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1. Introduction. In the article [2], we in-
vestigated a possible generalization of the Cheby-
shev polynomials Tn(x), Un(x) (n 0,1, "),
focusing on the Diophantine equation satisfied by
them: () Tn(x)2- (x- 1) Un_l(x)= 1, n-
1,2," ". The crucial idea of [loc. cit.] was to re-
gard this as a defining equation of a twist of a

conic by itself. As a natural generalization, we
considered a twist of a conic by an arbitrary
hyperelliptic curve, and obtained a family of
Diophantine equations which have solutions in a
certain one-parameter family of polynomials in
one variable. In the present article, we proceed to
higher dimensional cases and consider the twist
of a double cover of the affine space of dimension
N_ 1 by itself. As a result, we find certain
families of polynomials in N variables, called the
generalized Chebyshev polynomials, which enjoy a
lot of fundamental properties similar to the ones
the usual Chebyshev polynomials do. The pur-
pose of this article is to announce these prop-
erties. Details will appear elsewhere.

2. Twist and generalized Chebyshev polyno-
mials. Let k be an arbitrary field of characteris-
tic :/: 2. Let Gm denote the multiplicative group
and let TN denote the norm torus of dimension N.
It is defined to be the kernel of the norm map
N+IGm --Gm given by the formula: (ul,

un+ 1) II ui. The norm torus Tw is stable
liN+l

under the natural action of the symmetric group

SN+ of degree N 4- 1 on Gm+1. Hence, if we de-
note by AN+ the alternating group of degree-N
4- 1, then we have quotient maps: TN TN/AN+
d TN/SN+I. We denote by A(ul," ’’, UN+1) the
difference product II (ui- u), and by D

li<jN+l

D(zx,"" ", x) its square: D D(xx,’’ ",

(A (u, ", u+x))z. Then the quotient
is defined by the equation D(z,’- ",

where xk(1 G k <_ N) denote the k-th
elementary symmetric polynomial. The rational
maps p, q are given by the formulas:

p(u,’", uu+) (x,’", xn, ),
q(xl,"’, XN, Y) (Xl,’’’, XN).

The n-th power endomorphism of GmN+I induces
the endomorphism [n] of TN, and it commutes
with the action of SN+I. Therefore we have the
following commutative diagram:

In]

In]

T/A+ T/A+

G/G/ T/S/.
(Here we used the same symbol [n] for the induced
maps). Let TN" denote the twist of TN/AN+ by the
quadratic extension k(TN/AN+I)/k(TN/SN+I),
where k(X) denotes the rational function field of
a variety X defined over k. The twist Tg’ is de-
fined over k(TN/SN+1) - k(Xl,’" ", XN) and its
defining equation is given by the following:

TN" D(Xl," ", xN) Y D(Xl,.. XN),
where the capital letters X1,’’’, XN, Y are re-
garded as variables (see [2] for the fundamental
properties of twists). As for the set TN’(k(xi,’",
XN)) of k(xl,’’’, xN)-rational points of TN’, we
have the following theorem which can be proved
in the same way as in [2]:

Theorem 2.1. There is a natural bijection be-
tween the set TN’(k(xl,’’’, XN)) and the set A
(f Ratk(TN/AN+I, TN/AN+I) f f},
where Rat(V, W)for k-varieties V, W denotes
the set of k-rational map of V to W, and denotes
the involution of Tg defined by the formula
(x,..., x, y) (x,..., x, y).
By this theorem, the n-th power map [hi corres-
ponds to a k(xl,’’’, XN)-rational point on the
twist TN’, which we denote by
(t(" (x,. ., x),. ., t(, (x,..., x), s.(x,. ., x)).
We call t(*)(xl, ", XN) (k- 1," ", N) the
generalized Chebyshev polynomial of the first kind,

and sn (x xN) the generalized Chebyshev
polynomial of the second kind, because of the fol-
lowing natural generalization of ):
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Theorem 2.2. For any positive integer n, the
point

.(1) (Xl, *, XN(x,..-,x,,, Y) (.
, (x," ", x), s,(x," ", x))

lies on the twist

TN’ D (xl XN) y2 D(XI XN)
Note that the generalized Chebyshev polyno-

mials of the first kind are expressed as tn()-
rnrk), where rn) ui ug with (2)
(2-.-2N) a Young diagram, and the sum going
through all the distinct permutations 6f (2," "’,

2N). In view of this, we call m the generalized
Chebyshev polynomials.

3. Various properties. The usual Cheby-
shev polynomials are known to have a lot of fun-
damental properties. Most of these can be gener-
alized as follows.

Theorem 3.1 (Multiplicativity). [’or any posi-
tive integers m, n.

