
No. 1] Proc. Japan Acad., 73, Ser. A (1997) 5

On Standard L-Functions for Unitary Groups*)

By Keiji TAKANO

Department of Mathematics, Osaka University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 13, 1997)

Introduction. Let G. Un,. (K/k) be the
quasi-split unitary group of 2n-dimension with
respect to a quadratic extension K/k of number
fields. The basic identity of Rankin-Selberg in-
tegral established in [4], [5] interpolates the stan-
dard L-function of a cuspidal automorphic repre-
sentation of Gn(A). In [5], the two of main steps
in the theory of Rankin-Selberg method were car-
ried out, though the group was Gn SPn, or On,.

(1) the investigation of analytic properties
of the global Rankin-Selberg integral and,

(2) the computations of unramified local in-
tegrals.

These two parts can be carried out entirely
in the same way as [5] also for our group Gn

Un,n(K/k), which we shall state in 1.
The main part of this paper is devoted to the

study of local integrals including finite ramified
and archimedean places. We shall extend the
method of [5] to adapt to representations that
cannot be embedded in principal series repre-
sentations. We rewrite these integrals by the
Godement-Jacquet zeta integrals and obtain the
analytic continuations of them. Then it is seen
that, at finite ramified places, they can be made
constant for a suitable choice of a test function,
which enables us to prove the finiteness of poles
of the partial standard L-function by the usual
procedure of the Rankin-Selberg method.

The author would like to thank Takao Wata-
nabe for many helpful advices and encourage-
ment.

Notation. Let k be a number field and /% be
the completion of k at a place v of k. Let G.
Un,n(K/k) be the quasi-split form of unitary
group of 2n-dimension defined with respect to a
quadratic extension K/tc of number fields. The
Galois involution of K/k is denoted by x - .We realize the group of k-points of Gn as
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G, (k) (g GLz (K) g

wherejn= ( 0 1.)In 0
We often write simply as G. Gn(k), if there is

no fear of confusion. If a place v splits (resp. re-
mains prime) in K, G.(k,) is isomorphic to

GL2.(kv) (resp. U.,n(Kv/k) where Kv K@
v is a quadratic field extension of v). Let K,v

be the standard maximal compact subgroup of
Gn(k).

Let Tn (resp. An) be the maximal k-torus
(resp. maximal k-split torus) given by
Tn (diag(ti, tn, tq-, [l)]t K},- -) k}A, {diag(ai,..., an, al an

and let X be the k-rational character of A de-
-1 -1)fined by x i(diag(ai,..., an, ai an ) ai

for 1 i n. Then (El,. X} forms a Z-
basis of X*(An)- Hom(A, G). Let B T
Nn be the Borel subgroup of Gn, of which the

unipotent radical Nn is the subgroup consists of

elements of the form
0 t- where u

GL.( is upper triangular with ones in diagon-
t_

als, and z Mat.( is such that z- z. Let .
--(G., An) be the relative root system of G.
with respect to An and let 2 be the set of posi-
tive roots corresponding to Bn explicitly given by

Denote by Wn W(G., A.) the relative Weyl
group of G.. For each , let N., be the root
subgroup determined by .

For each integer r with 1 r n, let pr)
M(r) N U (r)

be the maximal parabolic k-sub-
group of Gn given by

r)

x GLr(K)

(A B)G,C D -"
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I r * *
?]. (r) ln_ r 0
"n I r 0 - Nn

ln_ r

Every proper parabolic k-subgroup of Gn is con-
p(r)tained in a conjugate of some-n

The Galois form of the L-group of Gn is
GL2n(C) l Gal(K/k), where the non-trivial ele-
ment of Gal(K/k) acts on GLen(C) by g
Jntg-t -Jn Now, let rst be the 4n-dimensional rep-
resentation of Gn induced from the standard
2n-dimensional representation of the connected
component GLen(C) of Gn. Then, for a cuspidal
automorphic representation of G(A),
the L-factor Lst(s, v) L(s, v, rst) is defined
for any unramified places v (see [1]). The auto-
morphic L-function we shall consider is a partial
one, defined by he infinite product

Lst(S, ) Lst(S, v),
v; unramified

which converges for Re(s) large.
1. Review of global theory. Let G

Un,(K/) act on a 2n-demensional non-dege-
nerate skew-hermitian space (V, ) over K as
the isometry group. Then the space (V@ V, $
@ (-- )) also is skew-hermitian and non-dege-
nerate, of which the isometry group can be iden-
tified with G2n. In this way have an embedding
i" Gn Gn G2n. Let P be the stabilizer of the
isotropic subspace Va ((v, v) V@ V;v
V} of V@ V in G2n. It is a ’Siegel-type’ maximal
parabolic subgroup of G2n, whose Levi part is
isomorphic to GLen(K).

