Periodic Solutions of the Heat Convection Equations in Exterior Domains

By Kazuo Ōeda
Faculty of Science, Japan Women's University
(Communicated by Kiyosi ITÔ, M. J. A., April 14, 1997)

1. Introduction. Let $\Omega=K^{c} \subset \boldsymbol{R}^{3}$ where K is a compact set whose boundary ∂K is of class C^{2}. We put $\partial \Omega=\Gamma=\partial K, \hat{\Gamma}=\Gamma \times(0, \infty)$ and $\hat{\Omega}=\Omega \times(0, \infty)$. Then we consider the periodic problem for the heat convection equation (HCE):

$$
\left\{\begin{array}{rlrl}
u_{t}+(u \cdot \nabla) u & =-(\nabla p) / \rho+\{1-\alpha(\theta- \tag{1}\\
\left.\left.\Theta_{0}\right)\right\} g+\nu \Delta u & \text { in } \bar{\Omega}, \\
\theta_{t}+(u \cdot \nabla) \theta & =\kappa \Delta \theta & & \text { in } \hat{\Omega}, \\
& \text { in } \bar{\Omega},
\end{array}\right.
$$

(2) $\left.u(x, t)\right|_{\hat{r}}=0,\left.\theta(x, t)\right|_{\hat{r}}=\chi(x, t)(>0)$,

(3) $u(\cdot, T)=u(\cdot, 0), \theta(\cdot, T)=\theta(\cdot, 0)$.

Here $u=u(x)$ is the velocity vector, $p=p(x)$ is the pressure and $\theta=\theta(x)$ is the temperature; ν, κ, α, ρ and $g=g(x)$ are the kinematic viscosity, the thermal conductivity, the coefficient of volume expansion, the density at $\theta=\Theta_{0}$ and the gravitational vector, respectively. As for the exterior problem of (HCE), Hishida [2] showed the global existence of the strong solution for the initial value problem (IVP) in the case that K is a ball. Recently, Ōeda-Matsuda [7] showed the existence and uniqueness of weak solutions of (IVP) when K is a compact set with the boundary of class C^{2}. Moreover, Ōeda [10] obtained the stationary weak solutions for the similar exterior domain to that of [7]. In [7] and [10], we used "the extending domain method" to get weak solutions. Namely, it is expected that the exterior domain Ω can be approximated by interior domains $\Omega_{n}=$ $B_{n} \cap \Omega\left(B_{n}\right.$ is a ball with radius n and center at O) as $n \rightarrow \infty$ (see Ladyzhenskaya [3]). The purpose of the present paper is to show the existence of periodic weak solutions of (HCE) by using "the extending domain method".
2. Preliminaries. We make several assumptions: (A1) $\omega_{0} \subset$ int $K\left(\omega_{0}\right.$ being a neighbourhood of the origine O) and $K \subset B=B(O, d)$; where B is a ball with radius d and center at O. (A2) $\partial \Omega=\Gamma=\partial K \in C^{2}$. (A3) $g(x)$ is a bounded and continuous vector function in $\boldsymbol{R}^{3} \backslash \omega_{0}$. Moreover
there exist $R_{0}>0, C_{R_{0}}>0$ such that $|g| \leq$ $C_{R_{0}} /|x|^{\frac{5}{2}+\varepsilon}$ for $|x| \geq R_{0}(\varepsilon>0$ is arbitrary $)$. (A4) $\chi \in C^{2}(\Gamma \times[0, \infty))$ and is periodic with respect to t with period T.

Remark 1. Thanks to (A3), we see $g \in$ $L^{p}(\Omega)$ for $p \geq \frac{6}{5}$.
We prepare a lemma which gives us an auxiliary function (see [1] p. 131 and [11] p.175):

Lemma 2.1. There is a function $\bar{\theta}(x, t)$ which possesses the following properties (i) ~ (iv): (i) $\bar{\theta}=\chi$ on $\hat{\Gamma}$. (ii) $\bar{\theta}(x, t) \in C_{0}^{2}\left(\boldsymbol{R}_{x}^{3}\right)$ for any fixed t and θ, θ_{t} are continuous for $t \in[0, T]$. (iii) $\bar{\theta}$ is periodic in t with period T. (iv) For any $\varepsilon>0$ and $p>1$, we can retake $\bar{\theta}$, if necessary, such that $\sup _{t \in[0, T]}\|\bar{\theta}(t)\|_{L^{p}}<\varepsilon$.

Now we make a change of variable: $\theta=\hat{\theta}+$ $\bar{\theta}$, and after changing of variable, we use the same letter θ. Equations (1), (2), and (3) are transformed to the following:

$$
\left\{\begin{align*}
& u_{t}+(u \cdot \nabla) u=-(\nabla p) / \rho-\alpha \theta g+\nu \Delta u \tag{4}\\
&+\left\{1-\alpha\left(\bar{\theta}-\Theta_{0}\right)\right\} g \quad \text { in } \hat{\Omega}, \tag{5}\\
& \operatorname{div} u=0 \quad \text { in } \hat{\Omega}, \\
& \theta_{t}+(u \cdot \nabla) \theta=\kappa \Delta \theta-(u \cdot \nabla) \bar{\theta}-\bar{\theta}_{t} \\
&+\kappa \Delta \bar{\theta}^{\prime} \quad \text { in } \hat{\Omega}, \\
&\left.u\right|_{\hat{r}}=0,\left.\theta\right|_{\hat{r}}=0, \lim _{|x| \rightarrow \infty} u(x)=0,
\end{align*}\right.
$$

(6) $u(\cdot, T)=u(\cdot, 0), \theta(\cdot, T)=\theta(\cdot, 0)$.

