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Maximal Unramified Extensions of Imaginary Quadratic
Number Fields of Small Conductors
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Let K be an algebraic number field (of finite methods which J. Masely [13] (and later F. J. van
degree) and Kur its maximal unramified exten- der Linden [18]) used for calculation of class
sion. Then the Galois group Gal(Ku,./K) can be numbers of real abelian number fields of small
both finite and infinite and in general it is quite conductors. They used Odlyzko’s discriminant
difficult to determine the structure of this group, bounds and information on the structure of class
If K has sufficiently small root discriminant, then groups obtained by using the action of Galois

Kur K, that is, K has no nontrivial unramified groups on class groups. In addition to their

extension. This is the case, for example, for the methods, we use computer for calculation of class
imaginary quadratic number fields with class numbers of fields of low degrees (we use KANT)
number one, the cyclotomic number fields with and then use class number relations to get class
class number one, and the real abelian number numbers of fields of higher degrees. Results on
fields of prime power conductors <_-- 67 (see [20, class field towers [2, 8, 10, 11, and 17] and the
Appendix]). For some fields K with small root knowledge of the 2-groups of orders <= 26 [5] and
discriminant, we can determine Gal(Ku,./K). The linear groups over finite fields are also used.
purpose of this article is to report that we have We know that if dl <_ 499 (I d <= 2003
determined the structure of Gal(K.r/K) of ira- under GRH), then the degree [K.r’K] is finite
aginary quadratic number fields K of small con- (see [12]). For these d, we want to determine
ductors. (Details will apear elsewhere [21]). For Gal(K../K). The key fact is that any unramified
imaginary quadratic number fields K of conduc- (finite) extension L of K has the same root discri-
tors

_
420 (_ 719 under the Generalized minant as K’rdt -]dz ]/[e: rdi- vql d

Riemann Hypothesis (GRH)) we determine Thus, if we have rdi < B(2N), where B(2N)
Gal(Ku/K) and tabulate them for K with K,r =/= denotes the lower bound for the root discrimi-

K1, where K1 denotes the Hilbert class field of K. nants of the totally imaginary number fields of

(If K, K1, then Gal(K,/K) Gal(K/K) "=- (finite) degrees => 2N, then we get [Ku" K]
CI(K), the class group of K by class field < N. We do not know the real values of B(2N)
theory). For all such K, K,r- K, K1, K., or Ka, (except for N

_
4), however, some lower bounds

where Ka (resp. Ka) is the second (resp. third) for B(2N)are known. The best known uncon-

Hilbert class field of K. In other words, Ku coin- ditional lower bounds for B(2N) can be found in
cides with the top of the class field tower of K the tables due to F. Diaz y Diaz [4]. If we assume
and the length of the tower is at most three. If the truth of GRH, much better lower bounds can

possible, we give also simple expressions of K be obtained. The best known conditional (GRH)
and K. Also for K- Q(-d) with 723 <_- [all lower bounds are found in the unpublished tables
< 1000, we determine Gal(Kur/K) except for due to A. M. Odlyzko [14], which are copied in
some d. (For table for such fields, see [21]). Martinet’s expository paper [121. Let K be the

Let K- Q(d) be an imaginary quadratic top of the class field tower of K K Ko _--__ K
number field with discriminant d < 0. J. Martinet _--__ K (K+ is the Hilbert class field of K),
stated in [12] that if ]d[ < 250, then Kur- K that is, is the smallest number with K+- K.
except for 7 fields, for which he gave the struc- If we cannot get [K,r’Kt] < 60, which implies
ture of Gal(Kur/K). (We note that Gal(K,r/K) Kur- K, from available lower bounds for-- H24 for K-- Q(v/- 248) in [121 is false). He B(2N), we need to judge whether K has an un-

also stated that this fact is proved by using the ramified nonsolvable Galois extension and this is
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quite difficult. For the fields Q(/-423)and
Q(v/- 723), we have h(K1) 1, that is, 1-- 1
and we cannot get [Kur’K1] < 60 from available
lower bounds for B(2N) (even under GRH for
Q(/- 723)). For [dl < 420(I d < 719 under
GRH), we get [Kur’Kt] < 60 and our main prob-
lem is to determine the degree [Kt’Q]. In gener-

al, it is difficult to determine [K2" Q], because it

is very hard to calculate the class number
h(K1) of K1. (Of course, for K with small CI(K),
we can calculate h(K1) with the help of compu-
ter). Now let Kg be the genus field of K, that is,
the maximal unramified abelian extension of K
which is abelian over Q. If d is the discriminant
of K and d- did,. d is the facorizaion of d
into [he product of fundamental prime discrimi-

nants, then Kg- Q(, ,’’’, ), and we

have
Q c K K K (Kg)

which implies [Ka Q] [Ka (Kg) l] [(Kz)l" Q]

