Extensions of Hölder-McCarthy and Kantorovich Inequalities and Their Applications*)

By Takayuki FURUTA
Department of Applied Mathematics, Science University of Tokyo
(Communicated by Kiyosi ITÔ, M. J. A., March 12, 1977)

Abstract

Extensions of Hölder-McCarthy and Kantorovich inequalities are given and their applications to the order preserving power inequalities are also given.

§1. Extensions of Hölder-McCarthy and Kantorovich inequalities. This paper is an early announcement of [3], [4], and [5]. An operator means a bounded linear operator on a Hilbert space H. The celebrated Kantorovich inequality asserts that if A is positive operator on H such that $M \geq A \geq m>0$, then $\left(A^{-1} x, x\right)(A x, x)$ $\leq \frac{(m+M)^{2}}{4 m M}$ holds for every unit vector x in H. At first we state extensions of Kantorovich inequality.

Multiple positive definite operator case.

Theorem 1.1 [4]. Let A_{j} be positive operator on a Hilbert space H satisfying
$M I \geq A_{j} \geq m I(j=1,2, \ldots, k)$, where $M>m>0$. Let $f(t)$ be a real valued continuous convex function on $[m, M]$ and also let $x_{1}, x_{2}, \ldots, x_{k}$ be any finite number of vectors in H such that $\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}=1$. Then the following inequality holds;

$$
\begin{gathered}
\sum_{j=1}^{k}\left(f\left(A_{j}\right) x_{j}, x_{j}\right) \leq \frac{(m f(M)-M f(m))}{(q-1)(M-m)} \\
\left(\frac{(q-1)(f(M)-f(m))}{q(m f(M)-M f(m))}\right)^{q}\left(\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)\right)^{q}
\end{gathered}
$$

under any one of the following conditions (i) and (ii) respectively;

$$
\begin{gather*}
f(M)>f(m), \frac{f(M)}{M}>\frac{f(m)}{m} \text { and } \tag{i}\\
\frac{f(m)}{m} q \leq \frac{f(M)-f(m)}{M-m} \leq \frac{f(M)}{M} q
\end{gather*}
$$

holds for any real number $q>1$,

$$
\begin{gather*}
f(M)<f(m), \frac{f(M)}{M}<\frac{f(m)}{m} \text { and } \tag{ii}\\
\frac{f(m)}{m} q \leq \frac{f(M)-f(m)}{M-m} \leq \frac{f(M)}{M} q
\end{gather*}
$$

holds for any real number $q<0$.

[^0]Corollary 1.2 [4]. Let A_{j} be positive operator on a Hilbert space H satisfying
$M I \geq A_{j} \geq m I(j=1,2, \ldots, k)$, where $M>m>0$. Let $x_{1}, x_{2}, \ldots, x_{k}$ be any finite number of vectors in H such that $\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}=1$. Then the following inequality holds;

$$
\begin{aligned}
& \sum_{j=1}^{k}\left(A_{j}^{p} x_{j}, x_{j}\right) \leq \frac{\left(m M^{p}-M m^{p}\right)}{(q-1)(M-m)} \\
& \left(\frac{(q-1)\left(M^{p}-m^{p}\right)}{q\left(m M^{p}-M m^{p}\right)}\right)^{q}\left(\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)\right)^{q}
\end{aligned}
$$

under any one of the following conditions (i) and (ii) respectively;
(i) $m^{p-1} q \leq \frac{M^{p}-m^{p}}{M-m} \leq M^{p-1} q$ holds for any real numbers $p>1$ and $q>1$,
(ii) $m^{p-1} q \leq \frac{M^{p}-m^{p}}{M-m} \leq M^{p-1} q$ holds for any real numbers $p<0$ and $q<0$.

Corollary 1.2 becomes the following Corollary 1.3 if we put $q=p$.

