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Abstract:

Let p be any odd prime. We show that the Iwasawa A, and y,-invariants of

certain (p, p)-extension fields K of @ vanish, and that there are infinitely many such K.

1. Introduction. Let p be a prime and Z,
the ring of p-adic integers. Let k be a finite
extension of the rational number field @, k. a
Z,-extension of k, and k, the m-th layer of
ko/k. Let A, be the p-Sylow subgroup of the
ideal class group of k, Iwasawa proved the
well-known theorem about the order # A, of A,
that there exist integers 2 = A(k,/k) =0, u=
ulk,/k) =20,v=yv(k,/k), and n, =0 such
that

#An =p1n+up"+v
for all # = n,. These integers A = A(k,/k), u =
uCk./k) and v = v(k,/k) are called Iwasawa
mvariants of k. /k for p. If k, is the cyclotomic
Z,-extension of k, we write A,(k), p,(k) and
v, (k) for the above invariants, respectively.

In [4], Greenberg conjectured that if k is a
totally real, 4,(k) = p,(k) = 0. About the con-
jecture, there are many results for real quadratic
fields by Fukuda, Ichimura, Komatsu, Ozaki,
Sumida, Taya, etc.. For example, it is known that
if p=3 and k= Q(/m), 1 < m < 10000, then
s (k) = A,(k) = 0 (cf. [5] and [8]). For p-exten-
sion fields of @, there are results by Greenberg
(4], V), Iwasawa ([6]), Fukuda, Komatsu, Ozaki,
and Taya ([3]), etc. On the other hand, Ferrero
and Washington have shown that y¢,(k) = 0 for
any abelian extension field k of Q.

In this paper we shall show A,(K) =
u,(K) = 0 for some abelian extension number
fields K of Q with Gal(K/Q) = (Z/pZ)*, and
the existence of infinitely many such K.

2. Theorem. Let p be a fixed odd prime.
Let p; and p, be distinct primes with p, = p, =1
(mod p). Then there exists the unique subfield
k@, of Q(Cp‘) which is cyclic over @ of degree
p for 1 = 1,2, where Cp, is a primitive p;-th root

of unity. We put K = k() k(p,). Let K, be the
cyclotomic Z,-extension of K and K, the #n-th
layer and A, the p-Sylow subgroup of the ideal
class group of K,. Our main purpose of this sec-
tion is to prove the following theorem:

Theorem 1. Let p, py, p, and K be as above.
Assume that p is not a p-th power residue modulo
D, and p, is not a p-th power residue modulo p, and
p, # 1 (mod pz). If one of the following conditions
(1)-(iii) is satisfied, then 2,(K) = p,(K) = 0.

(1) P is a p-th power residue modulo p,.
(ii) P, is a p-th power residue modulo p,.
(i) p, = 1 (mod p°).

Let @, be the first layer of the cyclotomic
Z,-extension of Q. For the field K; = K@Q,, it is
easy to see that K,/@Q is Galois and unramified
outside p, p, and p, and Gal(K,/ Q) = (Z/pZ)°.
Let G, Gl,{(i =1,2) be the decomposition
groups for p, p; in Gal(K,/@Q) and let D,, D, be
the fixed field of G,, G,, respectively.

For the field K;, we have the following re-
sult which we shall use as a lemma (The author
wishes to thank Dr. Manabu Ozaki for drawing
his attention to the result).

Lemma 2 ([1] (G. Cornell and M. Rosen)).
Following statements (a) and (b) are equivalent:

(a) The class number of K, is not divisible by
p.

(b) [D,:Q1=1D,:Ql =1[D, :Ql =p and
D,D,D, = K,.

On the other hand , we have also the follow-
ing result.

Lemma 3 ([2] (T. Fukuda)). Let k,./k be a
Z,-extention. Let e = 0 be an integer such that in
k. /k, all ramified primes are totally ramified. If #
A, = # A, for some n=e, then p,(k,/k) =
Ak /k) = 0.
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Proof of Theorem 1. First we note that 4, is
trivial because p, is not a p-th power residue mod-
ulo p,. We check [D,:Ql = [D,:Ql =1[D, :Ql
= p. Since Gal(K,/Q) = (Z/pZ)® and p, p,(i =
1,2) have ramification indices p, it is sufficient
for this purpose to show that there exists a sub-
field of K,(# @) in which p or p, or p, remains
prime. But from our assumptions for p, p;, it fol-
lows easily that p is inert in k(p,), p, is inert in
k(,), and p, is inert in Q.

