Maximal Unramified Extensions of Imaginary Quadratic Number Fields of Small Conductors

By Ken Yamamura
Department of Mathematics, National Defence Academy
(Communicated by Shokichi IYANAGA, M. J. A., April 14, 1997)

Let K be an algebraic number field (of finite degree) and $K_{u r}$ its maximal unramified extension. Then the Galois group $\operatorname{Gal}\left(K_{u r} / K\right)$ can be both finite and infinite and in general it is quite difficult to determine the structure of this group. If K has sufficiently small root discriminant, then $K_{u r}=K$, that is, K has no nontrivial unramified extension. This is the case, for example, for the imaginary quadratic number fields with class number one, the cyclotomic number fields with class number one, and the real abelian number fields of prime power conductors $\leqq 67$ (see [20, Appendix]). For some fields K with small root discriminant, we can determine $\operatorname{Gal}\left(K_{u r} / K\right)$. The purpose of this article is to report that we have determined the structure of $\operatorname{Gal}\left(K_{u r} / K\right)$ of imaginary quadratic number fields K of small conductors. (Details will apear elsewhere [21]). For imaginary quadratic number fields K of conductors $\leqq 420$ ($\leqq 719$ under the Generalized Riemann Hypothesis (GRH)) we determine $\operatorname{Gal}\left(K_{u r} / K\right)$ and tabulate them for K with $K_{u r} \neq$ K_{1}, where K_{1} denotes the Hilbert class field of K. (If $K_{u r}=K_{1}$, then $\operatorname{Gal}\left(K_{u r} / K\right)=\operatorname{Gal}\left(K_{1} / K\right) \cong$ $\mathrm{Cl}(K)$, the class group of K by class field theory). For all such $K, K_{u r}=K, K_{1}, K_{2}$, or K_{3}, where K_{2} (resp. K_{3}) is the second (resp. third) Hilbert class field of K. In other words, $K_{u r}$ coincides with the top of the class field tower of K and the length of the tower is at most three. If possible, we give also simple expressions of K_{1} and K_{2}. Also for $K=\boldsymbol{Q}(\sqrt{d})$ with $723 \leqq|d|$ <1000, we determine $\operatorname{Gal}\left(K_{u r} / K\right)$ except for some d. (For table for such fields, see [21]).

Let $K=\boldsymbol{Q}(\sqrt{d})$ be an imaginary quadratic number field with discriminant $d<0$. J. Martinet stated in [12] that if $|d|<250$, then $K_{u r}=K_{1}$ except for 7 fields, for which he gave the structure of $\operatorname{Gal}\left(K_{u r} / K\right)$. (We note that $\operatorname{Gal}\left(K_{u r} / K\right)$ $\cong H_{24}$ for $K=\boldsymbol{Q}(\sqrt{-248})$ in [12] is false). He also stated that this fact is proved by using the
methods which J. Masely [13] (and later F. J. van der Linden [18]) used for calculation of class numbers of real abelian number fields of small conductors. They used Odlyzko's discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups. In addition to their methods, we use computer for calculation of class numbers of fields of low degrees (we use KANT) and then use class number relations to get class numbers of fields of higher degrees. Results on class field towers $[2,8,10,11$, and 17] and the knowledge of the 2 -groups of orders $\leqq 2^{6}[5]$ and linear groups over finite fields are also used.

