Extensions of Hölder-McCarthy and Kantorovich Inequalities and Their Applications^{*)}

By Takayuki FURUTA

Department of Applied Mathematics, Science University of Tokyo (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1977)

Abstract: Extensions of Hölder-McCarthy and Kantorovich inequalities are given and their applications to the order preserving power inequalities are also given.

§1. Extensions of Hölder-McCarthy and Kantorovich inequalities. This paper is an early announcement of [3], [4], and [5]. An operator means a bounded linear operator on a Hilbert space H. The celebrated Kantorovich inequality asserts that if A is positive operator on H such that $M \ge A \ge m > 0$, then $(A^{-1}x, x)(Ax, x)$ $\leq rac{\left(m+M
ight)^2}{4mM}$ holds for every unit vector x in H. At first we state extensions of Kantorovich ine-

quality.

Multiple positive definite operator case.

Theorem 1.1 [4]. Let A_i be positive operator on a Hilbert space H satisfying

 $MI \ge A_i \ge mI(j = 1, 2, ..., k)$, where M > m > 0. Let f(t) be a real valued continuous convex function on [m, M] and also let x_1, x_2, \ldots, x_k be any finite number of vectors in H such that $\sum_{j=1}^{k} ||x_j||^2 = 1$. Then the following inequality holds;

$$\sum_{j=1}^{k} (f(A_j)x_j, x_j) \leq \frac{(mf(M) - Mf(m))}{(q-1)(M-m)} \left(\frac{(q-1)(f(M) - f(m))}{q(mf(M) - Mf(m))}\right)^q \left(\sum_{j=1}^{k} (A_jx_j, x_j)\right)^q$$

under any one of the following conditions (i) and (ii) respectively;

(i)
$$f(M) > f(m), \frac{f(M)}{M} > \frac{f(m)}{m}$$
 and
 $\frac{f(m)}{m}q \le \frac{f(M) - f(m)}{M - m} \le \frac{f(M)}{M}q$

holds for any real number q > 1,

(ii)
$$f(M) < f(m), \frac{f(M)}{M} < \frac{f(m)}{m}$$
 and
 $\frac{f(m)}{m}q \leq \frac{f(M) - f(m)}{M - m} \leq \frac{f(M)}{M}q$

holds for any real number q < 0.

Dedicated to Professor Shigeru Kita on his 88th birthday with respect and affection.

Corollary 1.2 [4]. Let A_i be positive operator on a Hilbert space H satisfying

 $MI \ge A_j \ge mI(j = 1, 2, ..., k)$, where M > m > 0. Let x_1, x_2, \ldots, x_k be any finite number of vectors in H such that $\sum_{j=1}^{k} \|x_j\|^2 = 1$. Then the following inequality holds;

$$\frac{\sum_{j=1}^{k} (A_{j}^{p} x_{j}, x_{j}) \leq \frac{(mM^{p} - Mm^{p})}{(q-1)(M-m)}}{\left(\frac{(q-1)(M^{p} - m^{p})}{q(mM^{p} - Mm^{p})}\right)^{q} \left(\sum_{j=1}^{k} (A_{j} x_{j}, x_{j})\right)^{q}}$$

under any one of the following conditions (i) and (ii) respectively;

(i) $m^{p-1}q \leq \frac{M^p - m^p}{M - m} \leq M^{p-1}q$ holds for any real numbers p > 1 and q > 1, (ii) $m^{p-1}q \le \frac{M^p - m^p}{M - m} \le M^{p-1}q$ holds for any real

numbers p < 0 and q < 0.

Corollary 1.2 becomes the following Corollary 1.3 if we put q = p.

