Delone sets and Riesz basis

By Hideo Suzuki
Graduate School of Mathematics, Kyushu University
(Communicated by Kiyosi ITô, M. J. A., Jan. 12, 1998)

Abstract

In this paper we deal with the density of Delone set and apply it constructing Riesz basis for an Hilbert space.

1. Introduction. A Riesz basis for Hilbert space is easily constructed by exponential maps over a periodic set. This drives us to the question how it is when a periodic set is replaces by Delone set. Construction by exponential functions will certainly work if a Delone set is very close to a periodic set. We are concerned with the problem how a Delone set can be different from the periodic set. In fact, Kadec and Levinson studied such a problem in the case of $L^{p}[-\pi, \pi]$ (p is a natural number) (see [6] pp. 118-131).

The purpose of the present note is to explore a little further in the cases of $L^{2}[-\pi$, $\pi]$ and $H^{1}[-\pi, \pi]$ (see our main theorem 5.3 and 5.4 below [6]).
2. Delone set and Voronoi cell.

Definition 2.1. An (R, r)-Delone set $\Lambda \subset$ R^{N} is defined by the next two conditions (see [5] p. 28).

1) Discretness: There exists a positive real number r such that for every $x, y \in \Lambda,|x-y| \geq$ $2 r$.
2) Relative density: There is a positive real number R such that every sphere of radius greater than R contains at least one point of Λ in its interior.

Definition 2.2. Let $\Lambda \subset R^{N}$ be any Delone set. The Voronoi cell at a point $x \in \Lambda$ is the set of points of R^{N} that lie at least as close to x as to any other point of Λ :

$$
V(x)=\left\{u \in R^{N} \| x-y|\leq|y-u|, y \in \Lambda\}\right.
$$

The Voronoi cell $V(x)$ is then the smallest convex region about x (see [5] p. 42).

If Λ is a lattice, the Voronoi cells are congruent.

Here we deal with a Delone set Λ including $0: 0 \in \Lambda$.
3. The density of Delone set. We introduce the notion of the density for the (R, r)-Delone
set. The density Δ of Delone set Λ centered at x is defined by

$$
\begin{equation*}
\Delta_{x}(\Lambda)=\lim _{s \rightarrow \infty} \frac{\#\left\{\Lambda \cap B_{x}(s)\right\}}{m\left(B_{x}(s)\right)} \tag{1}
\end{equation*}
$$

(m is the Lebesgue measure).
If (1) is well-defined, we say that Λ has the density $\Delta_{x}(\Lambda)$ at x.

Here, we should notice that $\Delta_{x}(\Lambda)$ is actually independent of $x \in R^{N}$.

Lemma 3.1.

$$
\begin{equation*}
\Delta_{x}(\Lambda)=\Delta_{0}(\Lambda) \tag{2}
\end{equation*}
$$

for all x.
Proof. Let $\Delta_{x}(\Lambda)$ be defined for a fixed $x \in$ R^{N}.

Take $s>0$ such that $s>|x|$. Then

$$
B_{x}(s-|x|) \subset B_{0}(s) \subset B_{x}(s+|x|)
$$

Here $|x|=\sqrt{x_{1}^{2}+x_{2}{ }^{2}+\cdots+x_{N}{ }^{2}}$ for $x=\left(x_{1}\right.$, x_{2}, \ldots, x_{N}).
Therefore

$$
B_{x}(s-|x|) \cap \Lambda \subset B_{0}(s) \cap \Lambda \subset B_{x}(s+|x|) \cap \Lambda
$$

We obtain

$$
\begin{gathered}
\frac{\#\left\{B_{x}(s-|x|) \cap \Lambda\right\}}{m\left(B_{0}(s)\right)} \leq \frac{\#\left\{B_{0}(s) \cap \Lambda\right\}}{m\left(B_{0}(s)\right)} \\
\leq \frac{\#\left\{B_{x}(s+|x|) \cap \Lambda\right\}}{m\left(B_{0}(s)\right)} \\
\frac{\#\left\{B_{x}(s-|x|) \cap \Lambda\right\}}{m\left(B_{0}(s-|x|)\right)}\left\{\frac{s-|x|}{s}\right\}^{N} \leq \frac{\#\left\{B_{0}(s) \cap \Lambda\right\}}{m\left(B_{0}(s)\right)} \\
\leq\left(\frac{\#\left\{B_{x}(s+|x|) \cap \Lambda\right\}}{m\left(B_{0}(s+|x|)\right)}\right)\left\{\frac{s+|x|}{s}\right\}^{N}
\end{gathered}
$$