We know that if $|d| \leqq 499(|d| \leqq 2003$ under GRH), then the degree $\left[K_{u r}: K\right]$ is finite (see [12]). For these d, we want to determine $\operatorname{Gal}\left(K_{u r} / K\right)$. The key fact is that any unramified (finite) extension L of K has the same root discriminant as $K: r d_{L}=\left|d_{L}\right|^{1 /(L: Q)}=r d_{K}=\sqrt{|d|}$, Thus, if we have $r d_{K}<B(2 N)$, where $B(2 N)$ denotes the lower bound for the root discriminants of the totally imaginary number fields of (finite) degrees $\geqq 2 N$, then we get [$\left.K_{u r}: K\right]$ $<N$. We do not know the real values of $B(2 N)$ (except for $N \leqq 4$), however, some lower bounds for $B(2 N)$ are known. The best known unconditional lower bounds for $B(2 N)$ can be found in the tables due to F. Diaz y Diaz [4]. If we assume the truth of GRH, much better lower bounds can be obtained. The best known conditional (GRH) lower bounds are found in the unpublished tables due to A. M. Odlyzko [14], which are copied in Martinet's expository paper [12]. Let K_{l} be the top of the class field tower of $K: K=K_{0} \subseteq K_{1}$ $\subseteq K_{2} \subseteq \cdots\left(K_{i+1}\right.$ is the Hilbert class field of $\left.K_{i}\right)$, that is, l is the smallest number with $K_{l+1}=K_{l}$. If we cannot get [$K_{u r}: K_{l}$] <60, which implies $K_{u r}=K_{l}$, from available lower bounds for $B(2 N)$, we need to judge whether K_{l} has an unramified nonsolvable Galois extension and this is
quite difficult. For the fields $\boldsymbol{Q}(\sqrt{-423})$ and $\boldsymbol{Q}(\sqrt{-723})$, we have $h\left(K_{1}\right)=1$, that is, $l=1$ and we cannot get $\left[K_{u r}: K_{1}\right]<60$ from available lower bounds for $B(2 N)$ (even under GRH for $\boldsymbol{Q}(\sqrt{-723}))$. For $|d| \leqq 420(|d| \leqq 719$ under GRH), we get $\left[K_{u r}: K_{l}\right]<60$ and our main problem is to determine the degree $\left[K_{l}: \boldsymbol{Q}\right]$. In general , it is difficult to determine $\left[K_{2}: \boldsymbol{Q}\right]$, because it is very hard to calculate the class number $h\left(K_{1}\right)$ of K_{1}. (Of course, for K with small $\mathrm{Cl}(K)$, we can calculate $h\left(K_{1}\right)$ with the help of computer). Now let K_{g} be the genus field of K, that is , the maximal unramified abelian extension of K which is abelian over \boldsymbol{Q}. If d is the discriminant of K and $d=d_{1} d_{2} \cdots d_{t}$ is the factorization of d into the product of fundamental prime discriminants, then $K_{g}=\boldsymbol{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \cdots, \sqrt{d_{t}}\right)$, and we have

$$
\boldsymbol{Q} \subset K \subseteq K_{g} \subseteq K_{1} \subseteq\left(K_{g}\right)_{1} \subseteq K_{2}
$$

which implies $\left[K_{2}: \boldsymbol{Q}\right]=\left[K_{2}:\left(K_{g}\right)_{1}\right]\left[\left(K_{g}\right)_{1}: \boldsymbol{Q}\right]$ $=\left[K_{2}:\left(K_{g}\right)_{1}\right] h\left(K_{g}\right)\left[K_{g}: \boldsymbol{Q}\right]$. As K_{g} is a multiquadratic number field, $h\left(K_{g}\right)$ can be calculated by the method in [19], and we may expect that [$K_{2}:\left(K_{g}\right)_{1}$] is small for fields we consider on the ground of the following proposition (proved in [21]).

Proposition. Let L be the Hilbert class field of the gunus field K_{g} of an imaginary abelian number field K. Then for any prime number p with $p \not x$ $[L: \boldsymbol{Q}]$, the p-class group $\mathrm{Cl}^{(p)}(L)$ of L is trivial or noncyclic.

As a remarkable fact, for all K with $|d|$ <1000 such that $h\left(K_{g}\right)>h(K) /\left[K_{g}: K\right]$, which is equivalent to $\left(K_{g}\right)_{1} \supsetneqq K_{1}$, we have $K_{2}=$ $\left(K_{g}\right)_{1}$, that is, the second Hilbert class field of K coincides with the Hilbert class field of the genus
field K_{g} of K. For $h\left(K_{g}\right)>h(K) /\left[K_{g}: K\right]$, $h(K)$ must necessarily be even. $(h(K)$ is even if and only if d has (at least) two distinct prime factors), however, for most K, this inequality holds. In fact, if a quadratic subfield $\neq K$ of K_{g} has class number divisible by an odd prime p, then we have $h\left(K_{g}\right) \geqq p h(K) /\left[K_{g}: K\right]$. Thus, the following question arises naturally:

Question. Let K be an imaginary abelian number field. Assume that $h\left(K_{g}\right)>h(K) /\left[K_{g}: K\right]$. Then does the equality
(*) $K_{2}=\left(K_{g}\right)_{1}$
hold? If the answer is not affirmative in general, characterize K for which the equality $(*)$ holds.
The author expects that this problem can be settled group-theoretically and that similar results would also hold for real quadratic number fields.