Let A be the module of P(A) and for each
s C, set s(’)= (A(’))/. Let Y(s)=
Gn(A)
neA (s) be the unnormalized induction. For

(s) and h G2n(A), define
E(h ;) fs(rh).

The right hand side is known to converge abso-
lutely for Re(s) sufficiently large, uniformly for
h in a fixed compact set. It can be continued
analytically to a meromorphic function on whole
of s C. Following the method of [,], put

2n

d(s) n (2s 2 + 2) (2s 2 + 1)
l=l /=1

where (resp. K) is the completed Dedekind

-function of (resp. K). (d(s) is chosen so that
it cancels all he "denominators" of c-functions
appearing in the constant term of E(h;fs)). Then
the number of poles of d(s) x E(h ;) are finite

and located at integral and half integral points in
the interval [0,4n]. (The oecurenee of poles de-
pends on the choice of fs).

Let r vrv be a cuspidal automorphie
representation of G(A), )v# be the con-
tragradient of zt, 9 (? ,
ff be cusp forms in the space of and , and f
f) Y(s). In [51, the following formal

identity was established;
Theorem. [5,1]

E(il’ g); )))dgldg
(k)Gn) (k)Gn)

s 9, )
v

where

fs((i(g,,, 1))(Z’Cv(g,.,)9,.,, )dg,,.
n(kv)

The product in the right hand side is taken over all
the places v of k.
Our main result is the following;

Theorem. The infinite product Lst(S 7c)is
analytically continued to a meromorphic function on

whole of C and the number of poles of Lst(S: 7c) is

finite.
By the same method as [5,6], it is possible

to compute the local integrals at any unramified
place v" let v) be the unique element of v(S),
whose restrictiOno to __K.nvoiS, identically equal to
1, and let qv 7v, qv 7 v be non-zero

Kn,,-fixed vectors. Then we have

d(s)N(, qv, p) b(s)Lt s- +-if, r
where b(s) is defined by

(s fi (s + (s + ;
l--1

and b(s) is the v-th local factor of b(s).
To prove our main theorem, we need to

study the local zeta integrals including ramified
cases. The rest of this paper is devoted to this
topic.

2. Local zeta integrals. Let us switch to
the local notation. Write F kv for a place v of
k, and put E F (k K Write Gn Un,n(E/F),
the F-points of Gn in 1. For simplicity we shall
write X X(F) whenever X is a group defined
over k in 1, and omit the sub-or superscript v
in all cases.

We fix the embedding Gn G c. G2 (as
in [5]) so that the subgroup P is of the form
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0 tg-x g GLz, (E)

(A B)G.g= CD

(1) i(g 1)
C
C

1. A

In particular, for

0 0 0
D 0 -C

D- 1 1 C
-B 0 A

Let rr be an irreducible admissible repre-
sentation of

Proposition. For
(s), the integral f(fs, 9, ) is absolutely conver-

gent for Re(s) > > O, and analytically continued to
a rational function of q-S, where q is the residue de-
gree of F if F is non-archimedean, and to a product

of gamma functions and a polynomial in s if F is

archimedean. Moreover, if F is non-archimedean, it

is possible to choose fs, depending on q, so that

We s,hall reduce (fs, o, ) to integrals of
the form

(2) fLm(E) Lm(E)

det(z) [szw(z[ze)dzxdz
where gf, gf. are Schwartz-Bruhat functions on

Mat(E), and co is a certain matrix coefficient of
an admissible representation of GLm(E). This
can be written as a linear combination of the
well-known Godement-Jacquet zeta integral ([3]);
in fact, it is possible to take an elementary
idempotent of the maximal compact subgroup

K of GL(E) so that

f gCl(kzl)(k)dk (z).

Then (2) is equal to

gY (zt) gr. (z2) det (z) Isll det (z2)
Lm(E) GLm(E)

and it is easy to see that
(1) (2,)’(k)w(z[lkz)dk w (Zl)W (z)

(1) (2)
for suitable matrix coefficients w w of the
same representation, analogous to the integral
formula on spherical functions.