(\# is the number of elements).
We have (2) when $s \rightarrow \infty$.
Corollary 3.2.

$$
\Delta_{x}(\Lambda)=\Delta_{y}(\Lambda)
$$

for $x \neq y$.
We now define the density of Λ by

$$
\begin{equation*}
\Delta(\Lambda)=\lim _{s \rightarrow \infty} \frac{\#\left\{\Lambda \cap B_{0}(s)\right\}}{m\left(B_{0}(s)\right)} \tag{3}
\end{equation*}
$$

and call $\Delta(\Lambda)$ the density of Λ.

For a (R, r)-Delone set, $\begin{gathered}\text { For a }(R, r) \text {-Delone set, } \\ (\text { minimal volume of Voronoi cells })\end{gathered} \leq \frac{1}{\Delta(\Lambda)} \leq$ (maximal volume of Voronoi cells).

Thus,

$$
O\left\{\frac{1}{R^{N}}\right\} \leq \Delta(\Lambda) \leq O\left\{\frac{1}{r^{N}}\right\}
$$

If Λ is a lattice, Landau showed the following results [1], [2], and [3].

Theorem 3.3.

$$
\Delta\left(Z^{N}\right)=1
$$

Theorem 3.4. Let A be a regular $N \times N$ real matrix. then

$$
\begin{equation*}
\Delta\left(A\left(Z^{N}\right)\right)=|\operatorname{det} A|^{-1} \tag{4}
\end{equation*}
$$

That is, $\frac{1}{\Delta(\Lambda)}$ is the volume of each Voronoi
cell in Λ.
4. Special Delone set. Definition 4.1. Let Λ be a set including 0 . We say Λ is an L-special set $(L<1 / 4)$ if there exists a regular matrix A such that
a) $\#\left(D_{L}(n) \cap A^{-1}(\Lambda)\right)=1$ for any $n \in Z^{N}$.
b) $A^{-1}(\Lambda) \subset \cup_{n \in Z^{N}} D_{L}(n)$.

Here $D_{L} \quad(n)=\left\{x \in R^{N}| | x_{j}-n_{j} \mid<L ; 1 \leq j\right.$ $\leq N\}$ for $n=\left(n_{1}, \ldots, n_{N}\right)$.
A is called a lattice matrix and $\Lambda^{\prime}=A\left(Z^{N}\right)$ the periodic lattice associated with Λ.

Lemma 4.2. If Λ is an L-special set, it is a Delone set. We freshly call ΛL-special Delone set. Λ^{\prime} is not unique, but we see.

Lemma 4.3. Let Λ^{\wedge} be an L-special Delone set. Then,
(5) $\Delta(\Lambda)=\Delta\left(\Lambda^{\prime}\right)=|\operatorname{det} A|^{-1}$.
Λ^{\prime} is the periodic lattice associated with Λ.
Proof. (5) is a consequence of Theorem 3.4 and the next relation:

$$
\begin{aligned}
\#\left(\Lambda \cap B_{0}(s-2 R)\right) & \leq \#\left(\Lambda^{\prime} \cap B_{0}(s)\right) \\
& \leq \#\left(\Lambda \cap B_{0}(s+2 R)\right)
\end{aligned}
$$

valid for all $s>2 R$.
Then, we have (5).
5. Delone set and Riesz basis. Recall that a basis $\left\{r_{n}\right\}$ of a Hilbert space X is a Riesz basis if there is a bounded invertible operator T and an orthonormal basis $\left\{b_{n}\right\}$ in X such that $r_{n}=T b_{n}$ for all n ([6] p. 31).