We put $G=\Omega$ or $\Omega_{n}, \hat{G}^{\prime}=G \times[0, T]$ and $\widehat{G \cup \Gamma^{\prime}}=(G \cup \Gamma) \times[0, T]$. Then we write $W^{k, p}(G)=\left\{u ; D^{\alpha} u \in L^{p}(G),|\alpha| \leq k\right\}, \quad W_{0}^{k, p}(G)$ $=$ the completion of $C_{0}^{k}(G)$ in $W^{k, p}(G)$,
$D_{\sigma}(G)=\left\{\varphi \in C_{0}^{\infty}(G) ; \operatorname{div} \varphi=0\right\}, \quad D(G)=\{\psi$ $\left.\in C_{0}^{\infty}(G \cup \Gamma) ; \psi(\Gamma)=0\right\}$,
$H_{\sigma}(G)\left(\right.$ resp. $\left.H_{\sigma}^{1}(G)\right)=$ the completion of $D_{\sigma}(G)$ in $L^{2}(G)\left(\right.$ resp. $\left.W^{1,2}(G)\right)$,
$H_{0}^{1}\left(\Omega_{n}\right)=$ the completion of $D\left(\Omega_{n}\right)$ in $W^{1,2}\left(\Omega_{n}\right)$ (it turns out $H_{0}^{1}\left(\Omega_{n}\right)=W_{0}^{1,2}\left(\Omega_{n}\right)$),
$V($ resp.$W)=$ the completion of $D_{\sigma}(\Omega)$ (resp. $D(\Omega))$ in $\|\cdot\|_{N(\Omega)}$, where $\|u\|_{N(\Omega)}=\|\nabla u\|_{L^{2}(\Omega)}$, $\hat{D}_{\sigma}(\hat{G})=\left\{\varphi \in C_{0}^{\infty}\left(\hat{G}^{\prime}\right) ; \operatorname{div} \varphi=0\right\}, \hat{D}(\hat{G})=\{\psi$
$\left.\in C_{0}^{\infty}\left(\widehat{G \cup \Gamma^{\prime}}\right) ; \varphi(\hat{\Gamma})=0\right\}$,
$\hat{D}_{\sigma, \pi}(\hat{G})=\left\{\varphi \in C_{\sigma}(\hat{G}) ; \varphi(x, T)=\varphi(x, 0)\right\}, \hat{D}_{\pi}(\hat{G})$
$=\{\psi \in \hat{D}(\hat{G}) ; \psi(x, T)=\psi(x, 0)\}$,
$L_{\pi}^{2}\left(0, T ; H_{\sigma}^{1}\left(\Omega_{n}\right)\right)=\left\{u \in L^{2}\left(0, T ; H_{\sigma}^{1}\left(\Omega_{n}\right)\right)\right.$;
$u(x, T)=u(x, 0)$ a.e. $\left.x \in \Omega_{n}\right\}$,
$L_{\pi}^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{n}\right)\right)=\left\{\theta \in L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{n}\right)\right)\right.$;
$\theta(x, T)=\theta(x, 0)$ a.e. $\left.x \in \Omega_{n}\right\}$,
$L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)=\left\{f \in L^{2}\left(0, T ; L^{6}\left(\Omega_{n}\right)\right) ;\right.$
$f(x, T)=f(x, 0)$ a.e. $x \in \Omega\}$.
We state some inequalities. (see Chap. I of [3]).

Lemma 2.2. Assume the space dimension is 3. G is permitted unbounded. Then
(i) For $u \in W_{0}^{1,2}(G)($ or V or W), we have
(7) $\|u\|_{L^{6}(G)} \leq c\|\nabla u\|_{L^{2}(G)}$, where $c=(48)^{1 / 6}$.
(ii) (Hölder's inequality) If each integral makes sense, then we have

$$
\begin{gather*}
\left|((u \cdot \nabla) v, w)_{G}\right| \leq 3^{\frac{1}{p}+\frac{1}{r}}\|u\|_{L^{p}(G)} . \tag{8}\\
\|\nabla v\|_{L^{q}(G)} \cdot\|w\|_{L^{r}(G)},
\end{gather*}
$$

where $p, q, r>0$ and $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$.
We state another lemma (see [3]):
Lemma 2.3. (Friedrichs). Suppose G is a bounded domain in \boldsymbol{R}^{n} and its boundary ∂G is of class C^{2}. Let us take an orthonormal basis $\left\{w_{k}\right\}_{k=1}^{\infty}$ of $L^{2}(G)$. Then for any $\varepsilon>0$, there exists a number N_{ε} such that

$$
\begin{gather*}
\|u\|_{L^{2}(G)}^{2} \leq \sum_{k=1}^{N_{\varepsilon}}\left(u, w_{k}\right)^{2}+\varepsilon\|u\|_{W^{1, m_{(G)}}}^{2} \tag{9}\\
\text { for all } u \in W_{0}^{1, m}(G),
\end{gather*}
$$

where $m>\frac{2 n}{n+2}(n \geq 2), m \geq 1(n=1)$ and N_{ε} is independent of u.
3. Results. We state the definition of a periodic weak solution.

Definition 3.1. ${ }^{t}(u, \theta) \in\left(L^{2}(0, T ; V) \cap\right.$ $\left.L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)\right) \times\left(L^{2}(0, T ; W) \cap L_{\pi}^{2}(0, T\right.$; $\left.L^{6}(\Omega)\right)$) is called a periodic weak solution of (HCE) if it satisfies (10) and (11):

$$
\begin{equation*}
\int_{0}^{T}\left\{\left(u, \varphi_{t}\right)+((u \cdot \nabla) \varphi, u)-\nu(\nabla u, \nabla \varphi)\right. \tag{10}
\end{equation*}
$$

$\left.-(\alpha g \theta, \varphi)+\left(\left(1-\alpha\left(\bar{\theta}-\Theta_{0}\right)\right) g, \varphi\right)\right\} d t=0$,
(11) $\int_{0}^{T}\left\{\left(\theta, \psi_{t}\right)+((u \cdot \nabla) \psi, \theta)-\kappa(\nabla \theta, \nabla \psi)\right.$ $\left.-((u \cdot \nabla) \bar{\theta}, \psi)-\left(\bar{\theta}_{t}, \psi\right)-\kappa(\nabla \bar{\theta}, \nabla \psi)\right\} d t=0$, for all $\varphi \in \hat{D}_{\sigma, \pi}(\hat{\Omega})$ and $\psi \in \hat{D}_{\pi}(\hat{\Omega})$.

Remark 2. Let $u \in V, \theta \in W$, then $u(\Gamma)$ $=0, \theta(\Gamma)=0$ and from (i) of Lemma 2.2, $\lim _{|x| \rightarrow \infty} u(x)=0, \lim _{|x| \rightarrow \infty} \theta(x)=0$.

Then we mention a main theorem.