Now we begin the proof of the proposition. If
ElF is split, i.e., if EFF, then G.
GLe.(F) and the study of the integral (fs, ,
) has been essentially done in [5,6.1]; it can be

written as (2), where m 2n and E is replaced
by F, thus the proposition follows from [3].

Now let ElF be non-split, i.e., ElF is a
quadratic field extension. So the possible
archimedean case is E C, F R.

If the representation zr is supercuspidal in
non-archimedean case, then the matrix coefficient
is compactly supported, for the center of the unit-
ary group is compact, thus the claim is obvious.
So, from now on, assume that the representation
zr is not supercuspidal.

By Jacquet’s subrepresentation theorem, in

non-archimedean case we may choose a maximal
parabolic subgroup p(r) of Gn, whose Levi part is
isomorphic to GLr(E) x Gn_r, and an admissible
(resp. irreducible supercuspidal) representation
(resp. v’) of GLr(E) (resp. Gn_r) such that 7r is a
subrepresentation of the normalized induction

IndeV.(v @ ’). Then , the contragradient of
is realized as a quotient of Indr)(f @ f’). If F
R, then can be embedded into a principal
series, and we may consider the case r n only,
where we shall understand that ’ is trivial.

Consider p as an element of IndeV)(v
’), and regard as any of its representa-
tives in Ind.(f@f’). Then by rewriting the
matrix coefficient of we have

)

_
(i(g, 1))((g)p, )dg(fs,

and by the Iwasawa decomposition G.-
M(r)Kx
-’-n --n, dg .(m)- dudmdk,

.. g’
(i(umkk[ 1))

(umk), (k)) ) 8eg. (m) -dudm}dkldk.
Here, ((’, ")) is the natural pairing of v
and f @ f’. The integration over K. x Kn is not
essential and we may only consider the case kl,
ke 1 in the inner integral and the study of
(, p, ) reduces to the integral

J "=--..r>S’r’fS(i(um’ 1))(((um),

X 8eg.(m)-ldudm

.fs(i(um, 1))

x 8eg, (m)-/dudm.
We may assume that p(1) v
@wherev v, f, w v’, f’.Put
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co(m) (v(mpv, o), co.(mp (v’(m)w,
for m GL(E), m G._. Then our integral
is of the form

J= 2) 2_ {2. (i(umm’ 1))du}
w (m)w(m) 6e,(mtm)-/dmtdm.

As the function m is compactly supported (or
trivial) on Gn_ we may furthur reduce the prob-
lem to

Lr(E r)
W (ml) 6er)(ml)-l/dm.

[ (r)
Next, we write the integral over n by the

intertwining integral of principal series. By tak-
ing a suitable character Ps of Tn, (s)=
inna’(6s) can be made into a submodule of the
principal series Ind::(ps). Explicitly Ps is given

by
2n

1 [s-2n+i-1/2ps(diag(tl,..., t., t -)) [t ,
i=1

Lemma 1. Let wr be the element of Wn, the
relative Weyl group of Gn, such that the action of

-1w onX (An) isgiven by

Z Zn+r Zr+l-I r
Wr

Then,
i(r]’<r) X 1) -1I-[ N2n,a-’Wr" I-[ N2n,a).w

a<O, wla>O a>O, wHx<O

Proof Put
@-l(r) "= {-- (Z i- Zj) In + 1 < < n + r<j < 2n}

U {--2zi[n+l<i<n+r} U

r+ l <i <n<j<n+ r, orn+ l <i<j<n+ r,}orn+ 1 < i< n+ r<j< 2n
Then, by the explicit embedding (1), we have
i( H<r)x-n 1)= I-[a-(r N2n,a, and by an easy
combinatorial discussion it is seen that -(r)

-1{Ol (I)2n Ol < O, W Ol > 0}. [-

Consider the case fs P(h)s, h G2n,
which can be regarded as an element of

Ind:(/2s). By the standard theory of intertwin-
ing operators, we have

(4) (,,, s(i(u, 1)h)du f II
a>O,Wra. < ON2n,a

Cs(Wrnwlh)dn cwr([As)wT.s(w[lh)
using the previous lemma. Here, Cw;.s is, the uni-

que element of IndBa::(w-l’/s) such that Cw;.s I.
1, and the factor %.(t2s)is the one given in

[21.
Now we give a certain integral representa-

tion of 71.s, using zeta functions of matrix
//f (o)

rings. For 1 < k < 2, let gfk (resp.. k be a

Schwartz-Bruhat function on Mat(E)(resp.
the characteristic function of Matn() in the

(o)non-archimedean case, and . (z) exp(--
2Tr(zt2)) in the case E C) and put for h
e2
F(h;s) ()

2n

g;((0,o z, 0,..., o). h)I det(z)[SdXz
2n-- k

and F(h;s)= Fgo,(h;s). The right hand side
converges absolutely for Re(s) > > 0, analytical-
ly continued to a meromorphic function on C.