Corollary 1.3 [4]. Let A_i be positive operator on a Hilbert space H satisfying

 $MI \ge A_j \ge mI(j = 1, 2, ..., k)$, where M > m > 0. Let x_1, x_2, \ldots, x_k be any finite number of vectors in H such that $\sum_{j=1}^{k} ||x_j||^2 = 1$. Then the following inequality holds for any real number $p \notin [0, 1]$:

$$\sum_{j=1}^{k} (A_{j}^{p} x_{j}, x_{j}) \leq \frac{(mM^{p} - Mm^{p})}{(p-1)(M-m)} \left(\frac{(p-1)(M^{p} - m^{p})}{(p-1)(M-m)}\right)^{p} \left(\sum_{j=1}^{k} (A_{j} x_{ij}, x_{j})\right)^{p},$$

 $\left(\frac{p(mM^{p} - Mm^{p})}{p(mM^{p} - Mm^{p})}\right) \left(\sum_{j=1}^{2} (A_{j}x_{j}, x_{j})\right).$ Corollary 1.3 can be considered as an extension of the following Theorem A by Ky Fan.

Theorem A [1] (Ky Fan). Let A be a positive definite Hermitian matrix of order n with all its eigenvalues contained in the closed interval [m, M], where M > m > 0. Let x_1, x_2, \ldots, x_k be any finite

No. 3]

number of vectors in the unitary *n*-space such that $\sum_{j=1}^{k} ||x_j||^2 = 1$. Then for every integer $p \neq 0,1$ (not necessary positive) we have;

$$\sum_{j=1}^{k} (A^{p} x_{j}, x_{j}) \leq \frac{(p-1)^{p-1}}{p^{p}}$$

$$\frac{(M^{p}-m^{p})^{p}}{(mM^{p}-Mm^{p})^{p-1}(M-m)} \left(\sum_{j=1}^{k} (Ax_{j}, x_{j})\right)^{p}.$$
In particular $\left(\sum_{j=1}^{k} (Ax_{j}, x_{j})\right) \left(\sum_{j=1}^{k} (A^{-1}x_{j}, x_{j})\right) \leq (m+M)^{2}$

 $\frac{4mM}{4mM}$

Corollary 1.4 [3]. Let A be positive operator on a Hilbert space H satisfying

 $MI \ge A \ge mI, \text{ where } M > m > 0. \text{ Then the following inequalities hold for every unit vector x in H.}$ (i) $(Ax, x)^{p} (A^{-1}x, x) \le \frac{p^{p}}{(p+1)^{p+1}} \frac{(m+M)^{p+1}}{mM}$ for any p such that $\frac{m}{M} \le p \le \frac{M}{m}$ (ii) $(A^{2}x, x) \le \frac{p^{p}}{(p+1)^{p+1}} \frac{(m+M)^{p+1}}{(mM)^{p}} (Ax, x)^{p+1}$ for any p such that $\frac{m}{M} \le p \le \frac{M}{m}$.

(i) in Corollary 1.4 with p = 1 becomes the Kantorovich inequality.

Multiple positive definite matrix case.

Theorem 1.5 [4]. Let A_j be positive definite Hermite matrices of order n with eigenvalues contained in the interval [m, M], where M > m > 0. Let f(t) be a real valued continuous convex function on [m, M] and also $U_j(j = 1, 2, ..., k)$ are $r \times n$ matrices such that $\sum_{j=1}^{k} U_j U_j^* = I$. Then the following inequality holds;

$$\sum_{j=1}^{k} U_{j}f(A_{j}) U_{j}^{*} \leq \frac{(mf(M) - Mf(m))}{(q-1)(M-m)} \\ \left(\frac{(q-1)(f(M) - f(m))}{q(mf(M) - Mf(m))}\right)^{q} \left(\sum_{j=1}^{k} U_{j}A_{j}U_{j}^{*}\right)^{q}$$

holds under any one of the following conditions (i) an (ii);

(i)
$$f(M) > f(m), \frac{f(M)}{M} > \frac{f(m)}{m}$$
 and
 $\frac{f(m)}{m}q \le \frac{f(M) - f(m)}{M - m} \le \frac{f(M)}{M}q$

holds for any real number q > 1,

(ii)
$$f(M) < f(m), \frac{f(M)}{M} < \frac{f(m)}{m}$$
 and

$$\frac{f(m)}{m} q \leq \frac{f(M) - f(m)}{M - m} \leq \frac{f(M)}{M} q$$

holds for any real number q < 0.