Theorem 3.2. Suppose assumpions (A1) ~ (A4) are satisfied. If $3 c^{2} \alpha\|g\|_{L^{\frac{2}{2}}(\Omega)}<\sqrt{\kappa \nu}$ (where c $\left.=(48)^{\frac{1}{6}}\right)$, then a periodic weak solution of (HCE) exists.
4. Proof of results. To construct a periodic weak solution, we use "the extending domain method". We first show a lemma by which we have periodic weak solutions of interior problems (P_{n}) in domains $\Omega_{n}=B_{n} \cap \Omega$. We state the interior problem $\left(\mathrm{P}_{n}\right)$:

$$
\left\{\begin{aligned}
& v_{t}+(v \cdot \nabla) v=-(\nabla p) / \rho-\alpha \Theta g \\
&+\nu \Delta v+\left\{1-\alpha\left(\bar{\theta}-\Theta_{0}\right)\right\} g \text { in } \hat{\Omega}_{n}, \\
& \operatorname{div} v=0 \text { in } \hat{\Omega}_{n}, \\
& \Theta_{t}+(v \cdot \nabla) \Theta=\kappa \Delta \Theta-(v \cdot \nabla) \bar{\theta}-\bar{\theta}_{t}, \\
&+\kappa \Delta \bar{\theta} \text { in } \hat{\Omega}_{n},
\end{aligned}\right.
$$

(13) $\left.v\right|_{\partial \Omega_{n}}=0,\left.\Theta\right|_{\partial \Omega_{n}}=0$, where $\partial \Omega_{n}=\Gamma+\partial B_{n}$,
(14) $u(\cdot, T)=u(\cdot, 0), \Theta(\cdot, T)=\Theta(\cdot, 0)$.

The definition of a periodic weak solution for the problem (P_{n}) is as follows:

Definition 4.1. ${ }^{t}(v, \Theta) \in\left(L_{\pi}^{2}\left(0, T ; H_{\sigma}^{1}\left(\Omega_{n}\right)\right)\right)$ $\times\left(L_{\pi}^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{n}\right)\right)\right)$ is called a periodic weak solution for $\left(\mathrm{P}_{n}\right)$ if it satisfies the following:

$$
\begin{equation*}
\int_{0}^{T}\left\{\left(v, \varphi_{t}\right)+((v \cdot \nabla) \varphi, v)-\nu(\nabla v, \nabla \varphi)\right. \tag{15}
\end{equation*}
$$

$\left.-(\alpha g \Theta, \varphi)+\left(\left(1-\alpha\left(\bar{\theta}-\Theta_{0}\right)\right) g, \varphi\right)\right\} d t=0$,
(16) $\int_{0}^{T}\left\{\left(\Theta, \psi_{t}\right)+((v \cdot \nabla) \psi, \Theta)-\kappa(\nabla \Theta, \nabla \psi)\right.$
$\left.-((v \cdot \nabla) \bar{\theta}, \psi)-\left(\bar{\theta}_{t}, \psi\right)-\kappa(\nabla \bar{\theta}, \nabla \psi)\right\} d t=0$, for $\varphi \in \hat{D}_{\sigma, \pi}\left(\hat{\Omega}_{n}\right)$ and $\psi \in \hat{D}_{\pi}\left(\bar{\Omega}_{n}\right)$.

Here we will present an important lemma to carry out "the extending domain method".

Lemma 4.2. Suppose assumptions (A1)~(A4) are satisfied. Then there exists a satisfactory extension $\bar{\theta}$ which is independent of Ω_{n} such that, using it in common to all Ω_{n}, we can construct a periodic weak solution ${ }^{t}\left(v_{n}, \Theta_{n}\right)$ of $\left(\mathrm{P}_{n}\right)$.

Proof of Lemma 4.2. Let n be arbitrarily fixed. We use Galerkin's method. Let $\left\{w_{j}\right\} \subset$ $D_{\sigma}\left(\Omega_{n}\right)$ (resp. $\left\{z_{j}\right\} \subset D\left(\Omega_{n}\right)$) be a sequence of functions, orthnormal in $L^{2}\left(\Omega_{n}\right)$ and total in $H_{\sigma}^{1}\left(\Omega_{n}\right)$ (resp. $H_{0}^{1}\left(\Omega_{n}\right)$). We put
(17) $v^{(m)}(t)=\sum_{j=1}^{m} \alpha_{j, m}(t) w_{j}, \quad \Theta^{(m)}(t)=\sum_{j=1}^{m} \beta_{j, m}(t) z_{j}$, then we consider an initial value problem for the following ordinary differential equations:

$$
\begin{align*}
& \frac{d}{d t}\left(v^{(m)}(t), w_{j}\right)+\left(\left(v^{(m)} \cdot \nabla\right) v^{(m)}, w_{j}\right) \tag{18}\\
&=-\nu\left(\nabla v^{(m)}, \nabla w_{j}\right)-\left(\alpha g \Theta^{(m)}, w_{j}\right) \\
& \quad+\left(\left\{1-\alpha\left(\bar{\theta}-\Theta_{0}\right)\right\} g, w_{j}\right), \tag{19}
\end{align*}
$$

$$
\begin{gathered}
=-\kappa\left(\nabla \Theta^{(m)}, \nabla z_{j}\right)-\left(\left(v^{(m)} \cdot \nabla\right) \bar{\theta}, z_{j}\right) \\
-\left(\bar{\theta}_{t}, z_{j}\right)-\kappa\left(\nabla \bar{\theta}, \nabla z_{j}\right),
\end{gathered}
$$

where $1 \leq j \leq m$. Moreover, for ${ }^{t}(a, h-\bar{\theta}) \in$ $H_{\sigma}\left(\Omega_{n}\right) \times L^{2}\left(\Omega_{n}\right)$

$$
\begin{gather*}
v^{(m)}(0)=v_{m 0}=\sum_{j=1}^{m}\left(a, w_{j}\right) w_{j}, \tag{20}\\
\Theta^{(m)}(0)=\Theta_{m 0}=\sum_{j=1}^{m}\left(h-\bar{\theta}(\cdot, 0), z_{j}\right) z_{j} .
\end{gather*}
$$