Except for $\boldsymbol{Q}(\sqrt{-856})$ and $\boldsymbol{Q}(\sqrt{-996})$, we can characterize K (with $|d|<1000$) for which we can easily get an unramified extension not contained in $\left(K_{g}\right)_{1}$. If the discriminant d of K is divisible by the discriminant d_{E} of a quartic number field E, then K has an unramified extension not contained in $\left(K_{g}\right)_{1}$: The normal closure of E is an S_{4}-extension of \boldsymbol{Q} unramified at all finite primes over its quadratic subfield $\boldsymbol{Q}\left(\sqrt{d_{E}}\right)$. This unramified extension yields an unramified A_{4}-extension of K_{g} (by composition), where S_{4} (resp. A_{4}) denotes the symmetric (resp. alternating) group of degree four. Therefore, data for quartic number fields are useful for our study. The fields $\boldsymbol{Q}(\sqrt{-856})$ and $\boldsymbol{Q}(\sqrt{-996})$ are special in the sense that though these fields do not satisfy the condition $d_{E} \mid d$, we can check that they have an unramified S_{4}-extension. Thus, $K=\boldsymbol{Q}(\sqrt{d})$ with $|d|<1000$, can be classified simply as follows:

Note that in this classification, there are some possible exceptions. More precisely, for some fields K with $d_{E} \times d \neq-856,-996$, we have not succeeded in showing $K_{u r}=\left(K_{g}\right)_{1}$.

For most K we considered, $K_{u r}=K_{l}$ is checked. Thus, the following natural question arises: What is the first imaginary quadratic number field having an unramified nonsolvable Galois extension? (What is the first K with $K_{u r}$ $\neq K_{l}$?) Recent data for quintic number fields [1 and 16] enable us to give a partial answer:

Proposition. The field $\boldsymbol{Q}(\sqrt{-1507})$ is the first imaginary quadratic number field having an unramified A_{5}-extension which is normal over \boldsymbol{Q} in the sense that none of $\boldsymbol{Q}(\sqrt{d})$ of discriminant d with $0>d>-1507$ has such an extension. Moreover, such an extension of $\boldsymbol{Q}(\sqrt{-1507})$ is given by the composite field of it with the splitting field of the
quintic polynomial $X^{5}-5 X^{3}+5 X^{2}+24 X+4$, which is an A_{5}-extension of \boldsymbol{Q}.
We expect that the field $\boldsymbol{Q}(\sqrt{-1507})$ gives the answer to the question above.

For the determination of the structure of $\operatorname{Gal}\left(K_{u r} / K\right)$, the results on the 2 -class field towers due to H. Kisilevsky [8], F. Lemmermeyer [10 and 11], and E. Benjamin, F. Lemmermeyer, and C. Snyder [2] are very helpful. They give us information on the structure of the Galois group $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$ of the second Hilbert 2-class field $K_{2}^{(2)}$ of K over K in many cases.

Now we explain the notations in our table. In the simple expressions of K_{1} and $K_{2}, \alpha_{i}, \beta_{i}$ and γ_{i} denote any algebraic numbers generating the i th cubic number field of signature (1,1), the i th quartic number field of signature $(2,1)$ with Galois group isomorphic to S_{4}, and the i th quintic

Table of imaginary quadratic number fields $K=\boldsymbol{Q}(\sqrt{d}),|d| \leqq 719$ with $K_{u r} \neq K_{1}$