(N)(" (t(i) (x XN) rt (Xl XN))
mn (XI," ", ZN),

(N) (1) (N) (X ", XN))[m I,[n ’Xl, ", ZN) ", n ,"

.,
"(’) (x ", x)Sm (t(,,) (XI, XN), . ,’*

s,(x,’.., x) s,(x,..., x).
For any positive integer m, let "* denote a

primitive m-th root of unity, and let /2,, denote
the group of m-th roots of unity. Then the set
Z of the common zeroes of N polynomials

n (k 1, "’’, N) is found to be

{(XI’" "’ XN) ;Xk t(k, (/1," ", "N+I) with

ui (N+),P, forl<--i<--N, and H ui=l
IN+I

Theorem 3.2 (Discrete orthogonality). Let N
>- 2 and let k, be positive integers. If N is even,

then
.(1) t;1)E tk (Xl, XN) (Xl,*’’,XN)

(X,. ,xv)Z

nN(N+ 1)2 k-- l=- O(mod(N+ 1)n)
nN(N+ 1), k+ l= O(mod(N+ 1)n)

[k 0(modn)
and[ or
l 0(modn),

otherwise.O
IfN is odd, then

(x,... ,XN)Z
tl)k (Xl’’* XN) (Xl’’’’’ XN)

nN(N+ 1)2, k= l=- O(mod2(N+ 1)n),
nN(N+ 1), k+ l= 0(mod2(N+ 1)n)

[k 0(modn)
andl or

l 0 (modn),
O, otherwise.
From now on, we assume that the base field

is C, the field of complex numbers. Let S denote
the unit circle in the complex plane.

Theorem 3.3 (Orthogonality). Let S denote
the image of {(u,’’ ",

IiN+I

u 1} under the map (u,’’’, UN+1) -- (Xl,"
XN). Then for any pair m(), m() of the generalized

Chebyshev polynomials,

f dXl’" dx
m(, (x, xu) m() (x, xv) (I :i N)

(2r(" 1 )gd()
(N + 1)! if (21, /2 -3W [N,, N

+ , t) c" (1,’", 1)
for some integer c,

O, otherwise.
For a complex valued continuous function f

on S, let f maxxs If(x) I.
Theorem 3.4 (Extremal property). For any

monic polynomials p of degree n > 0 in N variables

x, xN, we have liP II-> N + 1. The equality
(1) .(N)holds if and only ifp t or p

The following is a direct consequence of this
theorem:

Corollary ([1], Theorem). For polynomials

Pn-x (z, 2) of degree n- 1 over C,
infe,,_ maxims z" + P,,-l(Z, 5) 1-- 3.

Moreover, the maximum is attained only when zn +
() (z )Pn-i (z, 2) n

Remark. Our theory gives a much shorter
and simpler proof of this corollary than the one

in [loc. cit.]. Furthermore, if we put N-- 1 in our
proof, then we obtain much simpler proof of [3],
Theorem 2.1 which deals with the extremal prop-
erty of the usual Chebyshev polynomials.

Theorem 3.5 (Differential equation). For any
Young diagram (/) (/1, N), the correspond-
ing polynomial m() is a solution of the partial dif-
ferential equation
(3.5.1) E Akkfxkx, + E Ak,fx, x, +

lkN lk<lN

Bfx=(N -2 ,)f
<N <N I<<j<N

where

Ak (--kZ+ (N + 1)k}x2- (N + 1)
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2 (2k 2r)x2k_Cr, 1 <_ k <_ N,
Ork-1

A (2k((N + 1)-- l)}xx 2(N + 1)
] (k + l-- 2r)xk+_jzr, 1< k< l< N,

Ork-1

B= k(N + 1-- k)x, 1 < k < N.
Let QN(2) QN(/I,..., /N) denote the quadra-
tic form N -- 2 /.

liN Ii<jN

Theorem 3.6 (Uniqueness). For any E
Z, the set {m Qg(2): E} of the generalized
Chebyshev polynomials constitutes a base of the vec-
tor space of polynomial solutions of the partial dif-
ferential equation Df El, where D denotes the

differential operator appearing on the left hand side

o(3.5.).
Theorem 3.7 (Dimension formula). The

dimension of the space of polynomials solutions of
(3.5.) is

O, if E is odd,

(1, ire is even and El2 is not asquare,
IE/2

where (--) denotes the Legendre symbol.
heorem .8 (Numerical integration I). For

each pair (i, j) of integers with 0 i, j 1,
a+l -a-aj-1).let P(i j) ( , , Then for any

polynomial f
--1, the following nmerical integration formula
holds:

dXldX2 f(P(i j)).
2

f 4D(x, x) 3n o,-

Theorem 3.9 (Numerical integration II). For
each triple (i, j, k) of integers with 0 <-- i, j, k

8i+1 8j+3 8k+5< n-- 1 let P(i j, k) (sn sn sn
-8i-8j-8k-9
8n Then for any polynomial f in three

variables x, xe, x3 of degree

_
2n 1, the follow-

ing numerical integration formula holds:

dxldxdx3 3
f v/D(Z1, X2’ 23) 3n

/- 1

E f(P(i, j, k)).
Oi,j,k<_n-1

Let tn denote the self map of S defined by
(N)

the formula: tn(x) (tn(1)(x), tn (x)) for
x (x,’’’, xN) S. Let B denote the family of
Borel subsets of S, and let/2 be the measure de-
fined by

N/ 1

_
dx’" dxp(B)

(27r--)g ’ CDll :: g)’ B B.

Then we have the following:

Theorem 3.10 (Ergodicity). Each tn (n >-- 1)
preserves the measure [2. Moreover, each tn (n 1)
is ergodic.
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