Multiplying (18) (resp. (19)) by $\alpha_{j, m}(t)$ (resp. $\left.\beta_{j, m}(t)\right)$, summing up with respect to j and noticing $\left(\left(v^{(m)} \cdot \nabla\right) v^{(m)}, v^{(m)}\right)=0,\left(\left(v^{(m)} \cdot \nabla\right) \Theta^{(m)}, \Theta^{(m)}\right)$ $=0$, we have:
$(21) \frac{1}{2} \frac{d}{d t}\left\|v^{(m)}(t)\right\|^{2}+\nu\left\|\nabla v^{(m)}(t)\right\|^{2}=-\left(\alpha g \Theta^{(m)}, v^{(m)}\right)$ $+\left(\left(1+\alpha \Theta_{0}\right) g, v^{(m)}\right)-\left(\alpha g \bar{\theta}, v^{(m)}\right)$,
(22) $\frac{1}{2} \frac{d}{d t}\left\|\Theta^{(m)}(t)\right\|^{2}+\kappa\left\|\nabla \Theta^{(m)}(t)\right\|^{2}=$ $-\left(\left(v^{(m)} \cdot \nabla\right) \bar{\theta}, \Theta^{(m)}\right)-\left(\bar{\theta}_{t}, \Theta^{(m)}\right)-\kappa\left(\nabla \bar{\theta}, \nabla \Theta^{(m)}\right)$. Considering the assumption (A3) and Lemma 2.2, we have from (21)
(23) $\frac{1}{2} \frac{d}{d t}\left\|v^{(m)}(t)\right\|^{2}+\nu\left\|\nabla v^{(m)}(t)\right\|^{2}$

$$
\leq 3 \alpha\|g\|_{\frac{3}{2}} \cdot\left\|\Theta^{(m)}\right\|_{6} \cdot\left\|v^{(m)}\right\|_{6}+\left(1+\alpha \Theta_{0}\right) .
$$

$$
\|g\|_{\frac{6}{5}} \cdot\left\|v^{(m)}\right\|_{6}+3 \alpha\|g\|_{L^{2}(\Omega)} \cdot\|\bar{\theta}\|_{3} \cdot\left\|v^{(m)}\right\|_{6}
$$

$$
\leq \frac{3 c^{2} \alpha\|g\|_{\frac{3}{2}}}{\sqrt{\kappa \nu}}\left(\frac{\kappa}{2}\left\|\nabla \Theta^{(m)}\right\|^{2}+\frac{\nu}{2}\left\|\nabla v^{(m)}\right\|^{2}\right)
$$

$$
+\frac{\nu}{4}\left\|\nabla v^{(m)}\right\|^{2}+\frac{\left(1+\alpha \Theta_{0}\right)^{2} c^{2}}{\nu}\|g\|_{\frac{6}{5}}^{2}
$$

$$
+\frac{\nu}{4}\left\|\nabla v^{(m)}\right\|^{2}+\frac{9 c^{2} \alpha^{2}}{\nu}\|g\|_{2}^{2} \cdot\|\bar{\theta}\|_{3}^{2}
$$

here $\quad\|g\|_{p}=\|g\|_{L^{p}(\Omega)},\|\bar{\theta}\|_{p}=\|\bar{\theta}\|_{L^{p}(\Omega)},\|\cdot\|_{p}=$ $\|\cdot\|_{L^{p}\left(\Omega_{n}\right)}, c=(48)^{1 / 6}$. Then we get

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|v^{(m)}(t)\right\|^{2}+\frac{1}{2} \nu\left\|\nabla v^{(m)}(t)\right\|^{2} \tag{24}\\
& \leq \frac{3 c^{2} \alpha\|g\|_{\frac{3}{2}}}{\sqrt{\kappa \nu}}\left(\frac{\kappa}{2}\left\|\nabla \Theta^{(m)}\right\|^{2}+\frac{\nu}{2}\left\|\nabla v^{(m)}\right\|^{2}\right) \\
& +\frac{\left(1+\alpha \Theta_{0}\right)^{2} c^{2}}{\nu}\|g\|_{\frac{6}{5}}^{2}+\frac{9 \alpha^{2} c^{2}}{\nu}\|g\|_{2}^{2}\|\bar{\theta}\|_{3}^{2} .
\end{align*}
$$

On the other hand, we have from (22)
(25)

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\Theta^{(m)}(t)\right\|^{2}+\kappa\left\|\nabla \Theta^{(m)}\right\|^{2} \\
& \leq 3\left\|v^{(m)}\right\|_{6} \cdot\left\|\nabla \Theta^{(m)}\right\| \cdot\|\bar{\theta}\|_{3}+3\left\|\bar{\theta}_{t}\right\|_{\frac{6}{5}} . \\
& \left\|\Theta^{(m)}\right\|_{6}+\kappa\|\nabla \bar{\theta}\| \cdot\left\|\nabla \Theta^{(m)}\right\| \\
& \leq \frac{27 c^{2}}{2 \kappa}\|\bar{\theta}\|_{3}^{2} \cdot\left\|\nabla v^{(m)}\right\|^{2}+\frac{27 c^{2}}{2 \kappa}\left\|\bar{\theta}_{t}\right\|_{\frac{\sigma}{5}}^{2} \\
& +\frac{3}{2} \kappa\|\nabla \bar{\theta}\|^{2}+3 \cdot \frac{\kappa}{6}\left\|\nabla \Theta^{(m)}\right\|^{2},
\end{aligned}
$$

from which we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|\Theta^{(m)}(t)\right\|^{2}+\frac{1}{2} \kappa\left\|\nabla \Theta^{(m)}\right\|^{2} \tag{26}
\end{equation*}
$$ $\leq \frac{27 c^{2}}{2 \kappa}\|\bar{\theta}\|_{3}^{2}\left\|\nabla v^{(m)}\right\|^{2}+\frac{27 c^{2}}{2 \kappa}\left\|\bar{\theta}_{t}\right\|_{\frac{6}{5}}^{2}+\frac{3}{2} \kappa\|\nabla \bar{\theta}\|^{2}$.

Adding (24) and (26), then we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|v^{(m)}(t)\right\|^{2}+\frac{1}{2} \frac{d}{d t}\left\|\Theta^{(m)}(t)\right\|^{2} \tag{27}
\end{equation*}
$$

$$
\begin{aligned}
+ & \frac{\nu}{2}\left(1-\frac{3 c^{2} \alpha\|g\|_{\frac{3}{2}}}{\sqrt{\kappa \nu}}-\frac{27 c^{2}}{\kappa \nu}\|\bar{\theta}\|_{3}^{2}\right)\left\|\nabla v^{(m)}\right\|^{2} \\
& +\frac{\kappa}{2}\left(1-\frac{3 c^{2} \alpha\|g\|_{\frac{3}{2}}}{\sqrt{\kappa \nu}}\right)\left\|\nabla \Theta^{(m)}\right\|^{2} \leq f(t),
\end{aligned}
$$