Theorem 5.1 (Kadec's $1 / 4$ theorem). Let $\left\{\lambda_{n}\right\} \quad$ satisfy $\sup \left|\lambda_{n}-n\right|<L<1 / 4$. Then $\left\{\exp i \lambda_{n} t\right\}$ is a Riesz basis for $L^{2}[-\pi, \pi]$ (see [6] p. 42).

Lemma 5.2. Let $\left\{e_{n}\right\}$ be an orthonormal basis for a Hilbert space H. Suppose $\left\{f_{n}\right\} \subset H$
be "close enough" to $\left\{e_{n}\right\}$ in the sense that

$$
\begin{equation*}
\left\|\sum c_{k}\left(e_{k}-f_{k}\right)\right\|_{2} \leq \mu \sqrt{\sum\left|c_{k}\right|^{2}} \tag{6}
\end{equation*}
$$

for some constant $\mu ; 0 \leq \mu<1$, and arbitrary scalars $\left\{c_{n}\right\}\left(\|\cdot\|_{2}\right.$ is the $L^{2}[-\pi, \pi]$-norm).

Then $\left\{f_{n}\right\}$ is a Riesz basis for $L^{2}[-\pi$, π] (see [6] p. 40).

Our first main result reads as follows.
Theorem 5.3. Let Λ be an L-special Delone set associated with a periodic lattice $\Lambda^{\prime}=$ $A\left(Z^{N}\right)$ on R^{N}.

If $\Lambda(\Delta)$ satisfy a) or b):
a) $\Delta(\Lambda) \leq \frac{1}{\left(2^{N}-1\right)^{2}}$
b) $\Delta(\Lambda)>\frac{1}{\left(2^{N}-1\right)^{2}}$ and

$$
L<\frac{1}{4}-\frac{1}{\pi} \sin ^{-1} \frac{2-\sqrt[N]{1+\Delta(\Lambda)^{-\frac{1}{2}}}}{\sqrt{2}}
$$

then $\{\exp (i \lambda \cdot x)\}_{\lambda \in \Lambda}$ forms a Riesz basis for L^{2} $\left(W_{A}(0)\right)$. Here $\left.W_{A}(0)=(2 \pi)^{T} A^{-1} V(0)\right)$ for the Voronoi cell $V(0)$ at $0 \in Z^{N}$, and $\lambda \cdot x$ is the inner product of $\lambda, x \in R^{N}$.

Proof. We denote the unique element $\lambda \in\{A$ $(V(0))+A k\} \cap \Lambda$ by $\lambda_{k}, k \in Z^{N}$.

Since $\left\{\exp \left(i \lambda^{\prime} \cdot x\right)\right\}_{\lambda^{\prime} \in \Lambda^{\prime}}$ forms an orthonormal basis for $L^{2}\left(W_{A}(0)\right)$, we have to show by Lemma 5.2 that

$$
\left\|\sum_{k \in Z^{N}} c_{k}\left(\exp \left(i \lambda_{k} \cdot x\right)-\exp (i A k \cdot x)\right)\right\|_{L^{2}\left(W_{A}(0)\right)}
$$

<1 whenever $\sum\left|c_{k}\right|^{2} \leq 1$.
Since $A^{-1} \lambda_{k} \in D_{L}(k)$, we set by the triangle inequality and Theorem 5.1,

$$
\begin{align*}
& \text { 8) }\left\|\sum_{k \in Z^{N}} c_{k}\left(\exp \left(i \lambda_{k} \cdot x\right)-\exp (i A k \cdot x)\right)\right\|_{L^{2}\left(W_{A}(0)\right)} \tag{8}\\
& \leq|\operatorname{det} A|^{-\frac{1}{2}}\left\|_{k \in Z^{N}} c_{k}\left(\exp \left(i A^{-1} \lambda_{k} \cdot y\right)-\exp (i k \cdot y)\right)\right\|_{L^{2}(V(0))} \\
& \leq|\operatorname{det} A|^{-\frac{1}{2}}\left\{(2-\cos \pi L+\sin \pi L)^{N}-1\right\}
\end{align*}
$$

(7) implies that the right hand of (8) is smaller than 1.

