, B)=2"+(A-3z'+ (B-A+3)2’
+(A~A-1-2B)z"+Bz+A
The discriminant of f(x ; A, B) is
d(f) = A°A(A, B)®

(%)

where

A(A, B) = —4B*+ (A*—30A+1)B* + (244° — 344°

—14A)B
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—4 A+ 4A + 404’ — 9147 + 4 A.
Kondo [2] showed the following result about this
family :

Proposition 3 (Kondo [2]). Let A, B be inde-
terminates which are algebraically independent over
Q and L be the minimal splitting field of f(x ; A,
B) over Q(A, B). Then, G(L/Q(A, B)) is isomor-
phic to Dy and the quadratic field over Q (A,
B) contained in L is given by Q(A, B, v A(4, B)).
From this, G(L/Q(A, B)) is solvable (cf. Dummit
[5]) and the discriminant of f(x; a, b) is a
square in @ for any a, b € Q. So we obtain the
following :

Proposition 4. For a, b € Q, let L be the
minimal splitting field of f(x; a, b) over Q. If
f(x; a, b) is irreducible over Q, then G (L/Q) is
isomorphic to Cg or Dy,

3. Main theorem. Now we give a family of
quadratic fields whose class numbers are divisi-
ble by five.

Theorem. Let b, c € Z and put g (y; b,
)=y + Sy’ + Ty + Uy +V,
where

S=—-10c"—5¢+b,

T=20c’ + 40¢* + 25¢ — 3bc — 2b + 5,

— 3¢+ 1) B¢’ + 20¢* — be + 10¢ — b),

V= 4c"+30c* — b’ + 25¢° — 2bc” + 5¢” — be + 5¢ + 3.
If g(y; b, ¢) is irreducible in Q and (S, T, U)
= 1, then the class number of the quadratic field k
= Q(/m) is divisible by five, where

m = — 4b° + 5(5¢° — 24c — 16)b°

+ 50(60c° + 90¢” + 43¢ + 6)b
— 125(100¢° + 280¢* + 272¢°
+ 119¢* + 26¢ + 3).
Proof. Putting A= 5¢c+ 3, B=05b in the
polynomial (x%), we obtain
fz:5c+3,0) =245+ 0— 5¢)z°
+ (25¢" + 25¢ + 5 — 20)x” + bx
+ 5¢+ 3.
Note that g(y; b, ¢) = f(y — ¢; 5¢ + 3, b) and
that 4 (bc + 3, b) is equal to m. Let € be a root
of g(y; b, c) and F= Q(6). By Proposition 2
no prime number is totally ramified in F, for g(y ;
b, ¢) is irreducible and (S, T, U) =1. By
Propositions 1 and 4, the Galois group of g(y ; b,
¢) is isomorphic to D;, and the quadratic field k
= Q(\/ﬁ) has unramified cyclic extension of de-

gree five. O
Example 1 (THE CASE ¢ = 0). Let b€ Z,
(b,5) =1, and m = — 4b° — 80b* + 300b —
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375. Then the class number of @ (yYm) is divisi-
ble by five. Indeed, since g(y; b, 0) = y° + by’
— (2b — 5)y* + by + 3 is irreducible in Z/2Z,
g is irreducible in Q.

Example 2 (THE CASE ¢ = — 1). Let b €
Z, (b,5) =1, and m = — 4b° + 656> — 3000
—500.If g(y; b,1) =y°+ (b—5)y° + by’ +
10y + 4 is irreducible in @, then the class num-
ber of Q(/m) is divisible by five.

Remark. These examples give explicitly a
parametric family of quadratic fields k whose
class numbers are divisible by five. We need no
discussions about the units of k to establish this

Table for Example 1
c=0,m=—4b"—80b" + 3000 — 375, k = Q(/m)

b m=s"-m w’ h,
9 —7071 | —1-3-2357 70

8 —5143 | —1-37-139 40

7 —3567 | —1-3-29-41 20

6 —2319 | —1-3-773 30

4 3% (=79) | —1-79 5

3 —303 | —1-3-101 10

2 —127 | —1-127 5

1 —159 | —1-3-53 10
-1 —751 | —1-751 15
—2 —1263 | —1-3-421 20
-3 —1887 | —1-3-17-3 20
—4 —2599 | —1-23-113 30
—6 —4191 | —1-3-11-127 60
—7 —5023 | —1-5023 25
-8 —5847 | —1-3-1949 50
-9 —6639 | —1-3-2213 90
—11 —8031 | —1-3-2677 60
—12 —8583 | —1-3-2861 50
—13 —9007 | —1-9007 35
—14 | 3*-(—1031) | —1-1031 35
—16 —9271 | —1-73-127 60
—17 —8943 | —1-3-11-271 60
—18 —8367 | —1-3-2789 30
—19 —7519 | —1-73-103 50
—21 —4911 | —1-3-1637 50
—22 —3103 | —1-29-107 20
—23| 3°(—103) | —1-103 5
—24 1641 | 3-547 5
—26 8049 | 3-2683 5
—27 11937 | 3-23-173 10
—28 16313 | 11-1483 5
—29 21201 | 3-37-191 10
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Table for Example 2
¢c=0,m=—4b" + 650" — 300b — 500, k = Q(ym)

b m=s-m m’ h,
19 —10171 | —1-7-1453 20
18 | 2°-(—2042) | —1-2-1021 50
17 —6467 | —1-29-223 20
16 | 2°-(—1261) | —1-13-97 20
14 | 2% (—734) | —1-2-367 40
13 —2203 | —1-2203 5
12| 2°-(—413) | —1:7-59 20
11 —1259 | —1-1259 15
9 —851 | —1-23-37 10
8| 2°(—197) | —1-197 10
7 —787 | —1-787 5
6| 2%(—206) | —1-2-103 20
4| 2%(—229) | —1-229 10
3 —923 | —1-13-71 10
2| 2%(—218) | —1-2-109 10
1 —739 | —1-739 5
-1 —131| —1-131 5
-3 1093 | 1093 5
—4 22-499 | 499 5
—6 2%-1126 | 2-563 5
—7 6157 | 47-131 5
-8 2%.2027 | 2027 5
-9 10381 | 7-1483 5
—11 15989 | 59-271 5
—-12 2%-4843 | 29-167 10
—13 23173 | 23173 5
—14 2°.6854 | 2-23-149 10
—16 2°-9331 | 7-31-43 20
—17 43037 | 43037 5
—18 2°-12322 |  2-61-101 20
—19 56101 | 56101 5
—21 71509 | 43-1663 5
—22 2°-20038 | 2-43-233 10
—23 89453 | 7-13-983 10
—24 2°.24859 | 24859 25
fact.
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