where $f(t) \equiv \frac{\left(1+\alpha \Theta_{0}\right)^{2} c^{2}}{\nu}\|g\|_{\frac{6}{5}}^{2}+\frac{9 \alpha^{2} c^{2}}{\nu}\|g\|_{2}^{2}$. $\|\bar{\theta}\|_{3}^{2}+\frac{27 c^{2}}{2 \kappa}\left\|\bar{\theta}_{t}\right\|_{\frac{6}{5}}^{2}+\frac{3}{2} \kappa\|\nabla \bar{\theta}\|^{2}$.
Recalling the assumption of Theorem 3.2, we put $\gamma \equiv 1-3 c^{2} \alpha\|g\|_{\frac{3}{2}} / \sqrt{\kappa \nu}>0$. Furthermore thanks to (iv) of Lemma ${ }^{2}$ 2.1, we can take $\bar{\theta}$ such that $\sup _{0 \leq t \leq T} \frac{27 c^{2}}{\kappa \nu}\|\bar{\theta}(t)\|_{3}^{2} \leq \frac{\gamma}{2}$. It is important for us that $\bar{\theta}$ can be taken in common not only in m but also for all $\Omega_{n}(n>1)$. We put $\delta=\min \left\{\frac{\nu \gamma}{4}\right.$, $\left.\frac{\kappa \gamma}{2}\right\}$ (δ is independent of m and n). Then we have from (27)

$$
\begin{gather*}
\text { 8) } \frac{d}{d t}\left(\left\|v^{(m)}(t)\right\|^{2}+\left\|\Theta^{(m)}(t)\right\|^{2}\right) \tag{28}\\
+2 \delta\left(\left\|\nabla v^{(m)}(t)\right\|^{2}+\left\|\nabla \Theta^{(m)}(t)\right\|^{2}\right) \leq 2 f(t) .
\end{gather*}
$$

Let d_{n} be a diameter of Ω_{n}. Owing to Poincaré's inequality, we find

$$
\begin{gather*}
\frac{d}{d t}\left(\left\|v^{(m)}(t)\right\|^{2}+\left\|\Theta^{(m)}(t)\right\|^{2}\right) \tag{29}\\
+\mu_{n}\left(\left\|v^{(m)}(t)\right\|^{2}+\left\|\Theta^{(m)}(t)\right\|^{2}\right) \leq 2 f(t)
\end{gather*}
$$

where $\mu_{n}=(4 \delta) / d_{n}^{2}$. Then we have from (29)
(30) $\quad\left\|v^{(m)}(T)\right\|^{2}+\left\|\Theta^{(m)}(T)\right\|^{2}$

$$
\begin{aligned}
& \leq \exp \left(-\mu_{n} T\right)\left(\left\|v^{(m)}(0)\right\|^{2}+\left\|\Theta^{(m)}(0)\right\|^{2}\right) \\
& +2 \exp \left(-\mu_{n} T\right) \int_{0}^{T} \exp \left(\mu_{n} t\right) f(t) d t
\end{aligned}
$$

Here we employ Brouwer's fixed point theorem. Indeed, in (17), we take initial values $\alpha_{j, m}(0)$, $\beta_{j, m}(0)(j=1, \cdots, m)$ as $(\alpha ; \beta)=\left(\alpha_{1 m}, \cdots\right.$, $\left.\alpha_{m m}, \beta_{1 m}, \cdots, \beta_{m m}\right)$. Now we define a mapping $P: \boldsymbol{R}^{2 m} \rightarrow \boldsymbol{R}^{2 m}$ as follows:
(31) $P((\alpha ; \beta))=\left(\alpha_{1, m}(T), \cdots, \alpha_{m, m}(T)\right.$,

$$
\left.\beta_{1, m}(T), \cdots, \beta_{m, m}(T)\right),
$$

then it is easy to verify the mapping P is continuous. For $\lambda \in[0,1]$, we investigate possible
solutions of the equation $(\alpha ; \beta)=\lambda P((\alpha ; \beta))$. In fact, we have by (30)
(32)

$$
\begin{aligned}
& \|(\alpha ; \beta)\|^{2}=\lambda^{2}\|P((\alpha ; \beta))\|^{2} \\
& =\lambda^{2}\left\|U^{(m)}(T)\right\|^{2} \leq\left\|U^{(m)}(T)\right\|^{2} \\
& \leq e^{-\mu_{n} T}\left\|U^{(m)}(0)\right\|^{2}+2 e^{-\mu_{n} T} \int_{0}^{T} e^{\mu_{n} t} f(t) d t \\
& \leq e^{-\mu_{n} T}\|(\alpha ; \beta)\|^{2}+\frac{2}{\mu_{n}}\left|\|f \mid\|\left(1-e^{-\mu_{n} T}\right),\right.
\end{aligned}
$$

where $\quad\left\|U^{(m)}(0)\right\|^{2}=\left\|v^{(m)}(0)\right\|^{2}+\left\|\Theta^{(m)}(0)\right\|^{2}$ and $\left|\left||f| \|=\sup _{0 \leq t \leq T} f(t)\right.\right.$. Since $\mu_{n}>0$, we obtain $\|(\alpha ; \beta)\|^{2} \leq \frac{2}{\mu_{n}}|\|f \mid\|$. Hence possible solutions $(\alpha ; \beta)$ stay within a some definite ball. Therefore, thank to Brouwer's fixed point theorem, there is $(\alpha ; \beta)$ satifying $(\alpha ; \beta)=P((\alpha ; \beta))$. This implies that there exists a periodic solution ${ }^{t}\left(v^{(m)}, \Theta^{(m)}\right)$ such that ${ }^{t}\left(v^{(m)}(T), \Theta^{(m)}(T)\right)=$ ${ }^{t}\left(v^{(m)}(0), \Theta^{(m)}(0)\right)$. We know by (32) the intial data which gives the periodic solution is in the ball $\left\{\left.\left\|U^{(m)}(0)\right\|^{2} \leq \frac{2}{\mu_{n}} \right\rvert\,\|f\| \|\right\}$. On the other hand, from (28) we have

$$
\begin{align*}
& \left\|v^{(m)}(t)\right\|^{2}+\left\|\Theta^{(m)}(t)\right\|^{2}+2 \delta \int_{0}^{t} \tag{33}\\
& \left(\left\|\nabla v^{(m)}(s)\right\|^{2}+\left\|\nabla \Theta^{(m)}(s)\right\|^{2}\right) d s \\
& \leq\left\|v^{(m)}(0)\right\|^{2}+\left\|\Theta^{(m)}(0)\right\|^{2}+2 \int_{0}^{t} f(s) d s \\
& \leq\left\|v^{(m)}(0)\right\|^{2}+\left\|\Theta^{(m)}(0)\right\|^{2}+2 T\|f\| \| .
\end{align*}
$$