[Ke" (Kg)I](K)[Kg’Q]. As K is a multi-
quadratic number field, (Kg)can be calculated
by the method in [19], and we may expect that

[Ka" (Kg)] is small for fields we consider on the
ground of the following proposition (proved in

[21).
Prpsitin. Let L be the Hilbert class field of

the guuus field Ku of an imaginary abeliau number

field K. Then for any prime number p with p
[L’Q], the p-class group C1() (L) of L is trivial or

noncyclic.
As a remarkable fact, for all K with ]d

< 1000 such that (Ke) > (/[Kz’,
which is equivalent to (Kg) K, we have Ka
(Kg) 1, that is, the second Hilbert class field of K
coincides with the Hilbert class field of the genus

field Kg of K. For h(Ke) > h(K)/{K:K],
h(K) must necessarily be even. (h(K) is even if
and only if d has (at least) two distinct prime fac-
tors), however, for most K, this inequality holds.
In fact, if a quadratic subfield =/= K of Kg has
class number divisible by an odd prime p, then
we have h(K) >= ph(K)/[K:K]. Thus, the fol-
lowing question arises naturally:

Question. Let K be an imaginary abelian num-
ber field. Assume that h(Kg) > h(tO/[Kg:K].
Then does the equality

(,) K (Ks)
hold? If the answer is not affirmative in general,
characterize K for which the equality holds.
The author expects that this problem can be set-
tled group-theoretically and that similar results
would also hold for real quadratic number fields.

Except for Q(v/- 856) and Q(v/- 996), we

can characterize K (with Idl < 1000) for which

we can easily get an unramified extension not
contained in (K,) 1. If the discriminant d of K is

divisible by the discriminant dE of a quartic
number field , then K has an unramified exten-

sion not contained in (Kg)l The normal closure
of E is an S4-extension of Q unramified at all fi-

nite primes over its quadratic subfield Q(dE).
This unramified extension yields an unramified

A4-extension of K, (by composition), where S
(resp. A4) denotes the symmetric (resp. alternat-
ing) group of degree four. Therefore, data for
quartic number fields are useful for our study.
The fields Q(V- 856) and Q(v/- 996) are spe-
cial in the sense that though these fields do not
satisfy the condition dE Id, we can check that
they have an unramified S4-extension. Thus,
K- Q(/) with ]d[ 1000, can be classified

simply as follows:

h(Ke) h(K)/[Ke’K][h(K) 1...Ku- K

d :/: 856, 996 h(K) > 1 Kur- K1

dE Z d h(K,) > h(K) /[Kg’K] ..Kr K

d-- 856, 996 l=> 3

d dE[ dE P prime

dld
t dE:composite

d- d’ds(d’: fundamental quadratic discriminant)

1>2

l__>3

Ku (Kg)
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Note that in this classification, there are some

possible exceptions. More precisely, for some

fields K with dEAd:/: 856, 996, we have
not succeeded in showing Kur (Kg)l.

For most K we considered, Kur= K is
checked. Thus, the following natural question
arises: What is the first imaginary quadratic
number field having an unramified nonsolvable
Galois extension .9 (What is the first K with Kur
:/: K .9 Recent data for quintic number fields

[1 and 16] enable us to give a partial answer:

Proposition. The field Q(v/- 1507)is the

first imaginary quadratic number field having an

unramified A-extension which is normal over Q in

the sense that none of Q(/-d) of discriminant d with
0 d > 1507 has such an extension. Moreover,
such an extension of Q(v/- 1507) is given by the
composite field of it with the splitting field of the

quintic polynomial X- 5X + 5X + 24X + 4,
which is an A-extension of Q.
we expect that the field Q(v/- 1507) gives the
answer to the question above.

For the determination of the structure of

Gal(Ku/K), the results on the 2-class field

towers due to H. Kisilevsky [8], F. Lemmermeyer
[10 and 11], and E. Benjamin, F. Lemmermeyer,
and C. Snyder [2] are very helpful. They give us

information on the structure of the Galois group

Gal(K()/K) of the second Hilbert 2-class field

K()
of K over K in many cases.
Now we explain the notations in our table.