We note that D, © k(p)k(p,) = K, D, <
k(p,) Q,, and D, < k(p,) @, Next, we consider
the composite field D,D, D, in each of the cases
(1)-(iii).

(i) Since D, = k(p,) by (i), and D, # k(@®,),
it follows that D,D, = k(p,)Q,. Also since D,
C k() Q, and D, * Q,, D, Zk(p,)Q,=D,D, .
Hence we have D,D, D, = K,.

(ii) Since D, = k(p,) by (i), and D, # k(p,),
it follows that D,D, = k(p,)k(p,). Also since
D, < k(p))Q, and D, # k(p,), D, kp)k(p,)
= D,D, . Hence we have D,D, D, = K.

(iii) Since D, = @, by (iii), and D, # Q,,
it follows that D, D, = k(p,)@Q,. Also since D,
< k(p)k(@,) and D, # k(p), D, Zk(p)Q, =
D, D,, Hence we have D,D, D, = K,.

Hence if one of conditions (i)-(iii) is satisfied,
then the class number of K, is not divisible by p
by Lemma 2. This means that A, is trivial. Since
p does not ramify in K/@Q and Z,-extensions are
unramified outside p (cf. [9, p. 264]), all ramified
primes in K_/K are totally ramified. Hence we
can apply Lemma 3 and conclude that A,(K) =
1, (K) = 0. ]

3. Remarks. We note that our theorem 1
(ii) has the following relations with the known re-
sult. In [4], Greenberg proved 4,(k) = p,(k) =0
for the fields k & K, where K satisfies the condi-
tions of our theorem 1 (ii) and k/Q is cyclic and
p remains prime in k. This follows from our
theorem because if kK S K then 4,(k) < 2,(K)
and g, (k) < p,(K).

In [6], Iwasawa proved that if K satisfies the
conditions of Theorem 1 (ii) and p, # 1 (mod 9,
then A,(K) = p,(K) = 0, which is contained in
our theorem. Iwasawa proved also that there ex-
ist infinitely many pairs of primes (p,,
p,) satisfying these conditions. We shall show
that we can prove by the method as in [6], the ex-
istence of infinitely many pairs of primes (p;,
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p,) satisfying the conditions of our theorem 1 (i),
(i1). We have namely,

Theorem 4. For any given odd prime p, there
exist infinitely many pairs of prime numbers (p,,
bD,) which satisfy the conditions of Theoerem 1 (i),
(i1), and (iii), respectively.

Proof. Since the case (ii) is proved in [6], we
prove (i) and (iii). Let P and P’ denote the cyclo-
tomic fields Q({,) and Q({,2), respectively. Then
P’ and P(/p) are independent cyclic extensions
of degree p over P.

(i) We can choose a prime ideal p, of P
with absolute degree 1 such that p, is undecom-
posed in P(¥/p). By Tchebotarev density theorem,
there exist infinitely many such prime ideals b;,.
Let p; = Npo(p), where Ny, is the norm map
from P to Q. Then p, = 1 (mod p) and, by Kum-
mer theory, p is not a p-th power residue modulo
p,. Now P’, P({/p) and P(i/p,) are independent
cyclic extensions of degree p over P. Hence there
is a prime ideal p, of P with absolute degree 1
such that p, is undecomposed in both P’ and
PG/p,), but is decomposed in P({/p). By Tchebo-
tarev density theorem, there exist infinitely many
such prime ideals p,. Let p, = Np,o(p,). Then p,
=1 (mod p), p, # 1 (mod p*), p, is not a p-th
power residue modulo p, and p is a p-th power
residue modulo p,. Hence p, and p, satisfy the
conditions of Theorem 1 (i) and there exist in-
finitely many pairs (p,, p,).

(ili) We can choose a prime ideal p, of P
with absolute degree 1 such that p; is undecom-
posed in P(/p), but is decomposed in P’. Let p,
= Np,o(P). Then p; = 1 (mod $?) and p is not a
p-th power residue modulo p,. Now P’ and
P(/p,) are independent cyclic extensions of de-
gree p over P. Hence there is a prime ideal p, of
P with absolute degree 1 such that p, is unde-
composed in both P’ and P(/p,). Then p, =1
(mod p), p, # 1 (mod p°) and p, is not a p-th
power residue modulo p,. Hence p, and p, satisfy
the conditions of Theorem 1 (iii) and there exist
infinitely many pairs (p,, p,) by Tchebotarev de-
nsity theorem. ]
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