Consequently, for m-dimensional periodic solutions ${ }^{t}\left(v^{(m)}(t), \Theta^{(m)}(t)\right)$, it holds that

$$
\begin{align*}
& \left\|v^{(m)}(t)\right\|^{2}+\left\|\Theta^{(m)}(t)\right\|^{2}+2 \delta \int_{0}^{t} \tag{34}\\
& \quad\left(\left\|\nabla v^{(m)}(s)\right\|^{2}+\left\|\nabla \Theta^{(m)}(s)\right\|^{2}\right) d s \\
& \quad \leq 2\left(\frac{1}{\mu_{n}}+T\right)\| \| f \| \quad \text { for } m \geq 1
\end{align*}
$$

Therefore $\left\{v^{(m)}(t)\right\}_{m \geq 1}\left(\right.$ resp. $\left.\left\{\Theta^{(m)}(t)\right\}_{m \geq 1}\right)$ is a bounded sequence in $L^{2}\left(0, T ; H_{\sigma}^{1}\left(\Omega_{n}\right)\right)$ (resp. $\left.L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{n}\right)\right)\right) \quad$ and \quad in $L_{\pi}^{\infty}\left(0, T ; L^{2}\left(\Omega_{n}\right)\right)$ (resp. $L_{\pi}^{\infty}\left(0, T ; L^{2}\left(\Omega_{n}\right)\right)$). Here a space $L_{\pi}^{\infty}(0, T$; $\left.L^{2}\left(\Omega_{n}\right)\right)$ means $\left\{u \in L^{\infty}\left(0, T ; L^{2}\left(\Omega_{n}\right)\right) ; u(0)=\right.$ $u(T)\}$. Hence there exist subsequences $\left\{v^{(m)}\right\}$ and $\left\{\Theta^{(m)}\right\}$ (we used the same symbols) such that $v^{(m)} \rightarrow v$ (resp. $\Theta^{(m)} \rightarrow \Theta$) weakly in $L^{2}\left(0, T ; H_{\sigma}^{1}\left(\Omega_{n}\right)\right)\left(\right.$ resp. $\left.L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{n}\right)\right)\right)$ and weakly ${ }^{*}$ in $L_{\pi}^{\infty}\left(0, T ; L^{2}\left(\Omega_{n}\right)\right)$ (resp. $L_{\pi}^{\infty}(0, T$; $\left.L^{2}\left(\Omega_{n}\right)\right)$). Furthermore by using Lemma 2.3 (Friedrichs) and (34) we see that $v^{(m)} \rightarrow v$ and $\Theta^{(m)} \rightarrow \Theta$ strongly in $L^{2}\left(0, T ; L^{2}\left(\Omega_{n}\right)\right)$. Thanks to these facts, employing the usual argument of Galerkin's method, we can show that the limit
function ${ }^{t}(v, \Theta)$ is a periodic weak solution of $\left(P_{n}\right)$ in Ω_{n}, and we skip it.

Moreover, we mention a lemma to prove Theorem 3.2.

Lemma 4.3. Let ${ }^{t}\left(v_{n}, \Theta_{n}\right)$ be a weak periodic solution for $\left(\mathrm{P}_{n}\right)$ obtained in Lemma 4.2. We put $u_{n}(x, t)=v_{n}(x, t)$ if $x \in \Omega_{n}$ and $u_{n}(x, t)=0$ if $x \in \Omega \backslash \Omega_{n} ; \theta_{n}(x, t)=\Theta_{n}(x, t)$ if $x \in \Omega_{n}$ and $\theta_{n}(x, t)=0$ if $x \in \Omega \backslash \Omega_{n}$. Then $u_{n} \in L^{2}(0, T$; $V) \cap L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)$ and $\theta_{n} \in L^{2}(0, T ; W) \cap$ $L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)$. Moreover $\left\{u_{n}\right\}_{n \geq 1}$ (resp. $\left\{\theta_{n}\right\}_{n \geq 1}$) is bounded in $L^{2}(0, T ; V)$ (resp. $L^{2}(0$, $T ; W)$) and in $L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)\left(\right.$ resp. $L_{\pi}^{2}(0, T$; $\left.L^{6}(\Omega)\right)$).

Proof of Lemma 4.3. We return to (28) and integrate it on $[0, T]$, then by virtue of the periodicity of $v^{(m)}(t)$ and $\Theta^{(m)}(t)$ with period T we get

$$
\begin{gather*}
\delta \int_{0}^{T}\left(\left\|\nabla v^{(m)}(t)\right\|^{2}+\left\|\nabla \Theta^{(m)}(t)\right\|^{2}\right) d t \tag{35}\\
\leq \int_{0}^{T} f(t) d t \leq T\|f\|
\end{gather*}
$$

where δ and $T|||f|||$ are independent of n and m. If we take $m \rightarrow \infty$ in (35), then we obtain by the lower semicontinuity of the norm with respect to the weak convergence

$$
\begin{align*}
& \delta \int_{0}^{T}\left(\left\|\nabla v_{n}(t)\right\|^{2}+\left\|\nabla \Theta_{n}(t)\right\|^{2}\right) d t \tag{36}\\
& \leq \int_{0}^{T} f(t) d t \leq T\| \| f \| \quad(n \geq 1)
\end{align*}
$$

On the other hand, the equality $v_{n}(T)=v_{n}(0)$ in $L^{2}\left(\Omega_{n}\right)$ implies $v_{n}(T)=v_{n}(0)$ for a.e. $x \in \Omega_{n}$ and because of Lemma 2.2 we see $v_{n}(t) \in$ $L^{6}\left(\Omega_{n}\right)$, therefore we find $v_{n}(T)=v_{n}(0)$ as elements of $L^{6}\left(\Omega_{n}\right)$. By this fact and (36) it holds that $v_{n} \in L_{\pi}^{2}\left(0, T ; L^{6}\left(\Omega_{n}\right)\right)$. Similarly we see Θ_{n} $\in L_{\pi}^{2}\left(0, T ; L^{6}\left(\Omega_{n}\right)\right)$. Considering these results and using (36) again, it holds that for all $n \geq 1$, $u_{n} \in L^{2}(0, T ; V) \cap L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right), \quad \theta_{n} \in L^{2}(0$, $T ; W) \cap L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)$ and (note $c=(48)^{1 / 6}$) (37) $\frac{1}{c} \int_{0}^{T}\left(\left\|u_{n}(t)\right\|_{6(\Omega)}^{2}+\left\|\theta_{n}(t)\right\|_{L^{6}(\Omega)}^{2}\right) d t$

$$
\leq \int_{0}^{T}\left(\left\|\nabla u_{n}(t)\right\|^{2}+\left\|\nabla \theta_{n}(t)\right\|^{2}\right) d t \leq \frac{T|\|f|\||}{\delta}
$$

