On the Rank of Elliptic Curves with Three Rational Points of Order 2

By Shoichi KIHARA
Department of Neuropsychiatry School of Medicine, Tokushima University
(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1997)

The purpose of this note is to prove.
Theorem. There are infinitely many elliptic curves with rank ≥ 4 over \boldsymbol{Q}, which have 3 distinct non-trivial rational points of order 2.

1. We begin by proving.

Proposition 1. Let K be any field of characteristic $\neq 2, A, B, C \in K^{*}=K-\{0\}, B^{2} \neq 4 A C$ and $A^{-1} C \in\left(K^{*}\right)^{2}$. Suppose, moreover, that the elliptic curve

$$
\varepsilon: y^{2}=A x^{4}+B x^{2}+C
$$

has a K-point $P=(d, e), d, e \in K$. Then ε has 3 distinct non-trivial K-points of order 2 .

Proof. As $A, B, C \in K^{*}, B^{2} \neq 4 A C$ and $A^{-1} C \in\left(K^{*}\right)^{2}$, we can find $a, b, c \in K^{*}$ such that $A=a, B=2 a b+c, C=a b^{2}$ so that ε can be represented by

$$
y^{2}=x^{2}\left(a\left(x+\frac{b}{x}\right)^{2}+c\right)
$$

Define the birational transformations
$\chi_{P}(x, y)=\left(\frac{1}{x-d}, \frac{y}{(x-d)^{2}}\right)$
$\varphi_{P}(u, v)=\left(2 e^{2} u^{2}+\left(4 a b d+2 c d+4 a d^{3}\right) u-\right.$
$2 e v+2 a d^{2}-2 a b, 4 e^{3} u^{3}+3 e(4 a b d+2 c d+$
$\left.4 a d^{3}\right) u^{2}+2 e\left(2 a b+c+6 a d^{2}\right) u+4 a d e-$
$\left.\left(4 a b d+2 c d+4 a d^{3}\right) v-4 e^{2} u v\right)$
and put $\psi_{P}=\varphi_{P}{ }^{\circ} \chi_{P}$. Then the computation shows that ε is transformed by $\psi_{p}(x, y)=(X, Y)$ into the Weierstrass model

$$
\mathscr{F}: Y^{2}=X(X+4 a b)(X+4 a b+c)
$$

which has 3 distinct non-trivial K-points of order $2:(0,0)(-4 a b, 0),(-4 a b-c, 0)$.
Q.E.D.
2. Now let $K=\boldsymbol{Q}(t)$, t being a variable.

We shall construct an elliptic curve ε_{0} over K with $5 K$-points P_{0}, \ldots, P_{4}.

Let $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=(2 t+90,6 t+150,10 t$ $+234,18 t+410)$ and consider the polynomial $f(z)=\prod_{i=1}^{4}\left(z-\alpha_{i}^{2}\right) \in K[z]$ of 4 th degree. There exist uniquely $g(z), r(z) \in K[z]$ of degrees 2,1 , respectively, such that $f(z)=(g(z))^{2}-r(z)$. As
$r(z)$ is a linear polynomial, $x^{2} r\left(\left(x+\frac{\beta}{x}\right)^{2}\right)$ with $\beta \in K^{*}$ is a polynomial of 4 th degree over K which has only terms of degrees $4,2,0$. For $\beta=$ $45(2 t+45)$, this polynomial becomes $A_{0} x^{4}+$ $B_{0} x^{2}+C_{0}$ where
$A_{0}=\left(t^{2}+45 t+499\right)\left(3 t^{2}+135 t+1502\right)$ $\left(3 t^{2}+135 t+1546\right)$,
$B_{0}=-\left(13374 t^{6}+1805490 t^{5}+101365376 t^{4}\right.$
$+3029355090 t^{3}+50827314206 t^{2}+$
$453946682520 t+1686020339144)$,
$C_{0}=2025(2 t+45)^{2}\left(t^{2}+45 t+499\right)\left(3 t^{2}+\right.$ $135 t+1502)\left(3 t^{2}+135 t+1546\right)$.
Observe that $A_{0}, B_{0}, C_{0} \in K^{*}, B_{0}^{2} \neq 4 A_{0} C_{0}$, $A_{0}^{-1} C_{0} \in\left(K^{*}\right)^{2}$. Using the relation $r(z)=$ $(g(z))^{2}-\prod_{i=1}^{4}\left(z-\alpha_{i}^{2}\right)$, we see that the elliptic curve

$$
\varepsilon_{0}: y^{2}=A_{0} x^{4}+B_{0} x^{2}+C_{0}
$$

has the following $5 K$-points:
$P_{0}=\left(5,10\left(27 t^{4}+2430 t^{3}+81901 t^{2}+\right.\right.$ $1225170 t+6862992)$),
$P_{1}=\left(-5,-10\left(27 t^{4}+2430 t^{3}+81901 t^{2}+\right.\right.$ $1225170 t+6862992))$,
$P_{2}=\left(9,18\left(15 t^{4}+1350 t^{3}+45429 t^{2}+\right.\right.$ $677430 t+3777176))$,
$P_{3}=\left(15,30\left(9 t^{4}+810 t^{3}+27163 t^{2}+\right.\right.$ $402210 t+2218808)$),
$P_{4}=\left(45,90\left(3 t^{4}+270 t^{3}+9309 t^{2}+\right.\right.$ $145530 t+867008)$).
As A_{0}, B_{0}, and C_{0} satisfy the conditions for A, B, and C in Proposition 1 and $P_{0} \in \varepsilon_{0}, \varepsilon_{0}$ has 3 distinct, non-trivial K-points of order 2 .

Now we prove.
Proposition 2. K-rank of ε_{0} is at least 4.
Proof. Let \mathscr{F}_{0} be the Weierstrass model of ε_{0} obtained by $\psi_{P_{0}}$ and $Q_{i}=\psi_{P_{0}}\left(P_{i}\right), i=1, \ldots$, 4. \mathscr{F}_{0} and ε_{0} have of course the same rank. Let σ be the specialization $t=1 . \sigma\left(\mathscr{F}_{0}\right)$ is a \boldsymbol{Q}-curve with $4 \boldsymbol{Q}$-points $\sigma\left(Q_{i}\right)=R_{i}, i=1, \ldots, 4$, and it suffices to show that R_{1}, \ldots, R_{4} are independent
on $\sigma\left(\mathscr{F}_{0}\right)$. By using the calculation system PARI, we see that the determinant of the matrix ($<R_{i}$, $\left.R_{j}>\right)(1 \leq i, j \leq 4)$ associated to the cannonical height is 531.50 . That it does not vanish assures the independency of R_{1}, \ldots, R_{4}. Q.E.D. As the modular invariant of ε_{0} is not constant, this Proposition establishes our Theorem (cf. [1]).

Reference

[1] J. H. Silverman: The arithmetic of elliptic curves. Graduate Texts in Math., vol. 106, SpringerVerlag, New York (1986).