Corollary 1.3 [4]. Let A_{j} be positive operator on a Hilbert space H satisfying
$M I \geq A_{j} \geq m I(j=1,2, \ldots, k)$, where $M>m>0$. Let $x_{1}, x_{2}, \ldots, x_{k}$ be any finite number of vectors in H such that $\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}=1$. Then the following inequality holds for any real number $p \notin[0,1]$;

$$
\begin{gathered}
\sum_{j=1}^{k}\left(A_{j}^{p} x_{j}, x_{j}\right) \leq \frac{\left(m M^{p}-M m^{p}\right)}{(p-1)(M-m)} \\
\left(\frac{(p-1)\left(M^{p}-m^{p}\right)}{p\left(m M^{p}-M m^{p}\right)}\right)^{p}\left(\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)\right)^{p} .
\end{gathered}
$$

Corollary 1.3 can be considered as an extension of the following Theorem A by Ky Fan.

Theorem A [1] (Ky Fan). Let A be a positive definite Hermitian matrix of order n with all its eigenvalues contained in the closed interval $[m, M]$, where $M>m>0$. Let $x_{1}, x_{2}, \ldots, x_{k}$ be any finite
number of vectors in the unitary n-space such that $\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}=1$. Then for every integer $p \neq 0,1$ (not necessary positive) we have;

$$
\begin{gathered}
\sum_{j=1}^{k}\left(A^{p} x_{j}, x_{j}\right) \leq \frac{(p-1)^{p-1}}{p^{p}} \\
\frac{\left(M^{p}-m^{p}\right)^{p}}{\left(m M^{p}-M m^{p}\right)^{p-1}(M-m)}\left(\sum_{j=1}^{k}\left(A x_{j}, x_{j}\right)\right)^{p}
\end{gathered}
$$

In particular $\left(\sum_{j=1}^{k}\left(A x_{j}, x_{j}\right)\right)\left(\sum_{j=1}^{k}\left(A^{-1} x_{j}, x_{j}\right)\right) \leq$ $\frac{(m+M)^{2}}{4 m M}$.

Corollàry 1.4 [3]. Let A be positive operator on a Hilbert space H satisfying
$M I \geq A \geq m I$, where $M>m>0$. Then the following inequalities hold for every unit vector x in H.
(i) $(A x, x)^{p}\left(A^{-1} x, x\right) \leq \frac{p^{p}}{(p+1)^{p+1}} \frac{(m+M)^{p+1}}{m M}$ for any p such that $\frac{m}{M} \leq p \leq \frac{M}{m}$
(ii) $\left(A^{2} x, x\right) \leq \frac{p^{p}}{(p+1)^{p+1}} \frac{(m+M)^{p+1}}{(m M)^{p}}(A x, x)^{p+1}$

$$
\text { for any } p \text { such that } \frac{m}{M} \leq p \leq \frac{M}{m}
$$

(i) in Corollary 1.4 with $p=1$ becomes the Kantorovich inequality.

Multiple positive definite matrix case.

Theorem 1.5 [4]. Let A_{j} be positive definite Hermite matrices of order n with eigenvalues contained in the interval $[m, M]$, where $M>m>0$. Let $f(t)$ be a real valued continuous convex function on $[m, M]$ and also $U_{j}(j=1,2, \ldots, k)$ are $r \times n$ matrices such that $\sum_{j=1}^{k} U_{j} U_{j}^{*}=I$. Then the following inequality holds;

$$
\begin{gathered}
\sum_{j=1}^{k} U_{j} f\left(A_{j}\right) U_{j}^{*} \leq \frac{(m f(M)-M f(m))}{(q-1)(M-m)} \\
\left(\frac{(q-1)(f(M)-f(m))}{q(m f(M)-M f(m))}\right)^{q}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{q}
\end{gathered}
$$

holds under any one of the following conditions (i) an (ii) ;
(i) $\quad f(M)>f(m), \frac{f(M)}{M}>\frac{f(m)}{m}$ and

$$
\frac{f(m)}{m} q \leq \frac{f(M)-f(m)}{M-m} \leq \frac{f(M)}{M} q
$$

holds for any real number $q>1$,

$$
\begin{equation*}
f(M)<f(m), \frac{f(M)}{M}<\frac{f(m)}{m} \text { and } \tag{ii}
\end{equation*}
$$

$$
\frac{f(m)}{m} q \leq \frac{f(M)-f(m)}{M-m} \leq \frac{f(M)}{M} q
$$

holds for any real number $q<0$.
Corollary 1.6 [4]. Let A_{j} be positive definite Hermite matrices of order n with eigenvalues contained in the interval $[m, M]$, there $M>m>0$. If $U_{j}(j=1,2, \ldots, k)$ are $r \times n$ matrices such that $\sum_{j=1}^{k} U_{j} U_{j}^{*}=I$. Then the following inequality holds;