Proof of Theorem 3.2. According to the uniform estimate (37), we can select subsequences $u_{n^{\prime}}, \theta_{n^{\prime}}$ and $u \in L^{2}(0, T ; V) \cap L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)$, $\theta \in L^{2}(0, T ; W) \cap L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)$ such that $u_{n^{\prime}} \rightarrow u$ (resp. $\theta_{n^{\prime}} \rightarrow \theta$) weakly in $L^{2}(0, T ; V)$ (resp. $L^{2}(0, T ; W)$) together with in $L_{\pi}^{2}(0, T$;
$\left.L^{6}(\Omega)\right)$ (resp. $\left.L_{\pi}^{2}\left(0, T ; L^{6}(\Omega)\right)\right)$. Now we claim that there exist subsequences $u_{n^{\prime}}$ and $\theta_{n^{\prime}}$ such that for any bounded $\Omega^{\prime} \subset \Omega$
(38) $\quad u_{n^{\prime}} \rightarrow u$ strongly in $L^{2}\left(0, T ; L^{2}\left(\Omega^{\prime}\right)\right)$,
(39) $\quad \theta_{n^{\prime}} \rightarrow \theta$ strongly in $L^{2}\left(0, T ; L^{2}\left(\Omega^{\prime}\right)\right)$.

We put $K_{j}=\bar{\Omega}_{j}$, then $\left\{K_{j}\right\}_{j=1}^{\infty}$ form a sequence of compact sets such that $K_{1} \Subset K_{2} \Subset \cdots \rightarrow \Omega(j \longrightarrow$ $\infty)$. Here, for each K_{j} we take $\alpha_{j}(x) \in$ $C_{0}^{\infty}(\Omega)$ with the property $0 \leq \alpha_{j} \leq 1,\left.\alpha_{j}\right|_{K_{j}} \equiv 1$, and supp $\alpha_{j} \subset \Omega_{j+1}$. We note $K_{j} \subset \operatorname{supp} \alpha_{j}$. Here and after in this proof, $\|\cdot\|_{\Omega_{j}}=\|\cdot\|_{L^{2}\left(\Omega_{j}\right)}, d_{j}=$ the diameter of Ω_{j}. Then we construct a desired $\left\{u_{n^{\prime}}\right\}$ as follows. First we make a sequence $\left\{\alpha_{1}(x) u_{n}(x)\right\}_{n=1}^{\infty}$, then this forms a uniformly bounded sequence of $L^{2}\left(0, T ; W_{0}^{1,2}\left(\Omega_{2}\right)\right)$. Indeed, noting $u_{n}(\Gamma)=0$ and using Poincaré's inequality on Ω_{2}, then we see $\left\|\alpha_{1} u_{n}\right\|_{\Omega_{2}} \leq\left\|u_{n}\right\|_{\Omega_{2}} \leq \frac{d_{2}}{\sqrt{2}}$ $\left\|\nabla u_{n}\right\|_{\Omega_{2}}$. Hence we have by (37)
(40) $\int_{0}^{T}\left\|\alpha_{1} u_{n}\right\|_{\Omega_{n}}^{2} d t \leq \frac{d_{2}^{2}}{2} \int_{0}^{T}\left\|\nabla u_{n}\right\|^{2} d t \leq \frac{d_{2}^{2}}{2} \frac{T|\|f \mid\|}{\delta}$. Moreover, $\left\|\nabla\left(\alpha_{1} u_{n}\right)\right\|_{\Omega_{2}} \leq\left\|\left(\nabla \alpha_{1}\right) u_{n}\right\|_{\Omega_{2}}+\left\|\alpha_{1}\left(\nabla u_{n}\right)\right\|_{\Omega_{2}}$ $\leq\left(\frac{d_{2}}{\sqrt{2}}\left\|\nabla \alpha_{1}\right\|_{\infty}+\left\|\alpha_{1}\right\|_{\infty}\right)\left\|\nabla u_{n}\right\|_{\Omega_{2}}, \quad$ where $\|w\|_{\infty}$ $=\operatorname{ess} . \sup _{x \in \Omega_{2}}|w(x)|$. Therefore we have

By these estimates we find $\left\{\alpha_{1} u_{n}\right\}_{n}$ is uniformly bounded in $L^{2}\left(0, T ; W_{0}^{1,2}\left(\Omega_{2}\right)\right)$. Consequently, there is a subsequence $\left\{\alpha_{1} u_{1 p}\right\}_{p=1}^{\infty}$ which converges weakly in $L^{2}\left(0, T ; L_{0}^{1,2}\left(\Omega_{2}\right)\right)$ and especially in $L^{2}\left(0, T ; W^{2}\left(\Omega_{2}\right)\right)$. Furthermore, according to Lemma 2.3, we get

$$
\begin{equation*}
\int_{0}^{T}\left\|\alpha_{1} u_{1 p}-\alpha_{1} u_{1 q}\right\|_{\Omega_{2}}^{2} d t \leq \sum_{k=1}^{\ell_{\varepsilon}} \int_{0}^{T}\left(\alpha_{1} u_{1 p}\right. \tag{42}
\end{equation*}
$$

$$
\left.-\alpha_{1} u_{1 q}, w_{k}\right)_{\Omega_{2}}^{2} d t+\varepsilon \int_{0}^{T}\left\|\alpha_{1} u_{1 p}-\alpha_{1} u_{1 q}\right\|_{W^{1,2}\left(\Omega_{2}\right)}^{2} d t
$$

$$
\leq \sum_{k=1}^{\ell_{\varepsilon}} \int_{0}^{T}\left(\alpha_{1} u_{1 p}-\alpha_{1} u_{1 q}, w_{k}\right)_{\Omega_{2}}^{2} d t
$$

$$
+4 \varepsilon C_{\alpha_{1}} \frac{T\| \| f \|}{\delta} \rightarrow 4 \varepsilon C_{\alpha_{1}} \frac{T\| \| f\| \|}{\delta}
$$

as $p, q \rightarrow \infty$, where $C_{\alpha_{1}}=\frac{d_{2}^{2}}{2}+\left(\left\|\nabla \alpha_{1}\right\|_{\infty} \cdot \frac{d_{2}}{\sqrt{2}}+\right.$ $\left.\left\|\alpha_{1}\right\|_{\infty}\right)^{2}$. As ε is arbitrary in (42), the sequence $\left\{\alpha_{1} u_{1 p}\right\}_{p=1}^{\infty}$ converges strongly in $L^{2}(0, T$; $\left.L^{2}\left(\Omega_{2}\right)\right)$. This implies that $\left\{u_{1 p}\right\}_{p=1}^{\infty}$ converges