Lemma 2. The function Fg_(h ;Sl)Fg (h
s) F.+.(h sa) F.(h ;s4) belongs o IndB;(’-1
[Zs) and
(5) ;.s(h) r/(s) -1 x Fr(h;sl)Fr(h;s0

F,+r(h sa) F2.(h s4)
where sl 2s-- 3n + 2r, s.-- s + 3n-- r,
s r, S4 S and

2r

ri(s) II (sl-- k+ 1) II (s2-- k+ 1)
k=l k=l

n+r 2n

YI z(sa- k+ 1) II z(s4- k+ 1).
k=l k=l

Proof For t-- diag(t1, t.., t--l,
2) T., we have, by a routine computation,

--1. s--2n+i--1/2
(6) Wr ps(t) {I It, Iz

i=1

2r n+r
-s+n-2r+i-1/2 [s-2n+i-r-1/2x II t, n t,,

i=r+l i=2r+l
2n

s-2n+i-1/2x II t, l
i=n+r+

It is also easy to check that F(tnh;s) II=
t IzF(h s) for t as above, n E N.. Therefore,

(7) F.(tnh Sl)F.r(tnh s)F.+.(tnh sa)
2r

s2+s3+s4,Fg.(tnh s4) {-IIt, Is+s’+s+s* n t,,
i=l i=r+l

n+r 2n
S3+S4 S4x II t , H t I f,r(h

i=2r+1 i=n+r+

x F.,(h;sOF,+,(h;sa)F.,(h ;s4).
Note that the normalizing factor of the principal
series is given by

2n
2n-i+1/26..(t) 1/2 n t, Iz
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Comparing (6)and (7), and tion of p(w[lh)_r) to the r 2r-submatrices
S -Jr- S -[- S + S4 S formed by the (2n-+- 1)-st to the (2n q- 2r)-th

s2 + sa + s4 s +3n- 2r columns, and used 6pr,(ml) det(x)In-r. By a
s -1-S4 ---S--r simple change of variable, this reduces to (2).

s4--s Hence the assertions of the proposition, except
hrf (0)

implies the first assertion. If k -k it is of for the last, are proved for fs P(h)s.
course right K,.n-invariant, thus normalizing each The remaining part of the proposition is
Fg(h;s) so that is is equal to 1 at the identity, seen as follows: in non-archimedean case, if
we have the lemma. [- Re(s) is large enough, IndB::(/Zs) is generated by

We return to the integral (3). Let us choose the vector Cs as a Gen-module ([2], 3.6), and
a suitable representative for Wr, and let rn therefore (s) coincides with IndVB::(/Zs). So for
(x, 1)x GLr(E). By a direct matrix compute- Re(s) sufficiently large, it is enough to consider
tion, we have the case fs P(h)dPs. To prove the last part of

-1
Wr (ml, 1) W

X

12(n-r)

12(n-r)

lr 0 )where x’ .-1 GLar(E).
Jr Jrx JrXJr

Here Jr denotes the anti-diagonal r r matrix

the proposition, first choose the Schwartz-Bruhat
functions gr so that the corresponding Gode-
ment-Jacquet zeta integrals are constant (this is

possible by [3]). Yet in this case the element of
Ind:(w-l’/s) given in Lemma 2. is an image of
a finite sum of elements of the form p(h)s, by
the intertwining integral. Therefore for Re(s)
large enough, it is possible to choose a finite
number of h Gan such that (fs, o, q3)

whose non-zero entries are equal to 1. Applying const., where fs y] P(h)s. By analytic con-
(5), we have

tinuation it is constant for all s C. This com-
O(h)o;.s(W (m, 1)) O(w-h) -"’s(Wr (ml’ 1)Wr) pletes the proof of the proposition.

x det(x’) [
Lr(E)

2n

((0,...,’"---l (0, z)’t2’-1 O, 0)) det(z)
2n-- 2r

Finally, by (4),

J’- 6o(gs) O(h);.s(W i(m, 1))w(m)
Lr(E)
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