$-d$	$\mathrm{Cl}(\mathrm{K})$	K_{1}	K_{2}	l	G
115	C_{2}	$K(\sqrt{5})$	$K_{1}\left(\alpha_{1}\right)$	2	D_{3}
120	V_{4}	$K(\sqrt{-3}, \sqrt{5})$	$\left.K_{1}(\sqrt{(2 \sqrt{2}}+\sqrt{5})(2+\sqrt{5})\right)$	2	Q_{8}
155	C_{4}	$K(\sqrt{(-1+5 \sqrt{5}) / 2})$	$K_{1}\left(\alpha_{2}\right)$	2	Q_{12}
184	C_{4}	$K(\sqrt{-3+4 \sqrt{2}})$	$K_{1}\left(\alpha_{1}\right)$	2	Q_{12}
195	V_{4}	$K(\sqrt{-3}, \sqrt{5})$		2	Q_{16}
235	C_{2}	$K(\sqrt{5})$	$K_{1}\left(\gamma_{1}\right)$	2	D_{5}
248	C_{8}		$K_{1}\left(\alpha_{2}\right)$	2	I_{3}^{8}
255	$C_{6} \times C_{2}$	$K(\sqrt{5}, \sqrt[3]{(9+\sqrt{85}) / 2})$	$K_{1}(\sqrt{(5+2 \sqrt{-3})(2+\sqrt{5})})$	2	$Q_{8} \times C_{3}$
260	$C_{4} \times C_{2}$	$K(\sqrt{5}, \sqrt{8+\sqrt{65}})$		2	M_{16}
276	$C_{4} \times C_{2}$	$K(\sqrt{-1}, \sqrt{13}+8 \sqrt{3})$	$K_{1}\left(\alpha_{1}\right)$	2	$Q_{12} \times C_{2}$
280	V_{4}	$K(\sqrt{-7}, \sqrt{5})$		2	Q_{16}
283	C_{3}	$K\left(\alpha_{31}\right)$	$K_{1}\left(\beta_{1}\right)$	3	$\widetilde{A_{4}}$
295	C_{8}		$K_{1}\left(\alpha_{4}\right)$	2	I_{3}^{8}
299	C_{8}		$K_{1}\left(\alpha_{1}\right)$	2	I_{3}^{8}
312	V_{4}	$K(\sqrt{-3}, \sqrt{2})$		2	Q_{16}
331	C_{3}	$K\left(\alpha_{36}\right)$	$K_{1}\left(\beta_{2}\right)$	3	$\widetilde{A_{4}}$
340	V_{4}	$K(\sqrt{-1}, \sqrt{5})$		2	$S D_{16}$
355	C_{4}	$K(\sqrt{-3+4 \sqrt{5}})$		2	Q_{28}
372	V_{4}	$K(\sqrt{-1}, \sqrt{-3})$	$K_{1}\left(\alpha_{2}\right)$	2	D_{6}
376	C_{8}		$K_{1}\left(\gamma_{1}\right)$	2	I_{5}^{8}
391	C_{14}		$K_{1}\left(\alpha_{1}\right)$	2	$D_{3} \times C_{7}$
395	C_{8}		$K_{1}\left(\gamma_{2}\right)$	2	I_{5}^{88}
403	C_{2}	$K(\sqrt{13})$	$K_{1}\left(\alpha_{2}\right)$	2	D_{3}
408	V_{4}	$K(\sqrt{-3}, \sqrt{2})$	$K_{1}(\sqrt{-(5+\sqrt{17}) / 2})$	2	D_{4}
415	C_{10}	$K\left(\sqrt{5}, \gamma_{18}\right)$	$K_{1}\left(\alpha_{6}\right)$	2	$D_{3} \times C_{5}$
420	C_{2}^{3}	$K(\sqrt{-1}, \sqrt{-3}, \sqrt{5})$		2	$32 \Gamma_{4} c_{3}$

Continued (under GRH)