In the simple expressions of K and K, c, fl
and 7 denote any algebraic numbers generating

the th cubic number field of signature (1,1), the
th quartic number field of signature (2,1) with

Galois group isomorphic to Sa, and the th quintic

Table of imaginary quadratic number fields K Q(-d), ]dl 719 with Kur =/== K

d C1 (K) K1 K
C

C4
C4

V4
C
C

C6 x C
C4

X C
C4 X C2

V4
C
Cs
Cs
V4
C
V4
C4
V4
Cs

Cs

V4

c:

K(,/5
K(v/- 3, ,/5)
K(v 1 + 55-)/2)
K(v/- 3 4- 4,/2)
K(7 3,

K(-, /(9 + v5)/2)
K(/-, v; + -5)
K(v/- 1, /13 + 8/)

K -,ff /
K(a36)
K(v/- 1,
K(v/- 3 4- 4/)
K(v/- 1, v-- 3)

K(v)
K(-,/, 4-)
K(v/, 0"18
K(, v/- 3, -)

Kl(Of1)
K (v/(2/ + /--)(2 + f))

Kl(a)

Kl(v;( + 2v/- 3)(2 + 5))

K1(o1)

K1 (o4)
K1 (o1)

K1 (o/2)
K1(7’1)
El(O/1)
El (7"2)
El (o/2)
Kl(v/- (5 + v/17)/2)
El(O/6)

2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
3
2
2

2
2
2
2
2
2
2
2

G
D

Q12
012
Q16
D
i:

Q8 X C3
M16

Q12 X C2
Q16

QI

SD16
Q2s

D6

D C7

D3
D

D3 C5
32 Fc3
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d C1 (K)
435
440
455
472
483
491
515
520
527
535
552
555
563
564
568
580
595
611
632
635
643
644
651
655
66O
663
664
667
680
687
695
696
708
715

C6 C
Co C2

C6
V4
C9
C6
V4
Cs
C4

C4 C
4
C9

C4 C
C4

C4 C2

Co
C
Co
C

C C2
C4 C2
C2
c;

C C
Co
C4

C6 C
C2
C2

C C

Continued (under GRH)

K(v 3, vz5-)
K((2, v, ao)
K(v/- 7, v, )"21
K(/-,
K(v/- 3, v/- 7)

G
2 Q16 IX C3
2 Q16 X C3
2 Q8 C5

K (ol4) 2 n X C3
Kl(Ol) 2 n
K (fi3) 3 Q8 C9
K1(3) 2 D5 C3

2 Q24
K1(c2) 2 D x Co
K(ao) 2 D x C
K() 2 Q2 C2

2 Q32
K (f14) 3 Vs C9
K() 2 Qo C

2 32 F3f C3
2 04o

K (7) 2 D x C5
K1(2) 2 I
KI(TS) 2 D5 C5
K1 () 3

Kl(al) 2 D3 Cs
Kl(a) 2 D3 C
Kl(r) 2 Qo C3

2 64 F15f2
2 64 F3p

K (a6) 2 D3 x C5
Kl(al) 2 Q

2 Q6 C3
3 (A4 CJ C3

K(a3) 2 I: C3
2 Q C3

K(a) 2 D6
2 Q16 C

K(v/- 3, 1 +
K(v/- 3, f)

K(v/- 1, v / 4-)
K(v/- 1 + 6/-)
K((5-, v/i2 + v/45)
K(--, (5-)
K(lv;, 7"28)

K((--, v/(13 + v/217)/2)
K(vZ7 + 6-,
K(/" 1, f--,

K(v/, "32)
K(v/( 13 + 3f9)/2)
K(, v/, Ce8o)
K(v/ll + 2)/2, O’81)

K(v, f9 + 13-g)
K(v/= i, v/- 3)
K(v/- 11, f)

number field of signature (1,2) with Galois group
isomorphic to Ds, respectively, where we consid-
er that the number fields of each signature and
each type (of Galois group of normal closure) are
numbered up to conjugacy by absolute values of
discriminants. (We do not need to consider noni-

somorphic fields with same discriminants).
G denotes the Galois group Gal(Kur/K). As

usual, Cn is the cyclic group of order n, V4 is the
four group, that is, V4- C2 C2 C2, Dn(n >= 3)
is the dihedral group of order 2n, Q4.(n >= 2) is

the generalized quaternion group of order 4n,
and SD8,(n - 2) is the semi-dihedral group of
order 8n. Ianm(m >= 2, n >= 3) denotes the group
of order 2mm given by

<a, b la"m- bn-- 1, a-lba b-l}.
M2,,(n >= 4) denotes the modular group of order
2n

given by
2n-1 b -1 2n-’-+l>.<a, b la 1, b ab- a

4 is the double cover of A4 :4 SL(2,3).
For some 2-groups we use designations given in
the table by M. Hall and J. K. Senior [5]. We note
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that T. W. Sag and J. W. Wamsley give minimal
presentations for all 2-groups of orders

_
26

Aeknowlegements. The author thanks Prof.
R. School for useful advices. He also thanks Dr.
F. Lemmermeyer for information on his results.
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