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The purpose of this note is to prove.

Theorem. There are infinitely many elliptic
curves with rank = 4 over @, which have 3 dis-
tinct non-trivial rational points of order 2.

1. We begin by proving.

Proposition 1. Let K be any field of charac-
teristic # 2,4, B, C€ K* =K — (0}, B+ 4AC
and A7'C € (K™)? Suppose, moreover, that the
elliptic curve

e:y'=Az*+ Bx*+ C
has a K-point P = (d, e), d, ¢ € K. Then ¢ has
3 distinct non-trivial K-points of order 2.

Proof. As A, B, C € K*, B® #+ 4AC and
A7'C € (K®)? we can find a, b, c € K* such
that A= a, B=2ab+ ¢, C= ab’® so that € can
be represented by

y' = x2<a(x + %)2 + c>.

Define the birational transformations

X, y) = (x-l- d’ (.Z“?id)2>

op(u, v) = (2e*u’® + (4abd + 2cd + 4ad’)u —
2ev + 2ad” — 2ab, 4¢°u’ + 3e(dabd + 2¢d +
4ad®)u® + 2¢(2ab + ¢ + 6ad”)u + 4ade —
(4abd + 2¢d + 4ad*)v — 4e*uv)
and put ¢p = @p° xp. Then the computation shows
that & is transformed by ¢p(x,y) = (X,Y)
into the Weierstrass model
F:Y?= XX + 4ab) (X + 4ab + ¢
which has 3 distinct non-trivial K-points of
order 2: (0,0) (— 4ab, 0), (— 4ab — ¢, 0).
Q.E.D.
2. Now let K= Q(®, ¢t being a variable.
We shall construct an elliptic curve &, over
K with 5 K-points P,,..., P,
Let (a;, a,, a,, @) = (2¢t + 90,6¢ + 150,10t
+ 234,18t + 410) and consider the polynomial

4
f(2) = 1I (z — a®) € Klz] of 4th degree. There
i=1

exist uniquely g(2), 7(z) € K[z] of degrees 2,1,
respectively, such that f(z) = (g(2))* — 7(2). As

2
r(z) is a linear polynomial, x27<(x + g) ) with

B € K™ is a polynomial of 4th degree over K
which has only terms of degrees 4, 2, 0. For 8 =
45(2t + 45), this polynomial becomes A(,ac4 +
B,x® + C, where

A, = (£ + 45t + 499) (3t* + 135¢ + 1502)

(3t + 135¢ + 1546),

B, = — (133741° + 1805490¢° + 101365376t"
+ 3029355090 + 508273142064 +
453946682520 + 1686020339144),

C, = 2025(2t + 45)*(t* + 45t + 499) (3¢* +
135¢ + 1502) (3t* + 135¢ + 1546).

Observe that 4,, B,, C, € K*, B} + 4A,C,,

A,'C, € (K™® Using the relation 7(2) =

4
(g(@)?— M (z — a5, we see that the elliptic
i=1

curve
gy’ = Az’ + Bz’ + C,
has the following 5 K-points:
P, = (5, 10(27¢* + 2430¢° + 81901+ +
1225170t + 6862992)),
P, = (— 5, — 1027t* + 2430¢° + 81901+ +
1225170t + 6862992)),
P, = (9, 18(15¢" + 1350¢° + 45429¢° +
677430t + 3777176)),
P, = (15, 30(9t* + 810¢°> + 27163¢* +
402210t + 2218808)),
P, = (45, 90(3¢t* + 270¢> + 9309¢* +
145530t + 867008)).
As A,, B,, and C, satisfy the conditions for
A, B, and C in Proposition 1 and P, € ¢, &, has
3 distinct, non-trivial K-points of order 2.
Now we prove.
Proposition 2. K-rank of ¢, is at least 4.
Proof. Let ¥, be the Weierstrass model of
€, obtained by ¢p and @, = ¢, (P), i=1,...,
4. F, and ¢, have of course the same rank. Let o
be the specialization ¢t = 1. o(%¥,) is a Q-curve
with 4 Q-points 0(Q;) = R;,,i=1,..., 4, and it
suffices to show that R,,..., R, are independent
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on 0(%#,). By using the calculation system PARI, Reference
we see that the determinant of the matrix (< R,, [1] J. H. Silverman: The arithmetic of elliptic curves.
Rj >) (1 <4, j <4) associated to the cannonic- Graduate Texts in Math., vol. 106, Springer-
al height is 531.50. That it does not vanish Verlag, New York (1986).
assures the independency of R;,..., R,, Q.E.D.

As the modular invariant of ¢, is not con-
stant, this Proposition establishes our Theorem

(cf. [1]).