$-d$	C1(K)	K_{1}	K_{2}	l	G
435	V_{4}	$K(\sqrt{-3}, \sqrt{5})$		2	$Q_{16} \times C_{3}$
440	$C_{6} \times C_{2}$	$K\left(\sqrt{2}, \sqrt{5}, \alpha_{50}\right)$		2	$Q_{16} \times C_{3}$
455	$C_{10} \times C_{2}$	$K\left(\sqrt{-7}, \sqrt{5}, \gamma_{21}\right)$		2	$Q_{8} \times C_{5}$
472	C_{6}	$K\left(\sqrt{2}, \alpha_{4}\right)$	$K_{1}\left(\alpha_{4}\right)$	2	$D_{3} \times C_{3}$
483	V_{4}	$K(\sqrt{-3}, \sqrt{-7})$	$K_{1}\left(\alpha_{1}\right)$	2	D_{6}
491	C_{9}		$K_{1}\left(\beta_{3}\right)$	3	$Q_{8} \rtimes C_{9}$
515	C_{6}	$K\left(\sqrt{5}, \alpha_{60}\right)$	$K_{1}\left(\gamma_{3}\right)$	2	$D_{5} \times C_{3}$
520	V_{4}	$K(\sqrt{-2}, \sqrt{5})$		2	Q_{24}
527	C_{18}		$K_{1}\left(\alpha_{2}\right)$	2	$D_{3} \times C_{9}$
535	C_{14}		$K_{1}\left(\alpha_{9}\right)$	2	$D_{3} \times C_{7}$
552	$C_{4} \times C_{2}$	$K(\sqrt{-3}, \sqrt{-1+2 \sqrt{6}})$	$K_{1}\left(\alpha_{1}\right)$	2	$Q_{12} \times C_{2}$
555	V_{4}	$K(\sqrt{-3}, \sqrt{5})$		2	Q_{32}
563	C_{9}		$K_{1}\left(\beta_{4}\right)$	3	$Q_{8} \rtimes C_{9}$
564	$C_{4} \times C_{2}$	$K(\sqrt{-1}, \sqrt{1+4 \sqrt{3}})$	$K_{1}\left(\gamma_{1}\right)$	2	$Q_{20} \times C_{2}$
568	C_{4}	$K(\sqrt{-1+6 \sqrt{2}})$		2	Q_{28}
580	$C_{4} \times C_{2}$	$K(\sqrt{5}, \sqrt{12+\sqrt{145}})$		2	$32 \Gamma_{3} f \ltimes C_{3}$
595	V_{4}	$K(\sqrt{-7}, \sqrt{5})$			Q_{40}
611	C_{10}	$K\left(\sqrt{13}, \gamma_{28}\right)$	$K_{1}\left(\gamma_{1}\right)$	2	$D_{5} \times C_{5}$
632	C_{8}		$K_{1}\left(\gamma_{2}\right)$	2	I_{5}^{8}
635	C_{10}	$K\left(\sqrt{5}, \gamma_{31}\right)$	$K_{1}\left(\gamma_{5}\right)$	2	$D_{5} \times C_{5}$
643	C_{3}	$K\left(\alpha_{72}\right)$	$K_{1}\left(\beta_{5}\right)$	3	$\widetilde{A_{4}}$
644	$C_{8} \times C_{2}$		$K_{1}\left(\alpha_{1}\right)$	2	$D_{3} \times C_{8}$
651	$C_{4} \times C_{2}$	$K(\sqrt{-7}, \sqrt{(13+\sqrt{217) / 2}})$	$K_{1}\left(\alpha_{2}\right)$	2	$D_{3} \times C_{4}$
655	C_{12}	$K\left(\sqrt{7+6 \sqrt{5}}, \alpha_{75}\right)$	$K_{1}\left(\gamma_{6}\right)$	2	$Q_{20} \times C_{3}$
660	C_{2}^{3}	$K(\sqrt{-1}, \sqrt{-3}, \sqrt{5})$		2	$64 \Gamma_{15} f_{2}$
663	$\mathrm{C}_{8} \times \mathrm{C}_{2}$			2	$64 \Gamma_{3} p$
664	C_{10}	$K\left(\sqrt{2}, \gamma_{32}\right)$	$K_{1}\left(\alpha_{6}\right)$	2	$D_{3} \times C_{5}$
667	C_{4}	$K(\sqrt{(-13+3 \sqrt{29}) / 2})$	$K_{1}\left(\alpha_{1}\right)$	2	Q_{12}
680	$C_{6} \times C_{2}$	$K\left(\sqrt{-2}, \sqrt{5}, \alpha_{80}\right)$		2	$Q_{16} \times C_{3}$
687	C_{12}	$K\left(\sqrt{(11+\sqrt{229}) / 2}, \alpha_{81}\right)$		3	$\left(A_{4} \times C_{4}\right) \times C_{3}$
695	C_{24}		$K_{1}\left(\alpha_{13}\right)$	2	$I_{3}^{8} \times C_{3}$
696	$C_{6} \times C_{2}$	$K(\sqrt{2}, \sqrt[3]{99}+13 \sqrt{58})$		2	$Q_{24} \times C_{3}$
708	V_{4}	$K(\sqrt{-1}, \sqrt{-3})$	$K_{1}\left(\alpha_{4}\right)$	2	D_{6}
715	V_{4}	$K(\sqrt{-11}, \sqrt{5})$		2	$Q_{16} \ltimes C_{5}$

number field of signature $(1,2)$ with Galois group isomorphic to D_{5}, respectively, where we consider that the number fields of each signature and each type (of Galois group of normal closure) are numbered up to conjugacy by absolute values of discriminants. (We do not need to consider nonisomorphic fields with same discriminants).
G denotes the Galois group $\operatorname{Gal}\left(K_{u r} / K\right)$. As usual, C_{n} is the cyclic group of order n, V_{4} is the four group, that is, $V_{4}=C_{2}^{2}=C_{2} \times C_{2}, D_{n}(n \geqq 3)$ is the dihedral group of order $2 n, Q_{4 n}(n \geqq 2)$ is
the generalized quaternion group of order $4 n$, and $S D_{8 n}(n \geqq 2)$ is the semi-dihedral group of order $8 n$. $I_{n}^{2 m}(m \geqq 2, n \geqq 3)$ denotes the group of order $2 m m$ given by

$$
\left\langle a, b \mid a^{2 m}=b^{n}=1, a^{-1} b a=b^{-1}\right\rangle
$$

$M_{2^{n}}(n \geqq 4)$ denotes the modular group of order 2^{n} given by

$$
\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, b^{-1} a b=a^{2^{n-2}+1}\right\rangle .
$$