Our second main result reads as follows:
Theorem 5.4. Let Λ be an L-special Delone set associated with Z. If
(9) $2(1-\cos \pi L+\sin \pi L)^{2}+8 L^{2}<1$,
then $\left\{\frac{\exp i a t}{\sqrt{a^{2}+1}}\right\}_{a \in \Lambda}$ is a Riesz basis for $H^{1}[-\pi$, $\pi]$.

Proof. As $\left\{\frac{\exp i k x}{\sqrt{k^{2}+1}}\right\}_{k=-\infty}^{\infty}$ forms an ortho-
normal basis for $H^{1}[-\pi, \pi]$, we have to show by Lemma 5.2 that

$$
\left\|\sum c_{k}\left(\frac{\exp i a_{k} x}{\sqrt{{a_{k}^{2}}^{2}+1}}-\frac{\exp i k x}{\sqrt{k^{2}+1}}\right)\right\|_{H^{1}<1}^{2}
$$

whenever $\sum\left|c_{k}\right|^{2} \leq 1 \quad\left(\|\cdot\|_{H^{1}}\right.$ is the $H^{1}[-\pi$, $\pi]$-norm).

$$
\begin{aligned}
& \left\|\sum c_{k}\left\{\frac{\exp i a_{k} x}{\sqrt{a_{k}^{2}+1}}-\frac{\exp i k x}{\sqrt{k^{2}+1}}\right\}\right\|_{H^{1}}^{2} \\
& \leq 2\left\|\sum \frac{c_{k}}{\sqrt{a_{k}^{2}+1}}\left(\exp i a_{k} x-\exp i k x\right)\right\|_{2}^{2} \\
& +2\left\|\sum c_{k}\left\{\frac{1}{\sqrt{a_{k}^{2}+1}}-\frac{1}{\sqrt{k^{2}+1}}\right\} \exp i k x\right\|_{2}^{2} \\
& +2\left\|\sum\left\{\frac{c_{k} a_{k}}{\sqrt{a_{k}^{2}+1}}\right\}\left(\exp i a_{k} x-\exp i k x\right)\right\|_{2}^{2} \\
& +4\left\|\sum\left\{\frac{c_{k}\left(a_{k}-k\right)}{\sqrt{a_{k}^{2}+1}} \exp i k x\right\}\right\|_{2}^{2} \\
& +4\left\|\sum c_{k} k\left\{\frac{1}{\sqrt{a_{k}^{2}+1}}-\frac{1}{\sqrt{k^{2}+1}}\right\} \exp i k x\right\|_{2}^{2}
\end{aligned}
$$

Recall that if $\sup \left|a_{k}-k\right| \leq L<1 / 4$,
$\left\|\sum c_{k}\left(\exp i a_{k} x-\exp i k x\right)\right\|_{2}^{2}$

$$
<(1-\cos \pi L+\sin \pi L)^{2}<1
$$

for $\sum\left|c_{k}\right|^{2}<1$. Note also

$$
\begin{aligned}
& \sum\left|\frac{c_{k}}{\sqrt{a_{k}^{2}+1}}\right|^{2} \leq \sum\left|c_{k}\right|^{2}<1 \\
& \sum\left|\frac{c_{k} a_{k}}{\sqrt{a_{k}^{2}+1}}\right|^{2} \leq \sum\left|c_{k}\right|^{2}<1
\end{aligned}
$$