Corollary 1.6 [4]. Let A_j be positive definite Hermite matrices of order n with eigenvalues contained in the interval [m, M], there M > m > 0. If $U_j(j = 1, 2, ..., k)$ are $r \times n$ matrices such that $\sum_{j=1}^{k} U_j U_j^* = I$. Then the following inequality holds;

$$\sum_{j=1}^{k} U_{j}A_{j}^{p}U_{j}^{*} \leq \frac{(mM^{p} - Mm^{p})}{(q-1)(M-m)}$$
$$\left(\frac{(q-1)(M^{p} - m^{p})}{q(mM^{p} - Mm^{p})}\right)^{q} \left(\sum_{j=1}^{k} U_{j}A_{j}U_{j}^{*}\right)^{q}$$

holds under any one of the following conditions (i) and (ii);

(i)
$$m^{p-1}q \leq \frac{f(M) - f(m)}{M - m} \leq M^{p-1}q$$
 holds for
any real numbers $p > 1$ and $q > 1$,

(ii)
$$m^{p-1}q \leq \frac{f(M) - f(m)}{M - m} \leq M^{p-1}q$$
 holds for

any real numbers p < 0 and q < 0.

If we put q = p in Corollary 1.6, we have the following result which is a matrix version of Theorem A by Ky Fan.

Corollary 1.7 [4]. Let A_j be positive definite Hermite matrices of order n with eigenvalues contained in the interval [m, M], where M > m > 0. Also let $U_j(j = 1, 2, ..., k)$ be $r \times n$ matrices such that $\sum_{j=1}^{k} U_j U_j^* = I$. Then for any real number p such that $p \notin [0,1]$, the following inequality holds;

$$\sum_{j=1}^{k} U_{j} A_{j}^{p} U_{j}^{*} \leq \frac{(mM^{p} - Mm^{p})}{(p-1)(M-m)}$$
$$\left(\frac{(p-1)(M^{p} - m^{p})}{p(mM^{p} - Mm^{p})}\right)^{p} \left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{p}.$$

Corollary 1.8 [3]. Let A_j (j = 1, ..., k) be positive definite Hermite matrices of order n, with eigenvalues contained in the interval [m, M], where M > m > 0. Also let U_j (j = 1, ..., k) be $r \times n$ matrices such that $\sum_{j=1}^{k} U_j U_j^* = I$. Then the following inequalities hold;

(i)
$$\sum_{j=1}^{k} U_{j} A_{j}^{-1} U_{j}^{*} \leq \frac{p^{\flat}}{(p+1)^{\flat+1}} \frac{(m+M)^{\flat+1}}{mM} \left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{-\flat}$$

for any positive p such that $\frac{m}{M} \leq p \leq \frac{M}{m}$.

$$\frac{\sum_{j=1}^{k} U_{j} A_{j}^{2} U_{j}^{*} \leq \frac{p^{p}}{(p+1)^{p+1}}}{(m+M)^{p}} \left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{p+1}} \frac{(m+M)^{p}}{(mM)^{p}} \left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}\right)^{p+1}}$$

for any positive p such that $\frac{m}{M} \le p \le \frac{M}{m}$.

Corollary 1.8 with p = 1 becomes the following Theorem B.

Theorem B [7]. Let A_j (j = 1, ..., k) be positive definite Hermite matrices of order n, with eigenvalues contained in the interval [m, M], where M > m > 0. If U_j (j = 1, ..., k) are $r \times n$ matrices such that $\sum_{j=1}^{k} U_j U_j^* = I$, then the following inequalities hold:

(i)
$$\sum_{j=1}^{k} U_{j}A_{j}^{-1}U_{j}^{*} \leq \frac{(m+M)^{2}}{4mM} \left(\sum_{j=1}^{k} U_{j}A_{j}U_{j}^{*}\right)^{-1}$$

(ii) $\sum_{j=1}^{k} U_{j}A_{j}^{2}U_{j}^{*} \leq \frac{(m+M)^{2}}{4mM} \left(\sum_{j=1}^{k} U_{j}A_{j}U_{j}^{*}\right)^{2}$.

Next we state results on complementary inequality of Hölder-McCarthy inequality.