$\widetilde{A_{4}}$ is the double cover of $A_{4}: \widetilde{A_{4}} \cong \operatorname{SL}(2,3)$.
For some 2 -groups we use designations given in the table by M. Hall and J. K. Senior [5]. We note
that T. W. Sag and J. W. Wamsley give minimal presentations for all 2 -groups of orders $\leqq 2^{6}$ [15].

Acknowlegements. The author thanks Prof. R. Schoof for useful advices. He also thanks Dr. F. Lemmermeyer for information on his results.

References

[1] J. Basmaji and I. Kiming: A table of A_{5}-fields. On Artin's conjecture for odd 2-demensional representations (ed. G. Frey). Lecture Notes in Math., vol. 1585, Springer-Verlag, Berlin and New York, pp. 37-46, pp. 122-141 (1994).
[2] E. Benjamin, F. Lemmermeyer, and C. Snyder: Imaginary quadratic fields k with cyclic $\mathrm{Cl}_{2}\left(k^{1}\right)$ (1996) (preprint).
[3] C. Castela: Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres. C. R. Acad. Sci. Paris, sér. I, 287, 483-486 (1978).
[4] F. Diaz y Diaz: Tables minorant la racine n-ième du discriminant d'un corps de degré n. Publications Mathématiques d’Orsay 80, 6., Université de Paris-Sud, Département de Mathématique, Orsay (1980).
[5] M. Hall, Jr. and J. K. Senior: The Groups of Order $2^{n}(n \leq 6)$. The Macmillan Co., New York (1964).
[6] F. Halter-Koch et N. Moser: Sur le nombre de classes de certaines extensions métacycliques sur Q ou sur un corps quadratiques imaginaires. J. Math. Soc. Japan, 30, 237-248 (1978).
[7] A. Jehanne: Sur les extensions de \mathbf{Q} à groupe de Galois S_{4} et \tilde{S}_{4}. Acta Arith., 70, 259-276 (1995).
[8] H. Kisilevsky: Number fields with class number congruent to $4 \bmod 8$ and Hilbert's Theorem 94. J. Number Theory, 8, 271-279 (1976).
[9] F. Lemmermeyer: Kuroda's class number formu-

1a. Acta Arith., 66, 245-260 (1994).
[10] F. Lemmermeyer: On 2-class field towers of imaginary quadratic number fields. J. Théor. Nombres Bordeaux, 6, 261-272 (1994).
[11] F. Lemmermeyer: On 2-class field towers of some imaginary quadratic number fields (1996) (preprint).
[12] J. Martinet: Petit discriminant des corps de nombres. Number theory days, 1980 (Exeter, 1980), London Math. Soc. Lecture Note, ser. 56, Cambridge Univ. Press, Cambridge, New York, pp. 151-193 (1982).
[13] J. M. Masley: Class numbers of real cyclic number fields with small conductor. Compositio Math., 37, 297-319 (1978).
$[14]$ A. M. Odlyzko: Discriminant bounds. Nov. 29th 1976 (unpublished tables).
[15] T. W. Sag and J. W. Wamsley: Minimal presentations for groups of order $2^{n}, n \leqq 6$. J. Austral. Math. Soc., 15, 461-469 (1973).
[16] A. Schwarz, M. Pohst, and F. Diaz y Diaz: A table of quintic number fields. Math. Comp., 63, 361-374 (1994).
[17] O. Taussky: A remark on the class field tower. J. London Math. Soc., 12, 82-85 (1937).
[18] F. van der Linden: Class number computations of real abelian number fields. Math. Comp., 39, 693-707 (1982).
[19] H. Wada: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. IA, 13, 201-209 (1966).
[20] K. Yamamura: The determination of the imaginary abelian number fields with class number one. Math. Comp., 62, 899-921 (1994).
[21] K. Yamamura: The maximal unramified extensions of the imaginary quadratic number fields of small conductors (in preperation).