$$
\begin{gathered}
\sum_{j=1}^{k} U_{j} A_{j}^{p} U_{j}^{*} \leq \frac{\left(m M^{p}-M m^{p}\right)}{(q-1)(M-m)} \\
\left(\frac{(q-1)\left(M^{p}-m^{p}\right)}{q\left(m M^{p}-M m^{p}\right)}\right)^{q}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{q}
\end{gathered}
$$

holds under any one of the following conditions (i) and (ii) ;
(i) $\quad m^{p-1} q \leq \frac{f(M)-f(m)}{M-m} \leq M^{p-1} q$ holds for any real numbers $p>1$ and $q>1$,
(ii) $m^{p-1} q \leq \frac{f(M)-f(m)}{M-m} \leq M^{p-1} q$ holds for any real numbers $p<0$ and $q<0$.
If we put $q=p$ in Corollary 1.6 , we have the following result which is a matrix version of Theorem A by Ky Fan.

Corollary 1.7 [4]. Let A_{j} be positive definite Hermite matrices of order n with eigenvalues contained in the interval $[m, M]$, where $M>m>0$. Also let $U_{j}(j=1,2, \ldots, k)$ be $r \times n$ matrices such that $\sum_{j=1}^{k} U_{j} U_{j}^{*}=I$. Then for any real number p such that $p \notin[0,1]$, the following inequality holds;

$$
\begin{gathered}
\sum_{j=1}^{k} U_{j} A_{j}^{p} U_{j}^{*} \leq \frac{\left(m M^{p}-M m^{p}\right)}{(p-1)(M-m)} \\
\left(\frac{(p-1)\left(M^{p}-m^{p}\right)}{p\left(m M^{p}-M m^{p}\right)}\right)^{p}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{p}
\end{gathered}
$$

Corollary 1.8 [3]. Let $A_{j}(j=1, \ldots, k)$ be positive definite Hermite matrices of order n, with eigenvalues contained in the interval $[m, M]$, where $M>m>0$. Also let $U_{j}(j=1, \ldots, k)$ be $r \times n$ matrices such that $\sum_{j=1}^{k} U_{j} U_{j}^{*}=I$. Then the following inequalities hold;

$$
\begin{align*}
& \sum_{j=1}^{k} U_{j} A_{j}^{-1} U_{j}^{*} \leq \frac{p^{p}}{(p+1)^{p+1}} \tag{i}\\
& \frac{(m+M)^{p+1}}{m M}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{-p}
\end{align*}
$$

for any positive p such that $\frac{m}{M} \leq p \leq \frac{M}{m}$.
(ii)

$$
\begin{gathered}
\sum_{j=1}^{k} U_{j} A_{j}^{2} U_{j}^{*} \leq \frac{p^{p}}{(p+1)^{p+1}} \\
\frac{(m+M)^{p+1}}{(m M)^{p}}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{p+1}
\end{gathered}
$$

for any positive p such that $\frac{m}{M} \leq p \leq \frac{M}{m}$.
Corollary 1.8 with $p=1$ becomes the following Theorem B.

Theorem B [7]. Let $A_{j}(j=1, \ldots, k)$ be positive definite Hermite matrices of order n, with eigenvalues contained in the interval $[m, M]$, where $M>m>0$. If $U_{j}(j=1, \ldots, k)$ are $r \times n$ matrices such that $\sum_{j=1}^{k} U_{j} U_{j}^{*}=I$, then the following inequalities hold;
(i) $\sum_{j=1}^{k} U_{j} A_{j}^{-1} U_{j}^{*} \leq \frac{(m+M)^{2}}{4 m M}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{-1}$
(ii) $\sum_{j=1}^{k} U_{j} A_{j}^{2} U_{j}^{*} \leq \frac{(m+M)^{2}}{4 m M}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{2}$.

Next we state results on complementary inequality of Hölder-McCarthy inequality.