Theorem 1.9 [5]. Let A be positive operators on a Hilbert space H satisfying $M \ge A \ge m > 0$. Then the following inequality holds for every unit vector x

(i) In case p > 1:

(ii)

 $(Ax, x)^{p} \leq (A^{p}x, x) \leq K_{+}(m, M) (Ax, x)^{p}$ where $K_{+}(m, M)$ $(p-1)^{p-1} \qquad (M^{p}-m^{p})^{p}$

$$=\frac{(p-1)^{p}}{p^{p}}\frac{(M^{p}-m^{p})^{p}}{(M-m)(mM^{p}-Mm^{p})^{p-1}}.$$

In case $p < 0$:

 $(Ax, x)^{p} \leq (A^{p}x, x) \leq K_{-}(m, M) (Ax, x)^{p}$ where K (m, M)

$$=\frac{(mM^{p}-Mm^{p})}{(p-1)(M-m)}\left(\frac{(p-1)(M^{p}-m^{p})}{p(mM^{p}-Mm^{p})}\right)^{p}$$

Recently the following interesting complementary inequality of Hölder-McCarthy inequality [6] is shown in [2].

Theorem B ([2]). Let A and B be positive operators on a Hilbert space H satisfying $M_1 \ge A$ $\ge m_1 > 0$ and $M_2 \ge B \ge m_2 > 0$. Let p and q be p > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Then the following inequality holds for every vector x

$$\begin{array}{l} (B^{q} \#_{1/p} A^{p} x, x) \leq (A^{p} x, x)^{1/p} (B^{q} x, x)^{1/q} \\ \leq \lambda \Big(p, \frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}} \Big)^{1/p} (B^{q} \#_{1/p} A^{p} x, x), \end{array}$$

where
$$\lambda(p, m, M)$$

$$= \left\{ \frac{1}{p^{1/p}q^{1/q}} \frac{M^p - m^p}{(M - m)^{1/p} (mM^p - Mm^p)^{1/q}} \right\}^p.$$

We give the following extension of Theorem

B by considering the case p < 0 and 1 > q > 0.

Theorem 1.10 [5]. Let A and B be positive operators on a Hilbert space H satisfying $M_1 \ge A$ $\ge m_1 > 0$ and $M_2 \ge B \ge m_2 > 0$. Let p and q be conjugate real numbers with $\frac{1}{p} + \frac{1}{q} = 1$. Then the following inequalities hold for every vector x and real numbers r and s:

(i) In case p > 1, q > 1, $r \ge 0$ and $s \ge 0$: (1.8) $(B^r \#_{1/p} A^s x, x) \le (A^s x, x)^{1/p} (B^r x, x)^{1/q}$

$$\leq K_{+} \left(\frac{m_{1}^{s/p}}{M_{2}^{r/p}}, \frac{M_{1}^{s/p}}{m_{2}^{r/p}} \right)^{1/p} (B^{r} \#_{1/p} A^{s} x, x).$$

(ii) In case $p < 0, 1 > q > 0, r \ge 0$ and $s \le 0$: (1.9) $(B^r \#_{1/p} A^s x, x) \ge (A^s x, x)^{1/p} (B^r x, x)^{1/q}$ $\ge K_{-} \left(\frac{m_1^{s/p}}{m_2^{r/p}}, \frac{M_1^{s/p}}{M_2^{r/p}}\right)^{1/p} (B^r \#_{1/p} A^s x, x).$

where $K_+(,)$ and $K_-(,)$ are the same as defined in Theorem 1.3. In particular,

(i) In case p > 1 and q > 1,:

(1.10)
$$(B^{q} \#_{1/p} A^{p} x, x) \leq (A^{p} x, x)^{1/p} (B^{q} x, x)^{1/q}$$

 $\leq K_{+} \left(\frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}}\right)^{1/p} (B^{q} \#_{1/p} A^{p} x, x).$

(ii) In case
$$p < 0$$
 and $1 > q > 0$:

(1.11) $(B^{q} \#_{1/p} A^{p} x, x) \ge (A^{p} x, x)^{1/p} (B^{q} x, x)^{1/q}$ $\ge K \left(\frac{M_{1}}{2}, \frac{M_{1}}{2}\right)^{1/p} (B^{q} \#_{1/p} A^{p} x, x).$

$$\geq K_{-}\left(\frac{1}{M_{2}^{q-1}}, \frac{1}{M_{2}^{q-1}}\right) \quad (B^{*} \#_{1/p}A^{*}x, x).$$

Remark 1.1. We remark that (1.10) in Theorem 1.10 just equals to Theorem B and (1.10) is equivalent to (1.8) and also (1.11) is equivalent to (1.9).

§2. Applications of Theorem 1.9 to order preserving power inequalities. $0 < A \le B$ ensures $A^{p} \le B^{p}$ for any $p \in [0,1]$ by well known Löwner-Heinz theorem. However it is well known that $0 < A \le B$ does not always ensure $A^{p} \le B^{p}$ for any p > 1. Related to this result, a simple proof of the following interesting result is given in [2].

Theorem C [2]. Let $0 \le A \le B$ and $0 \le m$ $\le A \le M$. Then

$$A^{p} \leq \left(\frac{M}{m}\right)^{p} B^{p} \quad \textit{for } p \geq 1.$$

We obtained the following result related to Theorem C.

(ii)

No. 3]

Theorem 2.1 [5]. Let A and B be positive operators on a Hilbert space H such that $M_1 \ge A \ge m_1 \ge 0$, $M_2 \ge B \ge m_2 \ge 0$ and $0 < A \le B$. Then (1-A) $A^p \le K_{1,p}B^p \le \left(\frac{M_1}{m}\right)^{p-1}B^p$

(1-A)
$$A^r \leq K_{1,p}B^r \leq \left(\frac{1}{m_1}\right)$$

and

(2-B)
$$A^{\flat} \leq K_{2,\flat}B^{\flat} \leq \left(\frac{M_2}{m_2}\right)^{\flat-1}B^{\flat}$$

holds for any $p \ge 1$, where $K_{1,p}$ and $K_{2,p}$ are defined by the following

(2.1)
$$K_{1,p} = \frac{(p-1)^{p-1}}{p^{p}(M_{1}-m_{1})} \frac{(M_{1}^{p}-m_{1}^{p})^{p}}{(m_{1}M_{1}^{p}-M_{1}m_{1}^{p})^{p-1}}$$

and

(2.2)
$$K_{2,p} = \frac{(p-1)^{p-1}}{p^p (M_2 - m_2)} \frac{(M_2^p - m_2^p)^p}{(m_2 M_2^p - M_2 m_2^p)^{p-1}}.$$

Remark 2.1. (1-A) and (2-B) of Theorem 2.1 are more precise estimation than Theorem C since $K_{j,p} \leq \left(\frac{M_j}{m_j}\right)^{p-1} \leq \left(\frac{M_j}{m_j}\right)^p$ holds for j = 1,2 and $p \geq 1$ ([5]).

Results in [3], [4], and [5] will appear elsewhere and other results related to this paper are discussed in [3], [4], and [5]. **Acknowledgment.** We would like to express our cordial thanks to Professor Hajime Sato for useful discussion on the results in §2.

References

- [1] Ky Fan: Some matrix inequalities. Abh. Math. Sem. Univ. Hamburg, 29, 185-196 (1966).
- [2] M. Fujii, S. Izumino, R. Nakamoto, and Y. Seo: Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities (preprint).
- [3] T. Furuta: Extensions of Mond-Pečarić Generalization of Kantorovich inequality (preprint).
- [4] T. Furuta: Two extensions of Ky Fan generalization and Mond-Pečarić matrix version generalization of Kantorovich inequality (preprint).
- [5] T. Furuta: Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities (preprint).
- [6] C. A. McCarthy: c_p. Israel J. Math., 5, 249-271 (1967).
- [7] B. Mond and J. E. Pečarić: A matrix version of the Ky Fan Generalization of the Kantorovich inequality. Linear and Multilinear Algebra, 36, 217-221 (1994).