$$
\begin{align*}
& \quad\left\|\sum \frac{c_{k}}{\sqrt{{a_{k}}^{2}+1}}\left(\exp i a_{k} x-\exp i k x\right)\right\|_{2}^{2} \tag{10}\\
& +\left\|\sum \frac{c_{k} a_{k}}{\sqrt{a_{k}^{2}+1}}\left(\exp i a_{k} x-\exp i k x\right)\right\|_{2}^{2} \\
& \leq(1-\cos \pi L+\sin \pi L)^{2} \sum \frac{\left|c_{k}\right|^{2}}{a_{k}^{2}+1} \\
& +(1-\cos \pi L+\sin \pi L)^{2} \sum \frac{a_{k}^{2}\left|c_{k}\right|^{2}}{a_{k}^{2}+1} \\
& \leq(1-\cos \pi L+\sin \pi L)^{2} \sum\left|c_{k}\right|^{2} \\
& <(1-\cos \pi L+\sin \pi L)^{2} .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \left\|\sum c_{k}\left\{\frac{1}{\sqrt{a_{k}^{2}+1}}-\frac{1}{\sqrt{k^{2}+1}}\right\} \exp i k x\right\|_{2}^{2} \tag{11}\\
& +2\left\|\sum \frac{c_{k}\left(a_{k}-k\right)}{\sqrt{a_{k}^{2}+1}} \exp i k x\right\|_{2}^{2}
\end{align*}
$$

$$
\begin{aligned}
& +2\left\|\sum c_{k} k\left\{\frac{1}{\sqrt{a_{k}^{2}+1}}-\frac{1}{\sqrt{k^{2}+1}}\right\} \exp i k x\right\|_{2}^{2} \\
& \leq \sum\left|c_{k}\right|^{2}\left\{\frac{\sqrt{k^{2}+1}-\sqrt{a_{k}^{2}+1}}{\sqrt{a_{k}^{2}+1} \sqrt{k^{2}+1}}\right\}^{2} \\
& +2 \sum\left|k c_{k}\right|^{2}\left\{\frac{\sqrt{k^{2}+1}-\sqrt{a_{k}^{2}+1}}{\sqrt{a_{k}^{2}+1} \sqrt{k^{2}+1}}\right\}^{2} \\
& +2 \sum\left|c_{k}\right|^{2}\left\{\frac{a_{k}-k}{\sqrt{k^{2}+1}}\right\}^{2} \\
& \leq \sum\left|c_{k}\right|^{2}\left\{\frac{\left(2 k^{2}+1\right)\left(\sqrt{k^{2}+1}-\sqrt{\left.a_{k}^{2}+1\right)}\right.}{\sqrt{\left(k^{2}+1\right)\left(a_{k}^{2}+1\right)}}\right\}^{2} \\
& +\sum\left|c_{k}\right|^{2}\left\{\frac{a_{k}-k}{\left.\sqrt{k^{2}+1}\right\}^{2}}\right. \\
& \leq \sum\left|c_{k}\right|^{2}\left\{\frac{4 k^{2}+3}{\left(k^{2}+1\right)\left(a_{k}^{2}+1\right)}\left(k-a_{k}\right)^{2}\right\} \\
& \leq 4 \sum\left|c_{k}\right|^{2}\left\{\frac{\left(a_{k}-k\right)^{2}}{a_{k}^{2}+1}\right\} \\
& \leq 4 L^{2} \sum \frac{\left|c_{k}\right|^{2}}{a_{k}^{2}+1} \\
& \leq 4 L^{2}
\end{aligned}
$$

By using (9), (10), and (11),

$$
\left\|\sum c_{k}\left(\frac{\exp i a_{k} x}{\sqrt{{a_{k}}^{2}+1}}-\frac{\exp i n x}{\sqrt{k^{2}+1}}\right)\right\|_{H^{1}}^{2}
$$

$$
<2(1-\cos \pi L+\sin \pi L)^{2}+8 L^{2}
$$

<1.

References

[1] E. Landau: Einfürung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. Teubner 2nd Ed. (1927).
[2] E. Landau: Vorlesungen über Zahlentheorie II. Hirzel (1927).
[3] E. Landau: Zur analytischen Zahlentheorie der definiten quadratischen Formen. S.-B. Preuss. Akad. Wiss, pp. 458-476 (1915).
[4] John J. Benedetto: Irregular Sampling and Frames. (eds. Wavelets-A Tutorial in Theory and Applications C. K. Chui). Academic Press Inc., pp. 445-507 (1992).
[5] M. Senechal: Quasicrystals and Geometry. Cambridge University Press, Cambridge (1995).
[6] R. M. Young: An Introduction to Nonharmonic Fourier Series. Academic Press Inc., New York (1980).