Theorem 1.9 [5]. Let A be positive operators on a Hilbert space H satisfying $M \geq A \geq m>0$. Then the following inequality holds for every unit vector x
(i) In case $p>1$:

$$
(A x, x)^{p} \leq\left(A^{\dot{p}} x, x\right) \leq K_{+}(m, M)(A x, x)^{p}
$$

where $K_{+}(m, M)$

$$
=\frac{(p-1)^{p-1}}{p^{p}} \frac{\left(M^{p}-m^{p}\right)^{p}}{(M-m)\left(m M^{p}-M m^{p}\right)^{p-1}}
$$

(ii) In case $p<0$:

$$
(A x, x)^{p} \leq\left(A^{p} x, x\right) \leq K_{-}(m, M)(A x, x)^{p}
$$

where $K_{-}(m, M)$

$$
=\frac{\left(m M^{p}-M m^{p}\right)}{(p-1)(M-m)}\left(\frac{(p-1)\left(M^{p}-m^{p}\right)}{p\left(m M^{p}-M m^{p}\right)}\right)^{p}
$$

Recently the following interesting complementary inequality of Hölder-McCarthy inequality [6] is shown in [2].

Theorem B ([2]). Let A and B be positive operators on a Hilbert space H satisfying $M_{1} \geq A$ $\geq m_{1}>0$ and $M_{2} \geq B \geq m_{2}>0$. Let p and q be $p>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then the following inequality holds for every vector x

$$
\begin{aligned}
& \left(B^{q} \#_{1 / p} A^{p} x, x\right) \leq\left(A^{p} x, x\right)^{1 / p}\left(B^{q} x, x\right)^{1 / q} \\
& \leq \lambda\left(p, \frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}}\right)^{1 / p}\left(B^{q} \#_{1 / p} A^{p} x, x\right)
\end{aligned}
$$

where $\lambda(p, m, M)$

$$
=\left\{\frac{1}{p^{1 / p} q^{1 / q}} \frac{M^{p}-m^{p}}{(M-m)^{1 / p}\left(m M^{p}-M m^{p}\right)^{1 / q}}\right\}^{p}
$$

We give the following extension of Theorem B by considering the case $p<0$ and $1>q>0$.

Theorem 1.10 [5]. Let A and B be positive operators on a Hilbert space H satisfying $M_{1} \geq A$ $\geq m_{1}>0$ and $M_{2} \geq B \geq m_{2}>0$. Let p and q be conjugate real numbers with $\frac{1}{p}+\frac{1}{q}=1$. Then the following inequalities hold for every vector x and real numbers r and s :
(i) In case $p>1, q>1, r \geq 0$ and $s \geq 0$:
(1.8) $\quad\left(B^{r} \#_{1 / p} A^{s} x, x\right) \leq\left(A^{s} x, x\right)^{1 / p}\left(B^{r} x, x\right)^{1 / q}$

$$
\leq K_{+}\left(\frac{m_{1}^{s / p}}{M_{2}^{r / p}}, \frac{M_{1}^{s / p}}{m_{2}^{r / p}}\right)^{1 / p}\left(B^{r} \#_{1 / p} A^{s} x, x\right)
$$

(ii) In case $p<0,1>q>0, r \geq 0$ and $s \leq 0$:
(1.9) $\quad\left(B^{r} \#_{1 / p} A^{s} x, x\right) \geq\left(A^{s} x, x\right)^{1 / p}\left(B^{r} x, x\right)^{1 / q}$

$$
\geq K_{-}\left(\frac{m_{1}^{s / p}}{m_{2}^{r / p}}, \frac{M_{1}^{s / p}}{M_{2}^{r / p}}\right)^{1 / p}\left(B^{r} \#_{1 / p} A^{s} x, x\right)
$$

where $K_{+}($,$) and K_{-}($,$) are the same as defined in$ Theorem 1.3. In particular,
(i) In case $p>1$ and $q>1$,:
(1.10) $\quad\left(B^{q} \#_{1 / p} A^{p} x, x\right) \leq\left(A^{p} x, x\right)^{1 / p}\left(B^{q} x, x\right)^{1 / q}$

$$
\leq K_{+}\left(\frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}}\right)^{1 / p}\left(B^{q} \#_{1 / p} A^{p} x, x\right)
$$