$$
\begin{align*}
& \int_{0}^{T}\left\|\nabla\left(\alpha_{1} u_{n}\right)\right\|_{\Omega_{2}}^{2} d t \leq\left(\frac{d_{2}}{\sqrt{2}}\left\|\nabla \alpha_{1}\right\|_{\infty}+\left\|\alpha_{1}\right\|_{\infty}\right)^{2} . \tag{41}\\
& \frac{T\|\|f\|\|}{\delta} .
\end{align*}
$$

strongly in $L^{2}\left(0, T ; L^{2}\left(K_{1}\right)\right)$. We repeat such an argument and we make $\left\{u_{j p}\right\}_{p=1}^{\infty}(j=1,2, \cdots)$. Choose diagonal components and denote them by $\left\{u_{n^{\prime}}\right\}_{n^{\prime}=1}^{\infty}$, then it converges on all K_{j} in $L^{2}(0, T$; $\left.L^{2}\left(K_{j}\right)\right)$ sense. As for $\left\{\theta_{n^{\prime}}\right\}_{n^{\prime}=1}^{\infty}$, we can show similarly.

Making use of (38) and (39), we can prove that ${ }^{t}(u, \theta)$ is a periodic weak solution of (HCE). In fact, if we take an arbitrary test function ${ }^{t}(\varphi$, ψ), then we find a bounded domain Ω^{\prime} and a number n_{0} such that $\operatorname{supp} \varphi, \operatorname{supp} \psi \subset \Omega^{\prime}$ and $\Omega^{\prime} \subset \Omega_{n_{0}} \subset \Omega_{n}$ for all $n \geq n_{0}$. Then, with the aid of Lemma 2.2 and (37), we have
(43) $\int_{0}^{T}\left|\left(\left(u_{n^{\prime}} \cdot \nabla\right) \varphi, u_{n^{\prime}}\right)_{\Omega}-((u \cdot \nabla) \varphi, u)_{\Omega}\right| d t$

$$
\leq \int_{0}^{T}\left\{3\left\|u_{n^{\prime}}-u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\left\|u_{n^{\prime}}\right\|_{L^{6}(\Omega)}\|\nabla \varphi\|_{L^{3}\left(\Omega^{\prime}\right)}\right.
$$

$$
\left.+3\|u\|_{L^{6}(\Omega)}\left\|u_{n^{\prime}}-u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\|\nabla \varphi\|_{L^{3}\left(\Omega^{\prime}\right)}\right\} d t
$$

$$
\leq 6 c \cdot\left(\frac{T\| \| f\| \|}{\delta}\right)^{\frac{1}{2}}\|\nabla \varphi\|_{3, \infty}
$$

$$
\left(\int_{0}^{T}\left\|u_{n^{\prime}}-u\right\|_{L^{2}\left(\Omega^{\prime}\right)}^{2} d t\right)^{\frac{1}{2}} \rightarrow 0, \quad \text { as } n^{\prime} \rightarrow \infty
$$

where $\|w\|_{3, \infty}=\sup _{0 \leq t \leq T}\|w(t)\|_{L^{3}\left(\Omega^{\prime}\right)}$. Similarly
(44) $\int_{0}^{T}\left|\left(\left(u_{n^{\prime}} \cdot \nabla\right) \phi, \theta_{n^{\prime}}\right)_{\Omega}-((u \cdot \nabla) \phi, \theta)_{\Omega}\right| d t$

$$
\leq \int_{0}^{T}\left\{3\left\|\theta_{n^{\prime}}-\theta\right\|_{L^{2}\left(\Omega^{\prime}\right)}\left\|u_{n^{\prime}}\right\|_{L^{6}(\Omega)}\|\nabla \phi\|_{L^{3}\left(\Omega^{\prime}\right)}\right.
$$

$$
\left.+3\|\theta\|_{L^{6}(\Omega)}\left\|u_{n^{\prime}}-u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\|\nabla \phi\|_{L^{3}\left(\Omega^{\prime}\right)}\right\} d t
$$

$$
\leq 3 c \cdot\left(\frac{T\|f\| \|}{\delta}\right)^{\frac{1}{2}}\left\{\left(\int_{0}^{T}\left\|\theta_{n^{\prime}}-\theta\right\|_{L^{2}\left(\Omega^{\prime}\right)}^{2} d t\right)^{\frac{1}{2}}\right.
$$

$$
\left.+\left(\int_{0}^{T}\left\|u_{n^{\prime}}-u\right\|_{L^{2}\left(\Omega^{\prime}\right)}^{2} d t\right)^{\frac{1}{2}}\right\}\|\nabla \psi\|_{3, \infty}
$$

and the right hand side of (44) tends to 0 as $n^{\prime} \rightarrow \infty$. We skip the remaining terms. Thus we have shown that ${ }^{t}(u, \theta)$ is a periodic weak solution of (HCE).

References

[1] D. Gilbarg and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Berlin Heiderberg Springer (1983).
[2] T. Hishida: Asymptotic behavior and stability of solutions to the exterior convection problem. Nonlinear Anal., 22, 895-925 (1994).
[3] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York-London (1963).
[4] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uralceva: Linear and Quasilinear Equations of Parabolic Type. The American Mathematical

Society, Providence, Rhodes Island (1968).
[5] N. Matsuda: On existence of weak solutions of the heat convection equations in exterior domains. Master Thesis, St. Paul's Univ., pp. 1-54 (1996) (in Japanese).
[6] H. Morimoto: Non-stationary Boussinesq equations. J. Fac. Sci. Univ. Tokyo Sect. IA, 39, 61-75 (1992).
[7] K. Ōeda and N. Matsuda: On existence and uniqueness of weak solutions of the heat convection equations in exterior domains (1996) (submitted).
[8] K. Oeda: Weak and strong solutions of the heat
convection equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. IA, 36, 491-536 (1989).
[9] K. Oeda: Periodic solutions of the 2-dimensional heat convection equations. Proc. Japan Acad., 69A, 71-76 (1993).
[10] K. Ōeda: Stationary solutions of the heat convection equations in exterior domains (1996) (submitted).
[11] R. Temam: Navier-Stokes Equations. NorthHolland, Amsterdam (1984).