(ii) In case $p<0$ and $1>q>0$:

$$
\begin{equation*}
\text { 1) }\left(B^{q} \#_{1 / p} A^{p} x, x\right) \geq\left(A^{p} x, x\right)^{1 / p}\left(B^{q} x, x\right)^{1 / q} \tag{1.11}
\end{equation*}
$$

$$
\geq K_{-}\left(\frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{M_{2}^{q-1}}\right)^{1 / p}\left(B^{q} \#_{1 / p} A^{p} x, x\right)
$$

Remark 1.1. We remark that (1.10) in Theorem 1.10 just equals to Theorem B and (1.10) is equivalent to (1.8) and also (1.11) is equivalent to (1.9).
§2. Applications of Theorem 1.9 to order preserving power inequalities. $0<A \leq B$ ensures $A^{p} \leq B^{p}$ for any $p \in[0,1]$ by well known Löwner-Heinz theorem. However it is well known that $0<A \leq B$ does not always ensure $A^{p} \leq B^{p}$ for any $p>1$. Related to this result, a simple proof of the following interesting result is given in [2].

Theorem C [2]. Let $0<A \leq B$ and $0<m$ $\leq A \leq M$. Then

$$
A^{p} \leq\left(\frac{M}{m}\right)^{p} B^{p} \quad \text { for } p \geq 1
$$

We obtained the following result related to Theorem C.

Theorem 2.1 [5]. Let A and B be positive operators on a Hilbert space H such that $M_{1} \geq A \geq$ $m_{1}>0, M_{2} \geq B \geq m_{2}>0$ and $0<A \leq B$. Then (1-A) $\quad A^{p} \leq K_{1, p} B^{p} \leq\left(\frac{M_{1}}{m_{1}}\right)^{p-1} B^{p}$
and
(2-B) $\quad A^{p} \leq K_{2, p} B^{p} \leq\left(\frac{M_{2}}{m_{2}}\right)^{p-1} B^{p}$
holds for any $p \geq 1$, where $K_{1, p}$ and $K_{2, p}$ are defined by the following

$$
\begin{equation*}
K_{1, p}=\frac{(p-1)^{p-1}}{p^{p}\left(M_{1}-m_{1}\right)} \frac{\left(M_{1}^{p}-m_{1}^{p}\right)^{p}}{\left(m_{1} M_{1}^{p}-M_{1} m_{1}^{p}\right)^{p-1}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{2, p}=\frac{(p-1)^{p-1}}{p^{p}\left(M_{2}-m_{2}\right)} \frac{\left(M_{2}^{p}-m_{2}^{p}\right)^{p}}{\left(m_{2} M_{2}^{p}-M_{2} m_{2}^{p}\right)^{p-1}} . \tag{2.2}
\end{equation*}
$$

Remark 2.1. ($1-\mathrm{A}$) and (2-B) of Theorem 2.1 are more precise estimation than Theorem C since $K_{j, p} \leq\left(\frac{M_{j}}{m_{j}}\right)^{p-1} \leq\left(\frac{M_{j}}{m_{j}}\right)^{p}$ holds for $j=1,2$ and $p \geq 1$ ([5]).

Results in [3], [4], and [5] will appear elsewhere and other results related to this paper are discussed in [3], [4], and [5].

Acknowledgment. We would like to express our cordial thanks to Professor Hajime Sato for useful discussion on the results in §2.

References

[1] Ky Fan: Some matrix inequalities. Abh. Math. Sem. Univ. Hamburg, 29, 185-196 (1966).
[2] M. Fujii, S. Izumino, R. Nakamoto, and Y. Seo: Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities (preprint).
[3] T. Furuta: Extensions of Mond-Pečarić Generalization of Kantorovich inequality (preprint).
[4] T. Furuta: Two extensions of Ky Fan generalization and Mond-Pečarić matrix version generalization of Kantorovich inequality (preprint).
[5] T. Furuta: Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities (preprint).
[6] C. A. McCarthy: c_{p}. Israel J. Math., 5, 249-271 (1967).
[7] B. Mond and J. E. Pečarić: A matrix version of the Ky Fan Generalization of the Kantorovich inequality. Linear and Multilinear Algebra, 36, 217-221 (1994).

[^0]: *) Dedicated to Professor Shigeru Kita on his 88th birthday with respect and affection.

